

Welcome to **E-XFL.COM**

<u>Embedded - Microcontrollers - Application</u>
<u>Specific</u>: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are Embedded - Microcontrollers - Application Specific?

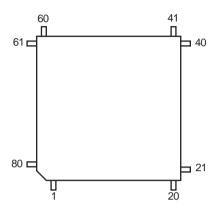
Application enacific microcontrollars are anaineared to

Details	
Product Status	Obsolete
Applications	Power Line Communications
Core Processor	External
Program Memory Type	-
Controller Series	-
RAM Size	-
Interface	SPI
Number of I/O	-
Voltage - Supply	3V ~ 3.6V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atpl230a-aku-r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3. Signal Description


Table 3-1. Signal Description List

Signal Name	Function	Туре	Active Level	Voltage reference	Comments
	Power S	upplies			
VDDIO	3.3V digital supply. Digital power supply must be decoupled by external capacitors	Power			3.0V to 3.6V
VDDIN	3.3V Digital LDO input supply	Power			3.0V to 3.6V
VDDIN AN	3.3V Analog LDO input supply	Power			3.0V to 3.6V
VDDOUT AN	1.2V Analog LDO output. A capacitor in the range 0.1μF - 10μF must be connected to each pin	Power			1.2V
VDDOUT	1.2V Digital LDO output. A capacitor in the range $0.1\mu F$ - $10\mu F$ must be connected to each pin	Power			1.2V
VDDPLL	1.2V PLL supply. It must be decoupled by a 100nF external capacitor, and connected to VDDOUT through a filter (Cut off frequency: 25kHz)	Power			1.2V
GND ⁽¹⁾	Digital Ground	Power			
AGND ⁽¹⁾	Analog Ground	Power			
	Clocks, Oscilla	tors and P	LLs		
CLKEA ⁽²⁾	External Clock Oscillator CLKEA must be connected to one terminal of a crystal (when a crystal is being used) or used as input for external clock signal	Input		VDDIO	
CLKEB ⁽²⁾	External Clock Oscillator CLKEB must be connected to one terminal				
CLKOUT	10MHz External Clock Output	Output		VDDIO	
	Reset	Test			
ARST	Asynchronous Reset	Input	Low	VDDIO	Internal pull up ⁽³⁾
SRST	Synchronous Reset	Input	Low	VDDIO	Internal pull up ⁽³⁾
PLL INIT	PLL Initialization Signal	Input	Low	VDDIO	Internal pull up ⁽³⁾
	PPLC (PRIME Power Line Co	ommunica	tions) Trar	sceiver	
EMIT [0:11] ⁽⁴⁾	PLC Tri-state Transmission ports	Output		VDDIO	
AGC [0:5]	Automatic Gain Control: These digital tri-state outputs are managed by AGC hardware logic to drive external circuitry when input signal attenuation is needed	Output		VDDIO	

4. Package and Pinout

4.1 80-Lead LQFP Package Outline

Figure 4-1. Orientation of the 80-Lead LQFP Package

4.2 80-Lead LQFP Pinout

Table 4-1. 80 - Lead LQFP Pinout

1	NC	21	VDDIO	41	GND	61	GND
2	NC	22	NC	42	EMIT8	62	AGND
3	NC	23	CLKOUT	43	EMIT9	63	VDDOUT AN
4	ARST	24	CS	44	EMIT10	64	VIMA
5	PLL INIT	25	SCK	45	EMIT11	65	VIPA
6	GND	26	MOSI	46	VDDIO	66	VDDOUT AN
7	CLKEA	27	MISO	47	GND	67	AGND
8	GND	28	VDDIO	48	VDDOUT	68	VRP
9	CLKEB	29	GND	49	TXRX0	69	VRM
10	VDDIO	30	EMIT0	50	TXRX1	70	VRC
11	GND	31	EMIT1	51	GND	71	VDDIN AN
12	VDDPLL	32	EMIT2	52	AGC2	72	AGND
13	GND	33	EMIT3	53	AGC5	73	AGND
14	VDDIN	34	VDDIO	54	AGC1	74	VDDIN AN
15	VDDIN	35	GND	55	AGC4	75	GND
16	GND	36	EMIT4	56	AGC0	76	VDDIO
17	VDDOUT	37	EMIT5	57	AGC3	77	VZ CROSS
18	GND	38	EMIT6	58	VDDIO	78	NC
19	NC	39	EMIT7	59	GND	79	NC
20	SRST	40	VDDIO	60	EINT	80	NC

