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AT90S8515
current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset
condition becomes active, even if the clock is not active.

Port D also serves the functions of various special features of the AT90S8515 as listed
on page 73.

RESET Reset input. A low level on this pin for more than 50 ns will generate a reset, even if the
clock is not running. Shorter pulses are not guaranteed to generate a reset.

XTAL1 Input to the inverting oscillator amplifier and input to the internal clock operating circuit.

XTAL2 Output from the inverting oscillator amplifier.

ICP ICP is the input pin for the Timer/Counter1 Input Capture function.

OC1B OC1B is the output pin for the Timer/Counter1 Output CompareB function.

ALE ALE is the Address Latch Enable used when the External Memory is enabled. The ALE
strobe is used to latch the low-order address (8 bits) into an address latch during the first
access cycle, and the AD0 - 7 pins are used for data during the second access cycle.
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Crystal Oscillator XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier that can
be configured for use as an on-chip oscillator, as shown in Figure 2. Either a quartz
crystal or a ceramic resonator may be used. To drive the device from an external clock
source, XTAL2 should be left unconnected while XTAL1 is driven as shown in Figure 3.

Figure 2.  Oscillator Connections

Note: When using the MCU oscillator as a clock for an external device, an HC buffer should be
connected as indicated in the figure.

Figure 3.  External Clock Drive Configuration

XTAL2

XTAL1

GND

C2

C1

MAX 1 HC BUFFER

HC
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AT90S8515
Figure 5.  Memory Maps
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General-purpose 
Register File

Figure 6 shows the structure of the 32 general-purpose working registers in the CPU.

Figure 6.  AVR CPU General-purpose Working Registers

All the register operating instructions in the instruction set have direct and single-cycle
access to all registers. The only exception are the five constant arithmetic and logic
instructions SBCI, SUBI, CPI, ANDI and ORI between a constant and a register and the
LDI instruction for load immediate constant data. These instructions apply to the second
half of the registers in the register file (R16..R31). The general SBC, SUB, CP, AND and
OR and all other operations between two registers or on a single register apply to the
entire register file.

As shown in Figure 6, each register is also assigned a data memory address, mapping
them directly into the first 32 locations of the user Data Space. Although not being phys-
ically implemented as SRAM locations, this memory organization provides great
flexibility in access of the registers, as the X-, Y- and Z-registers can be set to index any
register in the file.

X-register, Y-register and 
Z-register

The registers R26..R31 have some added functions to their general-purpose usage.
These registers are address pointers for indirect addressing of the Data Space. The
three indirect address registers X, Y, and Z are defined as:

Figure 7.  X-, Y-, and Z-registers

7 0 Addr.

R0 $00

R1 $01

R2 $02

…

R13 $0D

General R14 $0E

Purpose R15 $0F

Working R16 $10

Registers R17 $11

…

R26 $1A X-register low byte

R27 $1B X-register high byte

R28 $1C Y-register low byte

R29 $1D Y-register high byte

R30 $1E Z-register low byte

R31 $1F Z-register high byte

15 0

X - register 7 0 7                              0

R27 ($1B) R26 ($1A)

15 0

Y - register 7 0 7                                  0

R29 ($1D) R28 ($1C)

15 0

Z - register 7 0 7                              0

R31 ($1F) R30 ($1E)
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Note: Reserved and unused locations are not shown in the table.

All AT90S8515 I/Os and peripherals are placed in the I/O space. The I/O locations are
accessed by the IN and OUT instructions transferring data between the 32 general-pur-
pose working registers and the I/O space. I/O registers within the address range $00 -
$1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the
value of single bits can be checked by using the SBIS and SBIC instructions. Refer to
the instruction set section for more details. When using the I/O-specific commands IN
and OUT, the I/O addresses $00 - $3F must be used. When addressing I/O registers as
SRAM, $20 must be added to this address. All I/O register addresses throughout this
document are shown with the SRAM address in parentheses.

For compatibility with future devices, reserved bits should be written to zero if accessed.
Reserved I/O memory addresses should never be written.

Some of the status flags are cleared by writing a logical “1” to them. Note that the CBI
and SBI instructions will operate on all bits in the I/O register, writing a “1” back into any
flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers
$00 to $1F only.

The I/O and peripherals control registers are explained in the following sections.

Status Register – SREG The AVR status register (SREG) at I/O space location $3F ($5F) is defined as:

• Bit 7 – I: Global Interrupt Enable

The global interrupt enable bit must be set (one) for the interrupts to be enabled. The
individual interrupt enable control is then performed in separate control registers. If the
global interrupt enable bit is cleared (zero), none of the interrupts are enabled indepen-
dent of the individual interrupt enable settings. The I-bit is cleared by hardware after an
interrupt has occurred and is set by the RETI instruction to enable subsequent
interrupts.

