

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, Microwire, SmartCard, SPI, SSP, UART/USART
Peripherals	Brown-out Detect/Reset, CapSense, LCD, LVD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 8x12b SAR; D/A 2xIDAC
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4125axq-483

Email: info@E-XFL.COM

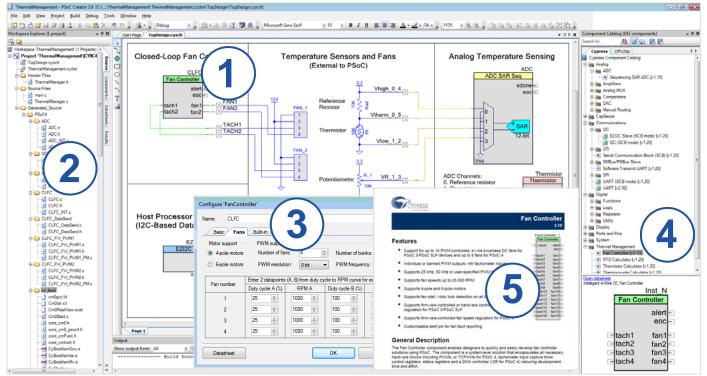
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

More Information

Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device for your design, and to help you to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the knowledge base article KBA86521, How to Design with PSoC 3, PSoC 4, and PSoC 5LP. Following is an abbreviated list for PSoC 4:

- Overview: PSoC Portfolio, PSoC Roadmap
- Product Selectors: PSoC 1, PSoC 3, PSoC 4, PSoC 5LP In addition, PSoC Creator includes a device selection tool.
- Application notes: Cypress offers a large number of PSoC application notes covering a broad range of topics, from basic to advanced level. Recommended application notes for getting started with PSoC 4 are:
 - □ AN79953: Getting Started With PSoC 4
 - □ AN88619: PSoC 4 Hardware Design Considerations
 - □ AN86439: Using PSoC 4 GPIO Pins
 - □ AN57821: Mixed Signal Circuit Board Layout
 - AN81623: Digital Design Best Practices
 - □ AN73854: Introduction To Bootloaders
 - AN89610: ARM Cortex Code Optimization
 - □ AN90071: CY8CMBRxxx CapSense Design Guide

- Technical Reference Manual (TRM) is in two documents:
- Architecture TRM details each PSoC 4 functional block.
- Registers TRM describes each of the PSoC 4 registers.
- Development Kits:
 - CY8CKIT-042, PSoC 4 Pioneer Kit, is an easy-to-use and inexpensive development platform. This kit includes connectors for Arduino[™] compatible shields and Digilent® Pmod[™] daughter cards.
 - CY8CKIT-049 is a very low-cost prototyping platform. It is a low-cost alternative to sampling PSoC 4 devices.
 - CY8CKIT-001 is a common development platform for any one of the PSoC 1, PSoC 3, PSoC 4, or PSoC 5LP families of devices.


The MiniProg3 device provides an interface for flash programming and debug.

PSoC Creator

PSoC Creator is a free Windows-based Integrated Design Environment (IDE). It enables concurrent hardware and firmware design of PSoC 3, PSoC 4, and PSoC 5LP based systems. Create designs using classic, familiar schematic capture supported by over 100 pre-verified, production-ready PSoC Components; see the list of component datasheets. With PSoC Creator, you can:

- 1. Drag and drop component icons to build your hardware system design in the main design workspace
- 2. Codesign your application firmware with the PSoC hardware, using the PSoC Creator IDE C compiler
- 3. Configure components using the configuration tools
- 4. Explore the library of 100+ components
- 5. Review component datasheets

Figure 1. Multiple-Sensor Example Project in PSoC Creator

IMO Clock Source

The IMO is the primary source of internal clocking in the PSoC 4100. It is trimmed during testing to achieve the specified accuracy. Trim values are stored in nonvolatile latches (NVL). Additional trim settings from flash can be used to compensate for changes. The IMO default frequency is 24 MHz and it can be adjusted between 3 MHz to 24 MHz in steps of 1 MHz. The IMO tolerance with Cypress-provided calibration settings is ±2%.

ILO Clock Source

The ILO is a very low power oscillator, which is primarily used to generate clocks for peripheral operation in Deep Sleep mode. ILO-driven counters can be calibrated to the IMO to improve accuracy. Cypress provides a software component, which does the calibration.

Watchdog Timer

A watchdog timer is implemented in the clock block running from the ILO; this allows watchdog operation during Deep Sleep and generates a watchdog reset if not serviced before the timeout occurs. The watchdog reset is recorded in the Reset Cause register.

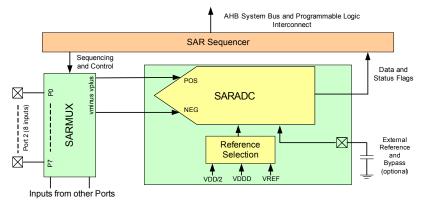
Reset

PSoC 4100 can be reset from a variety of sources including a software reset. Reset events are asynchronous and guarantee reversion to a known state. The reset cause is recorded in a register, which is sticky through reset and allows software to determine the cause of the reset. An XRES pin is reserved for external reset to avoid complications with configuration and multiple pin functions during power-on or reconfiguration. The XRES pin has an internal pull-up resistor that is always enabled.

Voltage Reference

The PSoC 4100 reference system generates all internally required references. A 1% voltage reference spec is provided for the 12-bit ADC. To allow better signal to noise ratios (SNR) and better absolute accuracy, it is possible to bypass the internal reference using a GPIO pin or to use an external reference for the SAR.

Analog Blocks


12-bit SAR ADC

The 12-bit 806 ksps SAR ADC can operate at a maximum clock rate of 14.5 MHz and requires a minimum of 18 clocks at that frequency to do a 12-bit conversion.

The block functionality is augmented for the user by adding a reference buffer to it (trimmable to \pm 1%) and by providing the choice (for the PSoC 4100 case) of three internal voltage references: V_{DD}, V_{DD}/2, and V_{REF} (nominally 1.024 V) as well as an external reference through a GPIO pin. The sample-and-hold (S/H) aperture is programmable allowing the gain bandwidth requirements of the amplifier driving the SAR inputs, which determine its settling time, to be relaxed if required. System performance will be 65 dB for true 12-bit precision providing appropriate references are used and system noise levels permit. To improve performance in noisy conditions, it is possible to provide an external bypass (through a fixed pin location) for the internal reference amplifier.