The ATPL230A SPI allows an external device (working as a master), to communicate with the ATPL230A (working as a slave). Below is a brief description of the SPI signals:

• CS, Chip Select (pin no.24): This input enables/disables the slave SPI. The ATPL230A is configured to work always as a slave. When disabled (CS pin is tied high), the other SPI signals (SCK, MOSI and MISO) are not taken into account.

CS = '0': SPI enabled.

CS = '1': SPI disabled.

SCK, Serial Peripheral Interface Clock (pin no.25): In reception (master slave), data is read from MOSI line
in the rising edge of the SPI clock. In transmission (slave master), data is released to MISO in the falling edge
of the SPI clock.

It is recommended not to work with clock frequencies above 10MHz.

This input only will be taken into account when CS='0'.

MOSI, Master Out Slave In (pin no.26): MOSI is the slave's data input line. Data is read from MOSI line in the
rising edge of SCK.

This input only will be taken into account when CS='0'.

 MISO, Master In Slave Out (pin no.27): MISO is the slave's data output line. Data is released to MISO in the falling edge of SCK.

Furthermore, ATPL230A SPI bridge uses an additional line to send interrupts to the host CPU:

EINT (pin no.60): This signal is an interrupt from ATPL230A PHY layer to the microcontroller.

In reception, every time a PLC message is received, the PHY Layer generates two interrupts. One of them when the physical header is correctly received (two first symbols), and the other one when the message is completely received.

In transmission, an interrupt will be generated every time a complete message has been sent.

This signal is low level active.

6.2 SPI Operation

When establishing a SPI communication (CS line is set to '0' by the master), the first byte sent through MOSI line corresponds to the operation code. Four different operation types are defined over ATPL230A SPI. The operation codes are shown in the following table:

Table 6-1. Operation Codes

Operation	Mask type	OpCode
Read		0x63
Write		0x2A
	AND	0x4C
Mask	OR	0x71
	XOR	0x6D
Write_rep		0x1E

Following the operation code, the second and third bytes correspond to the SRAM address (16-bit address). Depending on the operation code, the master will "read data from"/"write data to"/"mask data in"/"write some data to" that address.

After the address, a dummy byte is sent.

Table 7-1. Register Mapping

Address	Register	Name	Access	Reset
0xFF9C	Reserved	-	-	0x01
0xFF9D	Reserved	_	-	0x01
			-	
0xFF9E	Reserved	-	-	0x27
0xFF9F	Reserved	-	-	0x0A
0xFFA0 - 0xFFAF	Peripheral AES Key Register	AES_KEY	Read/Write	0x0000
0xFFB0 - 0xFFBF	Peripheral AES Data Field Register	AES_DATA	Read/Write	0x0000
0xFFC0	Peripheral AES Control Register	AES_CTL	Read/Write	0x04
0xFFE2 - 0xFFE3		-	-	0x0424
0xFFE4 - 0xFFE5		-	-	0x0424
0xFFE6 - 0xFFE7		-	-	0x0424
0xFFE8 - 0xFFE9		-	-	0x0424
0xFFEA - 0xFFEB		-	-	0x0424
0xFFEC - 0xFFED	Reserved	-	-	0x0424
0xFFEE - 0xFFEF	Reserved	-	-	0x0424
0xFFF0 - 0xFFF1		-	-	0x0424
0xFFF2 - 0xFFF3		-	-	0x0424
0xFFF4 - 0xFFF5		-	-	0x0424
0xFFF6 - 0xFFF7		-	-	0x0424
0xFFF8 - 0xFFF9		-	-	0x0424