• Bit 6 – T: Bit Copy Storage

The bit copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source
and destination for the operated bit. A bit from a register in the register file can be copied

$11 ($31) DDRD Data Direction Register, Port D

$10 ($30) PIND Input Pins, Port D

$0F ($2F) SPDR SPI I/O Data Register

$0E ($2E) SPSR SPI Status Register

$0D ($2D) SPCR SPI Control Register

$0C ($2C) UDR UART I/O Data Register

$0B ($2B) USR UART Status Register

$0A ($2A) UCR UART Control Register

$09 ($29) UBRR UART Baud Rate Register

$08 ($28) ACSR Analog Comparator Control and Status Register

Table 1.  AT90S8515 I/O Space (Continued)

Address Hex Name Function

Bit 7 6 5 4 3 2 1 0

$3F ($5F) I T H S V N Z C SREG
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
20 AT90S8515
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Reset and Interrupt 
Handling

The AT90S8515 provides 12 different interrupt sources. These interrupts and the sepa-
rate reset vector each have a separate program vector in the program memory space.
All interrupts are assigned individual enable bits that must be set (one) together with the
I-bit in the Status Register in order to enable the interrupt.

The lowest addresses in the program memory space are automatically defined as the
Reset and Interrupt vectors. The complete list of vectors is shown in Table 2. The list
also determines the priority levels of the different interrupts. The lower the address, the
higher the priority level. RESET has the highest priority, and next is INT0 (the External
Interrupt Request 0), etc.

The most typical and general program setup for the Reset and Interrupt vector
addresses are:

Address Labels Code Comments

$000 rjmp RESET ; Reset Handler

$001 rjmp EXT_INT0 ; IRQ0 Handler

$002 rjmp EXT_INT1 ; IRQ1 Handler

$003 rjmp TIM1_CAPT ; Timer1 Capture Handler

$004 rjmp TIM1_COMPA ; Timer1 CompareA Handler

$005 rjmp TIM1_COMPB ; Timer1 CompareB Handler

$006 rjmp TIM1_OVF ; Timer1 Overflow Handler

$007 rjmp TIM0_OVF ; Timer0 Overflow Handler

$008 rjmp SPI_STC ; SPI Transfer Complete Handler

$009 rjmp UART_RXC ; UART RX Complete Handler

$00a rjmp UART_DRE ; UDR Empty Handler

$00b rjmp UART_TXC ; UART TX Complete Handler

$00c rjmp ANA_COMP ; Analog Comparator Handler

;

$00d MAIN: ldi r16,high(RAMEND); Main program start

$00e out SPH,r16

Table 2.  Reset and Interrupt Vectors

Vector No.
Program 
Address Source Interrupt Definition

1 $000 RESET
External Reset, Power-on Reset and 
Watchdog Reset

2 $001 INT0 External Interrupt Request 0

3 $002 INT1 External Interrupt Request 1

4 $003 TIMER1 CAPT Timer/Counter1 Capture Event

5 $004 TIMER1 COMPA Timer/Counter1 Compare Match A

6 $005 TIMER1 COMPB Timer/Counter1 Compare Match B

7 $006 TIMER1 OVF Timer/Counter1 Overflow

8 $007 TIMER0, OVF Timer/Counter0 Overflow

9 $008 SPI, STC Serial Transfer Complete

10 $009 UART, RX UART, Rx Complete

11 $00A UART, UDRE UART Data Register Empty

12 $00B UART, TX UART, Tx Complete

13 $00C ANA_COMP Analog Comparator
22 AT90S8515
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The user can select the start-up time according to typical oscillator start-up. The number
of WDT oscillator cycles used for each time-out is shown in Table 4. The frequency of
the Watchdog Oscillator is voltage-dependent as shown in “Typical Characteristics” on
page 95.

Power-on Reset A Power-on Reset (POR) circuit ensures that the device is reset from power-on. As
shown in Figure 23, an internal timer clocked from the Watchdog Timer oscillator pre-
vents the MCU from starting until after a certain period after VCC has reached the Power-
on Threshold Voltage (VPOT), regardless of the VCC rise time (see Figure 24). The
FSTRT Fuse bit in the Flash can be programmed to give a shorter start-up time if a
ceramic resonator or any other fast-start oscillator is used to clock the MCU.

If the built-in start-up delay is sufficient, RESET can be connected to VCC directly or via
an external pull-up resistor. By holding the pin low for a period after VCC has been
applied, the Power-on Reset period can be extended. Refer to Figure 25 for a timing
example of this.

Figure 24.  MCU Start-up, RESET Tied to VCC.