The SAR is connected to a fixed set of pins through an 8-input sequencer. The sequencer cycles through selected channels autonomously (sequencer scan) and does so with zero switching overhead (that is, aggregate sampling bandwidth is equal to 806 ksps whether it is for a single channel or distributed over several channels). The sequencer switching is effected through a state machine or through firmware driven switching. A feature provided by the sequencer is buffering of each channel to reduce CPU interrupt service requirements. To accommodate signals with varying source impedance and frequency, it is possible to have different sample times programmable for each channel. Also, signal range specification through a pair of range registers (low and high range values) is implemented with a corresponding out-of-range interrupt if the digitized value exceeds the programmed range; this allows fast detection of out-of-range values without the necessity of having to wait for a sequencer scan to be completed and the CPU to read the values and check for out-of-range values in software.

The SAR is able to digitize the output of the on-board temperature sensor for calibration and other temperature-dependent functions. The SAR is not available in Deep Sleep and Hibernate modes as it requires a high-speed clock (up to 18 MHz). The SAR operating range is 1.71 V to 5.5 V.

Figure 4. SAR ADC System Diagram

GPIO

PSoC 4100 has 36 GPIOs. The GPIO block implements the following:

- Eight drive strength modes:
 - Analog input mode (input and output buffers disabled)
 Input only
 - Weak pull-up with strong pull-down
 - □ Strong pull-up with weak pull-down
 - Open drain with strong pull-down
 - Open drain with strong pull-up
 - □ Strong pull-up with strong pull-down
 - Weak pull-up with weak pull-down
- Input threshold select (CMOS or LVTTL).
- Individual control of input and output buffer enabling/disabling in addition to the drive strength modes.
- Hold mode for latching previous state (used for retaining I/O state in Deep Sleep mode and Hibernate modes).
- Selectable slew rates for dV/dt related noise control to improve EMI.

The pins are organized in logical entities called ports, which are 8-bit in width. During power-on and reset, the blocks are forced to the disable state so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing network known as a high-speed I/O matrix is used to multiplex between various signals that may connect to an I/O pin. Pin locations for fixed-function peripherals are also fixed to reduce internal multiplexing complexity.

Data output and pin state registers store, respectively, the values to be driven on the pins and the states of the pins themselves. Every I/O pin can generate an interrupt if so enabled and each I/O port has an interrupt request (IRQ) and interrupt service routine (ISR) vector associated with it (5 for PSoC 4100 since it has 4.5 ports).

Special Function Peripherals

LCD Segment Drive

PSoC 4100 has an LCD controller which can drive up to four commons and up to 32 segments. It uses full digital methods to drive the LCD segments requiring no generation of internal LCD voltages. The two methods used are referred to as digital correlation and PWM.

Digital correlation pertains to modulating the frequency and levels of the common and segment signals to generate the highest RMS voltage across a segment to light it up or to keep the RMS signal zero. This method is good for STN displays but may result in reduced contrast with TN (cheaper) displays.

PWM pertains to driving the panel with PWM signals to effectively use the capacitance of the panel to provide the integration of the modulated pulse-width to generate the desired LCD voltage. This method results in higher power consumption but can result in better results when driving TN displays. LCD operation is supported during Deep Sleep refreshing a small display buffer (4 bits; 1 32-bit register per port).

CapSense

CapSense is supported on all pins in the PSoC 4100 through a CapSense Sigma-Delta (CSD) block that can be connected to any pin through an analog mux bus that any GPIO pin can be connected to via an Analog switch. CapSense function can thus be provided on any pin or group of pins in a system under software control. A component is provided for the CapSense block to make it easy for the user.

Shield voltage can be driven on another mux bus to provide water tolerance capability. Water tolerance is provided by driving the shield electrode in phase with the sense electrode to keep the shield capacitance from attenuating the sensed input.

The CapSense block has two IDACs which can be used for general purposes if CapSense is not being used.(both IDACs are available in that case) or if CapSense is used without water tolerance (one IDAC is available).

WLCSP Package Bootloader

The WLCSP package is supplied with an I²C Bootloader installed in flash. The bootloader is compatible with PSoC Creator bootloadable project files and has the following default settings:

- I²C SCL and SDA connected to port pins P4.0 and P4.1 respectively (external pull-up resistors required)
- I²C Slave mode, address 8, data rate = 100 kbps
- Single application
- Wait two seconds for bootload command
- Other bootloader options are as set by the PSoC Creator Bootloader Component default
- Occupies the bottom 4.5 K of flash

For more information on this bootloader, see the following Cypress application notes:

AN73854 - Introduction to Bootloaders

Note that a PSoC Creator bootloadable project must be associated with *.hex* and *.elf* files for a bootloader project that is configured for the target device. Bootloader *.hex* and *.elf* files can be found at http://www.cypress.com/?rID=78805. The factory-installed bootloader can be overwritten using JTAG or SWD programming.

35-	Ball CSP		Alte	rnate Functions	for Pins		Pin Description
Pin	Name	Analog	Alt 1	Alt 2	Alt 3	Alt 4	
C6	P1.2	ctb.oa0.out	tcpwm3_p[1]	_	_	-	Port 1 Pin 2: gpio, lcd, csd, ctb, pwm
D7	P1.3	ctb.oa1.out	tcpwm3_n[1]	_	-	-	Port 1 Pin 3: gpio, lcd, csd, ctb, pwm
D4	P1.4	ctb.oa1.inm	_	_	-	-	Port 1 Pin 4: gpio, lcd, csd, ctb
D5	P1.5	ctb.oa1.inp	_	_	-	-	Port 1 Pin 5: gpio, lcd, csd, ctb
D6	P1.6	ctb.oa0.inp_alt	_	_	-	-	Port 1 Pin 6: gpio, lcd, csd
E7	P1.7/VREF	ctb.oa1.inp_alt ext_vref	_	-	_	-	Port 1 Pin 7: gpio, lcd, csd, ext_ref

Descriptions of the Pin functions are as follows:

VDDD: Power supply for both analog and digital sections (where there is no V_{DDA} pin).