8.3.1.9 Peripheral CRC Polynomial Register

Name: VCRC POLY

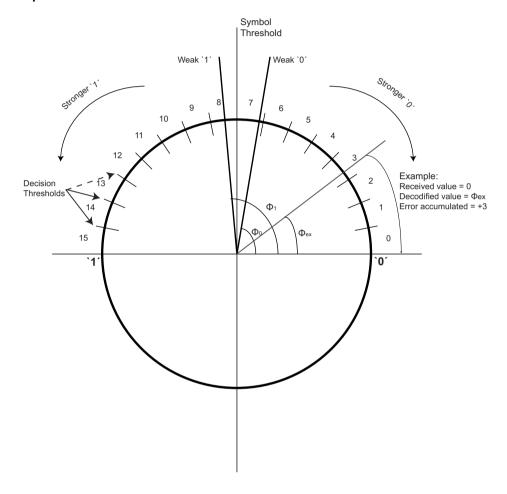
Address: 0xFF0E (MSB) – 0xFF11 (LSB)

Access: Read/Write Reset: 0x04C11DB7

31 30 1 0

VCRC_POLY (31:0)

This is a 32 bits register used to store the CRC polynomial mathematical expression. Each register bit location represents an exponential degree of the polynomial. Meaning that, for a register value of 0x04C11DB7; the corresponding polynomial expression is $x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^11 + x^10 + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$. Note that, the first exponential degree (x^32) is taken by the feedback of the circuit itself.


To configure the system in CRC mode, the bit VCRC_POLY(0) must be set to '1'. Otherwise, if VCRC_POLY(0) is set to '0' the system works in LFSR (Linear Feedback Shift Register) mode.

arithmetic average of the accumulated errors in each one of the four replicated symbols. The value is cleared by hardware each time a new message is received in BUF_RX3.

* Viterbi Soft Decision: in "soft" decision there are sixteen decision levels. Once decodified, a strong '0' is represented by a value of "0", while a strong '1' is represented by a value of "15". The rest of values are intermediate, so "7" is used to represent a weak '0' and "8" represents a weak '1'. Soft decision calculates the error in one bit received as the distance in decision levels between the value received (a value in the range 0 to 15) and the corrected one (0 or 15).

Figure 8-2. Example of Viterbi Soft detection decision levels in a BPSK constellation

8.3.3.5 False Positive Configuration Register

Name: FALSE POSITIVE CONFIG

Address: 0xFEC4
Access: Read/Write

Reset: 0x10

7	6	5	4	3	2	1	0
-	-	ERR_CRC8 _MAC_HD	ERR_PROT OCOL	ERR_LEN	ERR_PAD_ LEN	ERR_PDU	ERR_SP

Through FALSE_POSITIVE_CONFIG register the user is able to configure FALSE_POSITIVE register behavior. When a flag of this register is set to '1', the correspondent field of the packet is included in the false positive computation algorithm. False positive algorithm is only enabled in PRIME v1.3 mode. See "False Positive Counter Register"

• ERR_CRC8_MAC_HD:

Bad CRC8 MAC value (The one located at the header part of the packet).

• ERR_PROTOCOL:

Unsupported protocol field.

• ERR LEN:

Invalid LEN field value. LEN field is located in the PRIME PPDU header and it defines the length of the payload (after coding) in OFDM symbols. See PRIME specification for further details about PPDU structure.

• ERR PAD LEN:

Invalid PAD_LEN value. PAD_LEN field is located in the PRIME PPDU header and it defines the length of the PAD field (after coding) in bytes. See PRIME specification for further details about PPDU structure.

• ERR_PDU:

Unsupported Header Type.

• ERR SP:

Unsupported Security Protocol.

9.3 PHY Layer Registers

9.3.1 PHY Configuration Registers

9.3.1.1 PHY Layer Special Function Register

Name: PHY_SFR
Address: 0xFE2A
Access: Read/Write

Reset: 0x87

7	6	5	4	3	2	1	0
BCH_ERR	CD	UMD	-	-	-	1	INT_PHY

• BCH_ERR: Busy Channel Error Flag

This bit is cleared to '0' by hardware to indicate the presence of an OFDM signal at the transmission instant. Otherwise, this field value is '1'.

This bit is used for returning a result of "Busy Channel" in the PHY_DATA confirm primitive (see PRIME specification).

. CD: Carrier Detect bit

This bit is set to '1' by hardware when an OFDM signal is detected, and it is active during the whole reception.

This bit is used in channel access (CSMA-CA algorithm) for performing channel-sensing.

UMD: Unsupported Modulation Scheme flag

This flag is set to '1' by hardware every time a header with correct CRC is received, but the PROTOCOL field in this header indicates a modulation scheme not supported by the system.

• INT_PHY: Physical Layer interruption

This bit is internally connected to the EINT pin.

It is Low level active and it is set to '0' by the PHY layer to trigger an interrupt in the external host.

In reception, every time a PLC message is received, the PHY layer generates two interrupts. One of them when the physical header is correctly received (two first symbols), and the other one when the message is completely received.

In transmission, an interrupt will be generated every time a complete message has been sent.

The signal is cleared by writing '1' in the bit PHY SFR(0).

9.3.1.2 Channel selector Register

Name: CTPS

Address: 0xFEFA (MSB) – 0xFEFD (LSB)

Access: Read/Write Reset: 0x000150C7

31	30	29	28	27	26	25	24		
-	-	-	-	-	-	-	CTPS (24)		
23	22	21	20	19	18	17	16		
	CTPS(23:16)								
15	14	13	12	11	10	9	8		
			CTPS	(15:8)					
7	6	5	4	3	2	1	0		
	CTPS(7:0)								

Configures the channel:

Value	Name	Description
0x000150C7	CHANNEL1	42 - 89 kHz
0x00026A44	CHANNEL2	97 - 144 kHz
0x000383C1	CHANNEL3	151 - 198 kHz
0x00049D3D	CHANNEL4	206 - 253 kHz
0x0005B6BA	CHANNEL5	261 - 308 kHz
0x0006D036	CHANNEL6	315 - 362 kHz
0x0007E9B3	CHANNEL7	370 - 417 kHz
0x00090330	CHANNEL8	425 - 472 kHz

9.3.2.3 RX Interrupts Register

Name: TXRXBUF_RX_INT

Address: 0xFDD4

Access: Read/Write

Reset: 0x00

7	6	5	4	3	2	1	0
PI_RX3	PI_RX2	PI_RX1	PI_RX0	HI_RX3	HI_RX2	HI_RX1	HI_RX0

Interrupt Reception Register: When there is some issue with the reception, the micro is warned and then micro tests what buffer is affected through this register.

- PI_RX3: Notice Payload Interrupt Reception Buffer 3
- PI_RX2: Notice Payload Interrupt Reception Buffer 2
- PI_RX1: Notice Payload Interrupt Reception Buffer 1
- PI_RX0: Notice Payload Interrupt Reception Buffer 0
- HI_RX3: Notice Header Interrupt Reception Buffer 3
- HI_RX2: Notice Header Interrupt Reception Buffer 2
- HI RX1: Notice Header Interrupt Reception Buffer 1
- HI_RX0: Notice Header Interrupt Reception Buffer 0

9.3.2.6 Robust RX Mode Register

Name: TXRXBUF_RXCONF_ROBO_MODE

Address: 0xFDF3

Access: Read-only

Reset: 0x00

7	6	5	4	3	2	1	0
RC_RX3		RC_	RX2	RC_	RX1	RC_	RX0

This register shows the reception mode of each RX buffer:

• RC_RX0: Buffer 0 reception mode.

• RC_RX1: Buffer 1 reception mode.

• RC_RX2: Buffer 2 reception mode.

• RC_RX3: Buffer 3 reception mode.

Value	Name	Description
0	PRIME 1.3	Mode PRIME v1.3
1	Reserved	Reserved
2	PRIME 1.4	PRIME v1.4 reception mode
3	PRIME 1.4 c	PRIME v1.4 reception backwards compatible mode

9.3.3.3 Maximum RSSI Registers

Name: TXRXBUF RSSIMAX RX0

Address: 0xFD73
Access: Read-only

Reset: 0x00

7 6 5 4 3 2 1 0 TXRXBUF RSSIMAX RX0

This register stores the maximum RSSI (Received Signal Strength Indication) value measured in the last message received in BUF RX0. The measurement is done at symbol level. The value is stored in dB.