VDDA: Analog V_{DD} pin where package pins allow; shorted to V_{DDD} otherwise.

VSSA: Analog ground pin where package pins allow; shorted to VSS otherwise

VSS: Ground pin.

VCCD: Regulated Digital supply (1.8 V ±5%).

Port Pins can all be used as LCD Commons, LCD Segment drivers, or CSD sense and shield pins can be connected to AMUXBUS A or B or can all be used as GPIO pins that can be driven by firmware or DSI signals.

The following packages are supported: 48-pin TQFP, 44-pin TQFP, 40-pin QFN, and 28-pin SSOP.

Figure 7. 40-Pin QFN Pinout

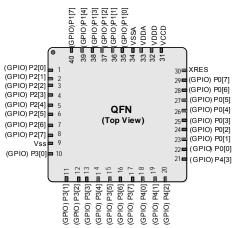
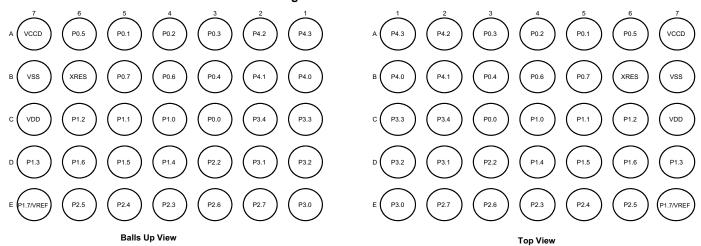
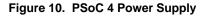
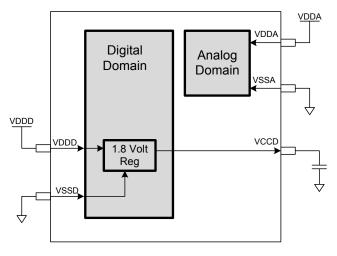



Figure 8. 35-Ball WLCSP


Figure 9. 28-Pin SSOP Pinout


(0			
(GPIO) P1[0]	1		28 🗖	VSS
(GPIO)P1[1]	2		27 🗖	VDDD
(GPIO)P1[2]	3		26 🗖	VCCD
(GPIO) P1[7]	4		25 🖛	XRES
(GPIO) P2[2]	5		24 🗖	(GPIO) P0[7]
(GPIO) P2[3]	6	SSOP	23 🗖	(GPIO) P0[6]
(GPIO) P2[4]	7	(Top View)	22 🗖	(GPIO) P0[3]
(GPIO) P2[5]	8		21 🗖	(GPIO) P0[2]
(GPIO) P2[6]	9		20 🗖	(GPIO) P0[1]
(GPIO)P2[7]	1 0		19 🗖	(GPIO) P0[0]
(GPIO) P3[0]	1 1		18 🗖	(GPIO) P4[3]
(GPIO)P3[1]	1 2		17 🗖	(GPIO)P4[2]
(GPIO)P3[2]	1 3		16 🗖	(GPIO)P4[1]
(GPIO)P3[3]	1 4		15 🗖	(GPIO) P4[0]
.				
	·			

Power

The following power system diagrams show the minimum set of power supply pins as implemented for PSoC 4100. The system has one regulator in Active mode for the digital circuitry. There is no analog regulator; the analog circuits run directly from the V_{DDA} input. There are separate regulators for the Deep Sleep and Hibernate (lowered power supply and retention) modes. There is a separate low-noise regulator for the bandgap. The supply voltage range is 1.71 V to 5.5 V with all functions and circuits operating over that range.

The PSoC 4100 family allows two distinct modes of power supply operation: Unregulated External Supply, and Regulated External Supply modes.

Unregulated External Supply

In this mode, PSoC 4100 is powered by an external power supply that can be anywhere in the range of 1.8 V to 5.5 V. This range is also designed for battery-powered operation, for instance, the chip can be powered from a battery system that starts at 3.5 V and works down to 1.8 V. In this mode, the internal regulator of PSoC 4100 supplies the internal logic and the V_{CCD} output of the PSoC 4100 must be bypassed to ground via an external Capacitor (in the range of 1 μ F to 1.6 μ F; X5R ceramic or better).

 V_{DDA} and V_{DDD} must be shorted together; the grounds, VSSA and V_{SS} must also be shorted together. Bypass capacitors must be used from V_{DDD} to ground, typical practice for systems in this frequency range is to use a capacitor in the 1- μF range in parallel with a smaller capacitor (0.1 μF for example). Note that these are simply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and the Bypass capacitor parasitic should be simulated to design and obtain optimal bypassing.

Figure 11. 48-TQFP Package Example

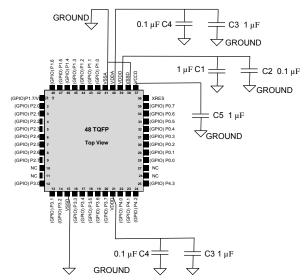
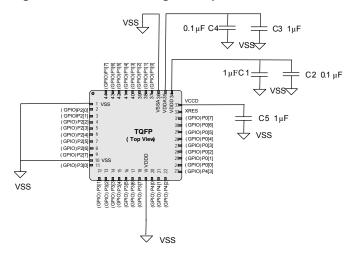



Figure 12. 44-TQFP Package Example

Power Supply	Bypass Capacitors
VDDD-VSS	0.1 μ F ceramic at each pin (C2, C6) plus bulk capacitor 1 to 10 μ F (C1). Total capac- itance may be greater than 10 μ F.
VDDA-VSSA	0.1 μ F ceramic at pin (C4). Additional 1 μ F to 10 μ F (C3) bulk capacitor. Total capacitance may be greater than 10 μ F.
VCCD-VSS	1 μ F ceramic capacitor at the VCCD pin (C5)
VREF–VSSA (optional)	The internal bandgap may be bypassed with a 1 μ F to 10 μ F capacitor. Total capacitance may be greater than 10 μ F.

GPIO

Table 4. GPIO DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID57	V _{IH} ^[2]	Input voltage high threshold	0.7 × V _{DDD}	_	-	V	CMOS Input
SID58	V _{IL}	Input voltage low threshold	-	-	0.3 × V _{DDD}	V	CMOS Input
SID241	V _{IH} ^[2]	LVTTL input, V _{DDD} < 2.7 V	0.7× V _{DDD}	-	-	V	
SID242	V _{IL}	LVTTL input, V _{DDD} < 2.7 V	-	-	0.3 × V _{DDD}	V	
SID243	V _{IH} ^[2]	LVTTL input, $V_{DDD} \ge 2.7 V$	2.0	-	-	V	
SID244	V _{IL}	LVTTL input, $V_{DDD} \ge 2.7 V$	-	-	0.8	V	
SID59	V _{OH}	Output voltage high level	V _{DDD} -0.6	_	-	V	I _{OH} = 4 mA at 3-V V _{DDD}
SID60	V _{OH}	Output voltage high level	V _{DDD} -0.5	-	-	V	I _{OH} = 1 mA at 1.8-V V _{DDD}
SID61	V _{OL}	Output voltage low level	-	-	0.6	V	I _{OL} = 4 mA at 1.8-V V _{DDD}
SID62	V _{OL}	Output voltage low level	-	-	0.6	V	I _{OL} =8 mA at 3-V V _{DDD}
SID62A	V _{OL}	Output voltage low level	-	-	0.4	V	I _{OL} = 3 mA at 3-V V _{DDD}
SID63	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	
SID64	R _{PULLDOWN}	Pull-down resistor	3.5	5.6	8.5	kΩ	
SID65	IIL	Input leakage current (absolute value)	-	-	2	nA	25 °C, V _{DDD} = 3.0-V
SID65A	I _{IL_CTBM}	Input leakage current (absolute value) for CTBM pins	-	-	4	nA	
SID66	C _{IN}	Input capacitance	-	-	7	pF	
SID67	V _{HYSTTL}	Input hysteresis LVTTL	25	40	_	mV	$V_{DDD} \ge 2.7 \text{ V.}$ Guaranteed by characterization
SID68	V _{HYSCMOS}	Input hysteresis CMOS	0.05 × V _{DDD}	_	-	mV	Guaranteed by characterization
SID69	I _{DIODE}	Current through protection diode to V _{DD} /Vss	-	-	100	μA	Guaranteed by characterization
SID69A	I _{TOT_GPIO}	Maximum Total Source or Sink Chip Current	-	-	200	mA	Guaranteed by characterization

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID70	T _{RISEF}	Rise time in fast strong mode	2	-	12	ns	3.3-V V _{DDD} , Cload = 25 pF
SID71	T _{FALLF}	Fall time in fast strong mode	2	-	12	ns	3.3-V V _{DDD} , Cload = 25 pF
SID72	T _{RISES}	Rise time in slow strong mode	10	-	60	ns	3.3-V V _{DDD} , Cload = 25 pF
SID73	T _{FALLS}	Fall time in slow strong mode	10	-	60	ns	3.3-V V _{DDD} , Cload = 25 pF
SID74	F _{GPIOUT1}	GPIO Fout;3.3 V \leq V _{DDD} \leq 5.5 V. Fast strong mode.	_	-	24	MHz	90/10%, 25-pF load, 60/40 duty cycle
SID75	F _{GPIOUT2}	GPIO Fout;1.7 V \leq V _{DDD} \leq 3.3 V. Fast strong mode.	_	-	16.7	MHz	90/10%, 25-pF load, 60/40 duty cycle
SID76	F _{GPIOUT3}	GPIO Fout;3.3 V \leq V _{DDD} \leq 5.5 V. Slow strong mode.	-	-	7	MHz	90/10%, 25-pF load, 60/40 duty cycle
SID245	F _{GPIOUT4}	GPIO Fout;1.7 V \leq V _{DDD} \leq 3.3 V. Slow strong mode.	_	-	3.5	MHz	90/10%, 25-pF load, 60/40 duty cycle
SID246	F _{GPIOIN}	GPIO input operating frequency; 1.71 V \leq V _{DDD} \leq 5.5 V	-	-	24	MHz	90/10% V _{IO}

Table 5. GPIO AC Specifications (Guaranteed by Characterization)

XRES

Table 6. XRES DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID77	V _{IH}	Input voltage high threshold	0.7 × V _{DDD}	-	-	V	CMOS Input
SID78	V _{IL}	Input voltage low threshold	-	-	0.3 × V _{DDD}	V	CMOS Input
SID79	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	
SID80	C _{IN}	Input capacitance	-	3	-	pF	
SID81	V _{HYSXRES}	Input voltage hysteresis	-	100	-	mV	Guaranteed by characterization
SID82	I _{DIODE}	Current through protection diode to $V_{DDD}\!/V_{SS}$	_	_	100	μA	Guaranteed by characterization

Table 7. XRES AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID83	T _{RESETWIDTH}	Reset pulse width	1	_	_	μs	Guaranteed by characterization

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID297	Cload	Stable up to maximum load. Perfor- mance specs at 50 pF.	-	-	125	pF	
SID298	Slew_rate	Cload = 50 pF, Power = High, $V_{DDA} \ge 2.7 V$	6	-	-	V/µs	
SID299	T_op_wake	From disable to enable, no external RC dominating	-	300	-	μs	
SID299A	OL_GAIN	Open Loop Gain	-	90	-	dB	Guaranteed by design
	Comp_mode	Comparator mode; 50-mV drive, Trise = Tfall (approx)	-	-	-		
SID300	T _{PD1}	Response time; power = high	_	150	_	ns	
SID301	T _{PD2}	Response time; power = medium	_	400	-	ns	
SID302	T _{PD3}	Response time; power = low	_	2000	_	ns	
SID303	Vhyst_op	Hysteresis	_	10	_	mV	

Table 8. Opamp Specifications (Guaranteed by Characterization) (continued)