Name: TXRXBUF_RSSIMAX_RX1

Address: 0xFD74
Access: Read-only

Reset: 0x00

7 6 5 4 3 2 1 0 TXRXBUF_RSSIMAX_RX1

This register stores the maximum RSSI (Received Signal Strength Indication) value measured in the last message received in BUF RX1. The measurement is done at symbol level. The value is stored in dB.

Name: TXRXBUF RSSIMAX RX2

Address: 0xFD75
Access: Read-only

Reset: 0x00

7 6 5 4 3 2 1 0 TXRXBUF_RSSIMAX_RX2

This register stores the maximum RSSI (Received Signal Strength Indication) value measured in the last message received in BUF_RX2. The measurement is done at symbol level. The value is stored in dB.

Name: TXRXBUF_RSSIMAX_RX3

Address: 0xFD76
Access: Read-only
Reset: 0x00

7 6 5 4 3 2 1 0 TXRXBUF_RSSIMAX_RX3

This register stores the maximum RSSI (Received Signal Strength Indication) value measured in the last message received in BUF_RX3. The measurement is done at symbol level. The value is stored in dB.

9.3.3.5 Average CINR Registers

Name: TXRXBUF CINRAVG RX0

Address: 0xFD7B
Access: Read-only

Reset: 0x00

7 6 5 4 3 2 1 0 TXRXBUF CINRAVG RX0

This register stores the average CINR (Carrier to Interference + Noise ratio) value measured in the last message received in BUF RX0. The measurement is done at symbol level. The value is stored in ¼ dB steps.

Name: TXRXBUF_CINRAVG_RX1

Address: 0xFD7C
Access: Read-only

Reset: 0x00

7 6 5 4 3 2 1 0 TXRXBUF_CINRAVG_RX1

This register stores the average CINR (Carrier to Interference + Noise ratio) value measured in the last message received in BUF RX1. The measurement is done at symbol level. The value is stored in ¼ dB steps.

Name: TXRXBUF CINRAVG RX2

Address: 0xFD7D
Access: Read-only

Reset: 0x00

7 6 5 4 3 2 1 0 TXRXBUF_CINRAVG_RX2

This register stores the average CINR (Carrier to Interference + Noise ratio) value measured in the last message received in BUF_RX2. The measurement is done at symbol level. The value is stored in ¼ dB steps.

Name: TXRXBUF_CINRAVG_RX3

Address: 0xFD7E
Access: Read-only
Reset: 0x00

7 6 5 4 3 2 1 0 TXRXBUF_CINRAVG_RX3

This register stores the average CINR (Carrier to Interference + Noise ratio) value measured in the last message received in BUF RX3. The measurement is done at symbol level. The value is stored in ¼ dB steps.

9.3.4.2 Signal Amplitude Registers

Name: TXRXBUF SGNL AMP TX0

Address: 0xFD24
Access: Read/Write

Reset: 0x60

7 6 5 4 3 2 1 0 TXRXBUF_SGNL_AMP_TX0

This register stores the amplitude value for the transmitted frame (only header+payload; chirp not affected), when BUF_TX0 is used. If this value is equal to 0xFF, the header+payload transmitted are not attenuated. If this register is equal to 0x00, the header+payload are nullified.

Name: TXRXBUF_SGNL_AMP_TX1

Address: 0xFD25
Access: Read/Write

Reset: 0x60

7 6 5 4 3 2 1 0 TXRXBUF_SGNL_AMP_TX1

This register stores the amplitude value for the transmitted frame (only header+payload; chirp not affected), when BUF_TX1 is used. If this value is equal to 0xFF, the header+payload transmitted are not attenuated. If this register is equal to 0x00, the header+payload are nullified.

Name: TXRXBUF_SGNL_AMP_TX2

Address: 0xFD26
Access: Read/Write

Reset: 0x60

7 6 5 4 3 2 1 0 TXRXBUF_SGNL_AMP_TX2

This register stores the amplitude value for the transmitted frame (only header+payload; chirp not affected), when BUF_TX2 is used. If this value is equal to 0xFF, the header+payload transmitted are not attenuated. If this register is equal to 0x00, the header+payload are nullified.