Comparator

Table 9. Comparator DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID85	V _{OFFSET2}	Input offset voltage, Common Mode voltage range from 0 to V _{DD} -1	_	-	±4	mV	
SID85A	V _{OFFSET3}	Input offset voltage. Ultra low-power mode ($V_{DDD} \ge 2.2 \text{ V}$ for Temp < 0 °C, $V_{DDD} \ge 1.8 \text{ V}$ for Temp > 0 °C)	_	±12	-	mV	
SID86	V _{HYST}	Hysteresis when enabled, Common Mode voltage range from 0 to V_{DD} -1.	_	10	35	mV	Guaranteed by characterization
SID87	V _{ICM1}	Input common mode voltage in normal mode	0	-	V _{DDD} – 0.1	V	Modes 1 and 2.
SID247	V _{ICM2}	Input common mode voltage in low power mode ($V_{DDD} \ge 2.2 \text{ V}$ for Temp < 0 °C, $V_{DDD} \ge 1.8 \text{ V}$ for Temp > 0 °C)	0	-	V _{DDD}	V	
SID247A	V _{ICM3}	Input common mode voltage in ultra low power mode	0	-	V _{DDD} – 1.15	V	
SID88	CMRR	Common mode rejection ratio	50	-	-	dB	$V_{DDD} \ge 2.7 V.$ Guaranteed by characterization
SID88A	CMRR	Common mode rejection ratio	42	-	-	dB	V _{DDD} < 2.7 V. Guaranteed by characterization
SID89	I _{CMP1}	Block current, normal mode	-	-	400	μA	Guaranteed by characterization
SID248	I _{CMP2}	Block current, low power mode	_	-	100	μA	Guaranteed by characterization
SID259	I _{CMP3}	Block current, ultra low power mode $(V_{DDD} \ge 2.2 \text{ V for Temp} < 0 ^{\circ}\text{C}, V_{DDD} \ge 1.8 \text{ V for Temp} > 0 ^{\circ}\text{C})$	_	6	28	μA	Guaranteed by characterization
SID90	Z _{CMP}	DC input impedance of comparator	35	-	-	MΩ	Guaranteed by characterization

CSD

Table 14. CSD Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID.CSD#16	IDAC1IDD	IDAC1 (8 bits) block current	_	-	1125	μA	
SID.CSD#17	IDAC2IDD	IDAC2 (7 bits) block current	-	_	1125	μA	
SID308	VCSD	Voltage range of operation	1.71	_	5.5	V	
SID308A	VCOMPIDAC	Voltage compliance range of IDAC for S0	0.8	-	V _{DD} -0.8	V	
SID309	IDAC1	DNL for 8-bit resolution	-1	_	1	LSB	
SID310	IDAC1	INL for 8-bit resolution	-3	_	3	LSB	
SID311	IDAC2	DNL for 7-bit resolution	-1	_	1	LSB	
SID312	IDAC2	INL for 7-bit resolution	-3	_	3	LSB	
SID313	SNR	Ratio of counts of finger to noise, 0.1-pF sensitivity	5	_	_	Ratio	Capacitance range of 9 to 35 pF, 0.1-pF sensitivity
SID314	IDAC1_CRT1	Output current of IDAC1 (8 bits) in High range	_	612	-	uA	
SID314A	IDAC1_CRT2	Output current of IDAC1 (8 bits) in Low range	_	306	-	uA	
SID315	IDAC2_CRT1	Output current of IDAC2 (7 bits) in High range	_	304.8	-	uA	
SID315A	IDAC2_CRT2	Output current of IDAC2 (7 bits) in Low range	-	152.4	-	uA	
SID320	IDACOFFSET	All zeroes input	-	-	±1	LSB	
SID321	IDACGAIN	Full-scale error less offset	_	_	±10	%	
SID322	IDACMISMATCH	Mismatch between IDACs	-	_	7	LSB	
SID323	IDACSET8	Settling time to 0.5 LSB for 8-bit IDAC	_	_	10	μs	Full-scale transition. No external load.
SID324	IDACSET7	Settling time to 0.5 LSB for 7-bit IDAC	_	-	10	μs	Full-scale transition. No external load.
SID325	CMOD	External modulator capacitor	-	2.2	_	nF	5-V rating, X7R or NP0 cap.

Digital Peripherals

The following specifications apply to the Timer/Counter/PWM peripheral in timer mode.

Timer/Counter/PWM

Table 15. TCPWM Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.TCPWM.1	ITCPWM1	Block current consumption at 3 MHz	-	-	45	μA	All modes (TCPWM)
SID.TCPWM.2	ITCPWM2	Block current consumption at 12 MHz	-	-	155	μA	All modes (TCPWM)
SID.TCPWM.2A	ITCPWM3	Block current consumption at 48 MHz	-	-	650	μA	All modes (TCPWM)
SID.TCPWM.3	TCPWMFREQ	Operating frequency	-	-	Fc	MHz	Fc max = Fcpu. Maximum = 24 MHz
SID.TCPWM.4	TPWMENEXT	Input Trigger Pulse Width for all Trigger Events	2/Fc	_	_	ns	Trigger events can be Stop, Start, Reload, Count, Capture, or Kill depending on which mode of operation is selected.
SID.TCPWM.5	TPWMEXT	Output Trigger Pulse widths	2/Fc	-	_	ns	Minimum possible width of Overflow, Underflow, and CC (Counter equals Compare value) trigger outputs
SID.TCPWM.5A	TCRES	Resolution of Counter	1/Fc	-	-	ns	Minimum time between successive counts
SID.TCPWM.5B	PWMRES	PWM Resolution	1/Fc	-	-	ns	Minimum pulse width of PWM Output
SID.TCPWM.5C	QRES	Quadrature inputs resolution	1/Fc	_	_	ns	Minimum pulse width between Quadrature phase inputs.

РС

Table 16. Fixed I²C DC Specifications (Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID149	I _{I2C1}	Block current consumption at 100 kHz	-	-	50	μA	
SID150	I _{I2C2}	Block current consumption at 400 kHz	-	-	135	μA	
SID151	I _{I2C3}	Block current consumption at 1 Mbps	_	-	310	μA	
SID152	I _{I2C4}	I ² C enabled in Deep Sleep mode	_	-	1.4	μA	

Table 17. Fixed I²C AC Specifications (Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID153	F _{I2C1}	Bit rate	-	-	1	Mbps	

LCD Direct Drive

Table 18. LCD Direct Drive DC Specifications (Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID154	ILCDLOW	Operating current in low power mode	_	5	-	μA	16 × 4 small segment disp. at 50 Hz
SID155	C _{LCDCAP}	LCD capacitance per segment/common driver	-	500	5000	pF	Guaranteed by Design
SID156	LCD _{OFFSET}	Long-term segment offset	-	20	-	mV	
SID157	I _{LCDOP1}	PWM Mode current. 5-V bias. 24-MHz IMO. 25 °C	-	0.6	-	mA	32 × 4 segments. 50 Hz
SID158	I _{LCDOP2}	PWM Mode current. 3.3-V bias. 24-MHz IMO. 25 °C	_	0.5	-	mA	32 × 4 segments. 50 Hz

Memory

Table 26. Flash DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID173	V _{PE}	Erase and program voltage	1.71	-	5.5	V	

Table 27. Flash AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID174	T _{ROWWRITE} ^[3]	Row (block) write time (erase and program)	_	_	20	ms	Row (block) = 128 bytes
SID175	T _{ROWERASE} ^[3]	Row erase time	_	-	13	ms	
SID176	T _{ROWPROGRAM} ^[3]	Row program time after erase	-	-	7	ms	
SID178	T _{BULKERASE} ^[3]	Bulk erase time (32 KB)	1	1	35	ms	
SID180	T _{DEVPROG} ^[3]	Total device program time	_	-	7	seconds	Guaranteed by charac- terization
SID181	F _{END}	Flash endurance	100 K	_	-	cycles	Guaranteed by charac- terization
SID182	F _{RET}	Flash retention. T _A ≤ 55 °C, 100 K P/E cycles	20	-	-	years	Guaranteed by charac- terization
SID182A		Flash retention. $T_A \le 85 \text{ °C}$, 10 K P/E cycles	10	_	_	years	Guaranteed by charac- terization
SID182B	F _{RETQ}	Flash retention. $T_A \le 105 \text{ °C}$, 10 K P/E cycles, \le three years at TA \ge 85 °C	10	-	20	years	Guaranteed by charac- terization

System Resources

Power-on-Reset (POR) with Brown Out

Table 28. Imprecise Power On Reset (IPOR)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID185	V _{RISEIPOR}	Rising trip voltage	0.80	-	1.45	V	Guaranteed by character- ization
SID186	V _{FALLIPOR}	Falling trip voltage	0.75	-	1.4	V	Guaranteed by character- ization
SID187	VIPORHYST	Hysteresis	15	-	200	mV	Guaranteed by character- ization

Table 29. Precise Power On Reset (POR)

Spec ID	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID190	V _{FALLPPOR}	BOD trip voltage in active and sleep modes	1.64	-	_	V	Full functionality between 1.71 V and BOD trip voltage is guaranteed by characterization
SID192	V _{FALLDPSLP}	BOD trip voltage in Deep Sleep	1.4	-	_	V	Guaranteed by character- ization
BID55	Svdd	Maximum power supply ramp rate	_	_	67	kV/sec	

Note

It can take as much as 20 milliseconds to write to Flash. During this time the device should not be Reset, or Flash operations will be interrupted and cannot be relied on to have completed. Reset sources include the XRES pin, software resets, CPU lockup states and privilege violations, improper power supply levels, and watchdogs. Make certain that these are not inadvertently activated.

Voltage Monitors

Table 30. Voltage Monitors DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID195	V _{LVI1}	LVI_A/D_SEL[3:0] = 0000b	1.71	1.75	1.79	V	
SID196	V _{LVI2}	LVI_A/D_SEL[3:0] = 0001b	1.76	1.80	1.85	V	
SID197	V _{LVI3}	LVI_A/D_SEL[3:0] = 0010b	1.85	1.90	1.95	V	
SID198	V _{LVI4}	LVI_A/D_SEL[3:0] = 0011b	1.95	2.00	2.05	V	
SID199	V _{LVI5}	LVI_A/D_SEL[3:0] = 0100b	2.05	2.10	2.15	V	
SID200	V _{LVI6}	LVI_A/D_SEL[3:0] = 0101b	2.15	2.20	2.26	V	
SID201	V _{LVI7}	LVI_A/D_SEL[3:0] = 0110b	2.24	2.30	2.36	V	
SID202	V _{LVI8}	LVI_A/D_SEL[3:0] = 0111b	2.34	2.40	2.46	V	
SID203	V _{LVI9}	LVI_A/D_SEL[3:0] = 1000b	2.44	2.50	2.56	V	
SID204	V _{LVI10}	LVI_A/D_SEL[3:0] = 1001b	2.54	2.60	2.67	V	
SID205	V _{LVI11}	LVI_A/D_SEL[3:0] = 1010b	2.63	2.70	2.77	V	
SID206	V _{LVI12}	LVI_A/D_SEL[3:0] = 1011b	2.73	2.80	2.87	V	
SID207	V _{LVI13}	LVI_A/D_SEL[3:0] = 1100b	2.83	2.90	2.97	V	
SID208	V _{LVI14}	LVI_A/D_SEL[3:0] = 1101b	2.93	3.00	3.08	V	
SID209	V _{LVI15}	LVI_A/D_SEL[3:0] = 1110b	3.12	3.20	3.28	V	
SID210	V _{LVI16}	LVI_A/D_SEL[3:0] = 1111b	4.39	4.50	4.61	V	
SID211	LVI_IDD	Block current	_	-	100	μA	Guaranteed by characterization

Table 31. Voltage Monitors AC Specifications

Spec ID	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID212	T _{MONTRIP}	Voltage monitor trip time	1	1	1	μs	Guaranteed by characterization

SWD Interface

Table 32. SWD Interface Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID213	F_SWDCLK1	$3.3 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	_	_	14	MHz	SWDCLK ≤ 1/3 CPU clock frequency
SID214	F_SWDCLK2	$1.71 \text{ V} \le \text{V}_{DD} \le 3.3 \text{ V}$	_	_	7	MHz	SWDCLK ≤ 1/3 CPU clock frequency
SID215	T_SWDI_SETUP	T = 1/f SWDCLK	0.25*T	_	_	ns	Guaranteed by characterization
SID216	T_SWDI_HOLD	T = 1/f SWDCLK	0.25*T	_	_	ns	Guaranteed by characterization
SID217	T_SWDO_VALID	T = 1/f SWDCLK	_	_	0.5*T	ns	Guaranteed by characterization
SID217A	T_SWDO_HOLD	T = 1/f SWDCLK	1	-	_	ns	Guaranteed by characterization