Name: TXRXBUF_SGNL_AMP_TX3

Address: 0xFD27 Access: Read/Write

Reset: 0x60

7 6 5 4 3 2 1 0 TXRXBUF_SGNL_AMP_TX3

This register stores the amplitude value for the transmitted frame (only header+payload; chirp not affected), when BUF_TX3 is used. If this value is equal to 0xFF, the header+payload transmitted are not attenuated. If this register is equal to 0x00, the header+payload are nullified.

9.3.5 TX Buffers Registers

9.3.5.1 TX Time Registers

Name: TXRXBUF_EMITIME_TX0

Address: 0xFD00 - 0xFD03

Access: Read/Write Reset: 0x00000000

31	30	29	28	27	26	25	24
		Т	XRXBUF_EMIT	IME_TX0 (31:2	4)		
23	22	21	20	19	18	17	16
		T	XRXBUF_EMIT	IME_TX0 (23:10	6)		
15	14	13	12	11	10	9	8
		-	TXRXBUF_EMI	TIME_TX0 (15:8	3)		
7	6	5	4	3	2	1	0
			TXRXBUF_EMI	TIME_TX0 (7:0))		

Transmission time of Buffer 0.

Name: TXRXBUF_EMITIME_TX1

Address: 0xFD04 - 0xFD07

Access: Read/Write Reset: 0x00000000

31	30	29	28	27	26	25	24
		Т	XRXBUF_EMIT	TME_TX1 (31:24	4)		
23	22	21	20	19	18	17	16
		Т	XRXBUF_EMIT	IME_TX1 (23:1	6)		
15	14	13	12	11	10	9	8
		-	TXRXBUF_EMI	ΓΙΜΕ_TX1 (15:8	3)		
7	6	5	4	3	2	1	0
			TXRXBUF_EMI	TIME_TX1 (7:0))		

Transmission time of Buffer 1.

Name: TXRXBUF_EMITIME_TX2

Address: 0xFD08 - 0xFD0B

Access: Read/Write Reset: 0x00000000

31	30	29	28	27	26	25	24
		Т	XRXBUF_EMIT	IME_TX2 (31:24	4)		
23	22	21	20	19	18	17	16
		Т	XRXBUF_EMIT	TME_TX2 (23:16	6)		
15	14	13	12	11	10	9	8
		7	XRXBUF_EMI	ΓΙΜΕ_TX2 (15:8	5)		
7	6	5	4	3	2	1	0
			TXRXBUF_EMI	TIME_TX2 (7:0))		

Transmission time of Buffer 2.

Name: TXRXBUF_EMITIME_TX3

Address: 0xFD0C - 0xFD0F

Access: Read/Write Reset: 0x00000000

31	30	29	28	27	26	25	24
		Т	XRXBUF_EMIT	TME_TX3 (31:24	1)		
23	22	21	20	19	18	17	16
		Т	XRXBUF_EMIT	TME_TX3 (23:16	6)		
15	14	13	12	11	10	9	8
		7	XRXBUF_EMI	ΓΙΜΕ_TX3 (15:8)		
7	6	5	4	3	2	1	0
			TXRXBUF_EMI	TIME_TX3 (7:0)	1		

Transmission time of Buffer 3.

These registers contain the time value (referenced to the 20-bit PHY layer global timer) when a programmed transmission in the corresponding buffer shall begin.