Internal Main Oscillator

Table 33. IMO DC Specifications (Guaranteed by Design)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID218	I _{IMO1}	IMO operating current at 48 MHz	-	-	1000	μA	
SID219	I _{IMO2}	IMO operating current at 24 MHz	-	-	325	μA	
SID220	I _{IMO3}	IMO operating current at 12 MHz	-	-	225	μA	
SID221	I _{IMO4}	IMO operating current at 6 MHz	-	-	180	μA	
SID222	I _{IMO5}	IMO operating current at 3 MHz	-	-	150	μA	

Table 34. IMO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID223	F _{IMOTOL1}	Frequency variation from 3 to 48 MHz	-	-	±2		±3% if T _A > 85 °C and IMO frequency < 24 MHz
SID226	T _{STARTIMO}	IMO startup time	-	-	12	μs	
SID227	T _{JITRMSIMO1}	RMS Jitter at 3 MHz	-	156	-	ps	
SID228	T _{JITRMSIMO2}	RMS Jitter at 24 MHz	-	145	-	ps	
SID229	T _{JITRMSIMO3}	RMS Jitter at 48 MHz	_	139	_	ps	

Internal Low-Speed Oscillator

Table 35. ILO DC Specifications (Guaranteed by Design)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID231	I _{ILO1}	ILO operating current at 32 kHz	_	0.3	1.05		Guaranteed by Characterization
SID233	IILOLEAK	ILO leakage current	_	2	15	nA	Guaranteed by Design

Table 36. ILO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID234	T _{STARTILO1}	ILO startup time	-	-	2	ms	Guaranteed by charac- terization
SID236	T _{ILODUTY}	ILO duty cycle	40	50	60	%	Guaranteed by charac- terization
SID237	F _{ILOTRIM1}	32 kHz trimmed frequency	15	32	50	kHz	Max ILO frequency is 70 kHz if T _A > 85 °C

Table 37. External Clock Specifications

Spec ID	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID305	ExtClkFreq	External Clock input Frequency	0	-	24	MHz	Guaranteed by characterization
SID306	ExtClkDuty	Duty cycle; Measured at $V_{DD/2}$	45	Ι	55	%	Guaranteed by characterization

Packaging

Table 40. Package Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Units
T _A	Operating ambient temperature		-40	25.00	105	°C
TJ	Operating junction temperature		-40	-	125	°C
T _{JA}	Package θ_{JA} (28-pin SSOP)		-	66.58	-	°C/Watt
T _{JA}	Package θ_{JA} (35-ball WLCSP)		-	28.00	-	°C/Watt
T _{JA}	Package θ_{JA} (40-pin QFN)		-	15.34	-	°C/Watt
T _{JA}	Package θ_{JA} (44-pin TQFP)		-	57.16	-	°C/Watt
T _{JA}	Package θ_{JA} (48-pin TQFP)		-	67.30	-	°C/Watt
T _{JC}	Package θ_{JC} (28-pin SSOP)		-	26.28	-	°C/Watt
T _{JC}	Package θ_{JC} (35-ball WLCSP)		-	00.40	-	°C/Watt
T _{JC}	Package θ_{JC} (40-pin QFN)		-	2.50	-	°C/Watt
T _{JC}	Package θ_{JC} (44-pin TQFP)		-	17.47	_	°C/Watt
T _{JC}	Package θ_{JC} (48-pin TQFP)		-	27.60	-	°C/Watt

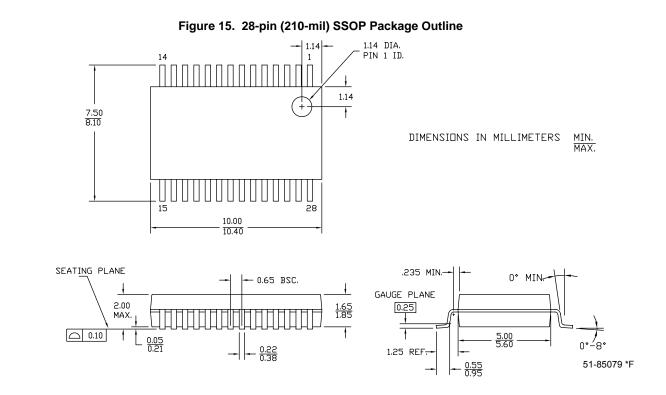
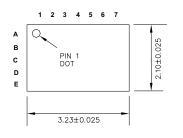
Table 41. Solder Reflow Peak Temperature

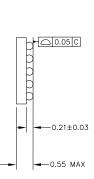
Package	Maximum Peak Temperature	Maximum Time at Peak Temperature
28-pin SSOP	260 °C	30 seconds
35-ball WLCSP	260 °C	30 seconds
40-pin QFN	260 °C	30 seconds
44-pin TQFP	260 °C	30 seconds
48-pin TQFP	260 °C	30 seconds

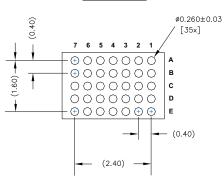
Table 42. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2

Package	MSL
28-pin SSOP	MSL 3
35-ball WLCSP	MSL 3
40-pin QFN	MSL 3
44-pin TQFP	MSL 3
48-pin TQFP	MSL 3

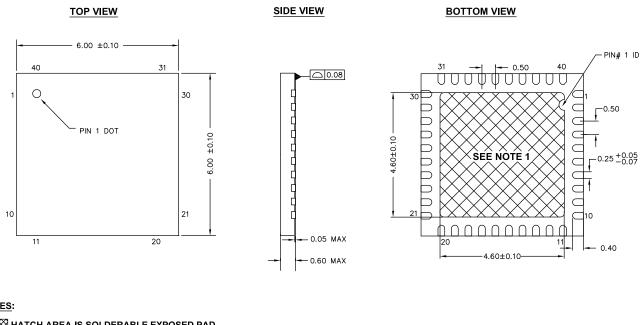
PSoC 4 CAB Libraries with Schematics Symbols and PCB Footprints are on the Cypress web site at http://www.cypress.com/cad-resources/psoc-4-cad-libraries?source=search&cat=technical_documents.