Name: TXRXBUF_TXCONF_TX2

Address: 0xFD3E

Access: Read/Write

Reset: 0xA0

7	6	5	4	3	2	1	0
-	TRS2	ATR2	-	FE2	EB2	DC2	DR2

- TRS2: TxRx established by software in buffer 2. TxRx established by software for activated/deactivated TXRX signal before/after each transmission to work properly transistors when this feature has been selected.
 - 0: Disabled
 - 1: Enabled
- ATR2: TxRx control mode in buffer 2. Establishing software/hardware control of TXRX signal for transmitting.
 - 1: by hardware
 - 0: by software
- FE2: Transmission forced/unforced in buffer 2. When force transmission is required, if it is possible (Carrier Detection or Reception are in course and not disable) and suitable buffer is enabled, a transmission is immediately started.
 - 0: Transmission unforced
 - 1: Transmission forced
- EB2: Buffer 0 enabled/disabled in buffer 2. Enable buffer that it has been required.
 - 0: Disabled
 - 1: Enabled
- DC2: Carrier Detect enabled/disabled for transmission in buffer 2. Starting transmission though carrier detection is in course.
 - 0: Enabled
 - 1: Disabled
- DR2: Reception enabled/disabled for transmission in buffer 2. Starting transmission though reception is in course.
 - 0: Enabled
 - 1: Disabled

9.3.6.2 TXRX Polarity Selector Register

Name: AFE_CTL
Address: 0xFE90
Access: Read/Write

Reset: 0x00

7	6	5	4	3	2	1	0
-	-	-	-	-	-	TXRX1_POL	TXRX0_POL

• TXRX1_POL: TXRX1 pin polarity control

0: TXRX1 pin output = '0' in transmission and '1' in reception.

1: TXRX1 pin output = '1' in transmission and '0' in reception.

• TXRX0_POL: TXRX0 pin polarity control

0: TXRX0 pin output = '0' in transmission and '1' in reception.

1: TXRX0 pin output = '1' in transmission and '0' in reception.

Name: TXRXBUF_ZCT_RX2

Address: 0xFD9B - 0xFD9E

Access: Read-only
Reset: 0x00000000

31	30	29	28	27	26	25	24
			TXRXBUF_ZC	T_RX2 (31:24)			
23	22	21	20	19	18	17	16
			TXRXBUF_ZC	T_RX2 (23:16)			
15	14	13	12	11	10	9	8
			TXRXBUF_ZC	T_RX2 (15:8)			
7	6	5	4	3	2	1	0
			TXRXBUF_Z	CT_RX2 (7:0)			

Instant in time at which the last zero-cross event took place, at the end of the last message received in BUF_RX2. It is expressed in 10 µs steps. It is set by hardware and is a read-only register. This register is used by the physical layer for being in accordance with PRIME specification.

Name: TXRXBUF_ZCT_RX3

Address: 0xFD9F - 0xFDA2

Access: Read-only
Reset: 0x00000000

31	30	29	28	27	26	25	24
			TXRXBUF_ZC	T_RX3 (31:24)			
23	22	21	20	19	18	17	16
			TXRXBUF_ZC	T_RX3 (23:16)			
15	14	13	12	11	10	9	8
			TXRXBUF_ZC	CT_RX3 (15:8)			
7	6	5	4	3	2	1	0
			TXRXBUF_Z	CT_RX3 (7:0)			

Instant in time at which the last zero-cross event took place, at the end of the last message received in BUF_RX3. It is expressed in 10 μ s steps. It is set by hardware and is a read-only register. This register is used by the physical layer for being in accordance with PRIME specification.

10.2 Recommended Operating Conditions

Table 10-2. Recommended Operating Conditions

Devenuetor	Comphal		Unit		
Parameter	Symbol	Min	Тур	Max	Unit
	VDDIO	3.00	3.30	3.60	
Supply Voltage	VDDIN AN	3.00	3.30	3.60	V
Supply Voltage	VDDIN	3.00	3.30	3.60	V
	VDDPLL	1.08	-	1.32	
Junction Temperature	T _J	-40	25	125	°C
Ambient Temperature	T _A	-40	-	85	C

Table 10-3. Thermal Data

Parameter	Symbol	Cond	itions	I OEBOO	Unit	
Parameter	Symbol	PCB Layers	Air Speed	LQFP80	Unit	
			0 m/s	64		
		2	1 m/s	56		
Thermal resistance junction-to-ambient steady			3 m/s	48	00044	
state	R _{Theta-ja}		0 m/s	43	°C/W	
		4	1 m/s	40		
			3 m/s	36		

Theta-ja is calculated based on a standard JEDEC defined environment and is not reliable indicator of a device's thermal performance in a non-JEDEC environment. The customer should always perform their own calculations/simulations to ensure that their system's thermal performance is sufficient.