Figure 16. 35-ball WLCSP Package Outline



BOTTOM VIEW

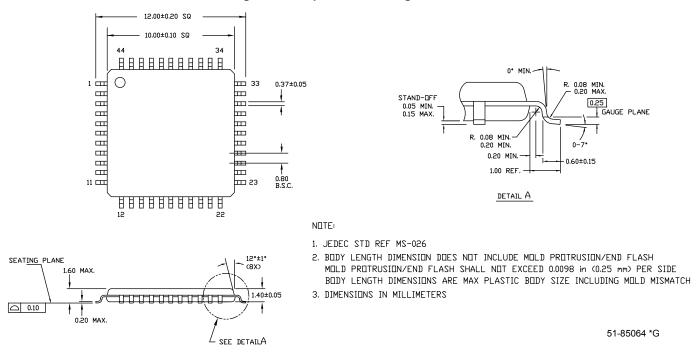

NOTES:

- 1. REFERENCE JEDEC PUBLICATION 95, DESIGN GUIDE 4.18
- 2. ALL DIMENSIONS ARE IN MILLIMETERS

001-93741 **

NOTES:

1. XXX HATCH AREA IS SOLDERABLE EXPOSED PAD


2. REFERENCE JEDEC # MO-248

3. PACKAGE WEIGHT: 68 ±2 mg

4. ALL DIMENSIONS ARE IN MILLIMETERS

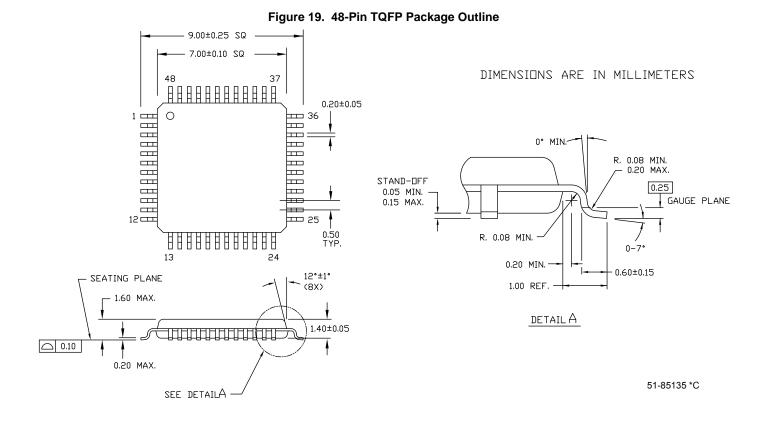

The center pad on the QFN package should be connected to ground (VSS) for best mechanical, thermal, and electrical performance. If not connected to ground, it should be electrically floating and not connected to any other signal.

Figure 18. 44-pin TQFP Package Outline

001-80659 *A

Acronyms

Table 43. Acronyms Used in this Document

Acronym	Description
abus	analog local bus
ADC	analog-to-digital converter
AG	analog global
АНВ	AMBA (advanced microcontroller bus archi- tecture) high-performance bus, an ARM data transfer bus
ALU	arithmetic logic unit
AMUXBUS	analog multiplexer bus
API	application programming interface
APSR	application program status register
ARM®	advanced RISC machine, a CPU architecture
ATM	automatic thump mode
BW	bandwidth
CAN	Controller Area Network, a communications protocol
CMRR	common-mode rejection ratio
CPU	central processing unit
CRC	cyclic redundancy check, an error-checking protocol
DAC	digital-to-analog converter, see also IDAC, VDAC
DFB	digital filter block
DIO	digital input/output, GPIO with only digital capabilities, no analog. See GPIO.
DMIPS	Dhrystone million instructions per second
DMA	direct memory access, see also TD
DNL	differential nonlinearity, see also INL
DNU	do not use
DR	port write data registers
DSI	digital system interconnect
DWT	data watchpoint and trace
ECC	error correcting code
ECO	external crystal oscillator
EEPROM	electrically erasable programmable read-only memory
EMI	electromagnetic interference
EMIF	external memory interface
EOC	end of conversion
EOF	end of frame
EPSR	execution program status register
ESD	electrostatic discharge

Table 43. Acronyms Used in this Document (continued)

Acronym	Description
ETM	embedded trace macrocell
FIR	finite impulse response, see also IIR
FPB	flash patch and breakpoint
FS	full-speed
GPIO	general-purpose input/output, applies to a PSoC pin
HVI	high-voltage interrupt, see also LVI, LVD
IC	integrated circuit
IDAC	current DAC, see also DAC, VDAC
IDE	integrated development environment
I ² C, or IIC	Inter-Integrated Circuit, a communications protocol
IIR	infinite impulse response, see also FIR
ILO	internal low-speed oscillator, see also IMO
IMO	internal main oscillator, see also ILO
INL	integral nonlinearity, see also DNL
I/O	input/output, see also GPIO, DIO, SIO, USBIO
IPOR	initial power-on reset
IPSR	interrupt program status register
IRQ	interrupt request
ITM	instrumentation trace macrocell
LCD	liquid crystal display
LIN	Local Interconnect Network, a communications protocol.
LR	link register
LUT	lookup table
LVD	low-voltage detect, see also LVI
LVI	low-voltage interrupt, see also HVI
LVTTL	low-voltage transistor-transistor logic
MAC	multiply-accumulate
MCU	microcontroller unit
MISO	master-in slave-out
NC	no connect
NMI	nonmaskable interrupt
NRZ	non-return-to-zero
NVIC	nested vectored interrupt controller
NVL	nonvolatile latch, see also WOL
opamp	operational amplifier
PAL	programmable array logic, see also PLD

Document Conventions

Units of Measure

Table 44. Units of Measure

Symbol	Unit of Measure
°C	degrees Celsius
dB	decibel
fF	femto farad
Hz	hertz
KB	1024 bytes
kbps	kilobits per second
Khr	kilohour
kHz	kilohertz
kΩ	kilo ohm
ksps	kilosamples per second
LSB	least significant bit
Mbps	megabits per second
MHz	megahertz
MΩ	mega-ohm
Msps	megasamples per second
μA	microampere
μF	microfarad
μH	microhenry
μs	microsecond
μV	microvolt
μW	microwatt
mA	milliampere
ms	millisecond
mV	millivolt
nA	nanoampere
ns	nanosecond
nV	nanovolt
Ω	ohm
pF	picofarad
ppm	parts per million
ps	picosecond
S	second
sps	samples per second
sqrtHz	square root of hertz
V	volt