Figure 25.  MCU Start-up, RESET Controlled Externally

Table 4.  Number of Watchdog Oscillator Cycles

FSTRT Time-out at VCC = 5V Number of WDT Cycles

Programmed 0.28 ms 256

Unprogrammed 16.0 ms 16K

VCC

RESET

TIME-OUT

INTERNAL
RESET

tTOUT

VPOT

VRST

VCC

RESET

TIME-OUT

INTERNAL
RESET

tTOUT

VPOT

VRST
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AT90S8515
• Bit 6 – INTF0: External Interrupt Flag0

When an edge on the INT0 pin triggers an interrupt request, the corresponding interrupt
flag, INTF0, becomes set (one). If the I-bit in SREG and the corresponding interrupt
enable bit, INT0 in GIMSK are set (one), the MCU will jump to the interrupt vector. The
flag is cleared when the interrupt routine is executed. Alternatively, the flag is cleared by
writing a logical “1” to it. This flag is always cleared when INT0 is configured as level
interrupt.

• Bits 5..0 – Res: Reserved Bits

These bits are reserved bits in the AT90S8515 and always read as zero.

Timer/Counter Interrupt Mask 
Register – TIMSK

• Bit 7 – TOIE1: Timer/Counter1 Overflow Interrupt Enable

When the TOIE1 bit is set (one) and the I-bit in the Status Register is set (one), the
Timer/Counter1 Overflow interrupt is enabled. The corresponding interrupt (at vector
$006) is executed if an overflow in Timer/Counter1 occurs, i.e., when the TOV1 bit is set
in the Timer/Counter Interrupt Flag Register (TIFR).

• Bit 6 – OCE1A: Timer/Counter1 Output CompareA Match Interrupt Enable

When the OCIE1A bit is set (one) and the I-bit in the Status Register is set (one), the
Timer/Counter1 CompareA Match interrupt is enabled. The corresponding interrupt (at
vector $004) is executed if a CompareA match in Timer/Counter1 occurs, i.e., when the
OCF1A bit is set in the Timer/Counter Interrupt Flag Register (TIFR).

• Bit 5 – OCIE1B: Timer/Counter1 Output CompareB Match Interrupt Enable

When the OCIE1B bit is set (one) and the I-bit in the Status Register is set (one), the
Timer/Counter1 CompareB Match interrupt is enabled. The corresponding interrupt (at
vector $005) is executed if a CompareB match in Timer/Counter1 occurs, i.e., when the
OCF1B bit is set in the Timer/Counter Interrupt Flag Register (TIFR).

• Bit 4 – Res: Reserved Bit

This bit is a reserved bit in the AT90S8515 and always reads zero.

• Bit 3 – TICIE1: Timer/Counter1 Input Capture Interrupt Enable

When the TICIE1 bit is set (one) and the I-bit in the Status Register is set (one), the
Timer/Counter1 Input Capture Event interrupt is enabled. The corresponding interrupt
(at vector $003) is executed if a capture-triggering event occurs on pin 31, ICP, i.e.,
when the ICF1 bit is set in the Timer/Counter Interrupt Flag Register (TIFR).

• Bit 2 – Res: Reserved Bit

This bit is a reserved bit in the AT90S8515 and always reads zero.

• Bit 1 – TOIE0: Timer/Counter0 Overflow Interrupt Enable

When the TOIE0 bit is set (one) and the I-bit in the Status Register is set (one), the
Timer/Counter0 Overflow interrupt is enabled. The corresponding interrupt (at vector
$007) is executed if an overflow in Timer/Counter0 occurs, i.e., when the TOV0 bit is set
in the Timer/Counter Interrupt Flag Register (TIFR).

• Bit 0 – Res: Reserved Bit

This bit is a reserved bit in the AT90S8515 and always reads zero.

Bit 7 6 5 4 3 2 1 0

$39 ($59) TOIE1 OCIE1A OCIE1B – TICIE1 – TOIE0 – TIMSK
Read/Write R/W R/W R/W R R/W R R/W R

Initial Value 0 0 0 0 0 0 0 0
27
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AT90S8515
• Bit 2 – EEMWE: EEPROM Master Write Enable

The EEMWE bit determines whether setting EEWE to one causes the EEPROM to be
written. When EEMWE is set (one), setting EEWE will write data to the EEPROM at the
selected address. If EEMWE is zero, setting EEWE will have no effect. When EEMWE
has been set (one) by software, hardware clears the bit to zero after four clock cycles.
See the description of the EEWE bit for a EEPROM write procedure.

• Bit 1 – EEWE: EEPROM Write Enable

The EEPROM Write Enable signal (EEWE) is the write strobe to the EEPROM. When
address and data are correctly set up, the EEWE bit must be set to write the value into
the EEPROM. The EEMWE bit must be set when the logical “1” is written to EEWE, oth-
erwise no EEPROM write takes place. The following procedure should be followed
when writing the EEPROM (the order of steps 2 and 3 is unessential):

1. Wait until EEWE becomes zero.

2. Write new EEPROM address to EEARL and EEARH (optional).

3. Write new EEPROM data to EEDR (optional).

4. Write a logical “1” to the EEMWE bit in EECR (to be able to write a logical “1” to 
the EEMWE bit, the EEWE bit must be written to zero in the same cycle).

5. Within four clock cycles after setting EEMWE, write a logical “1” to EEWE.

When the write access time (typically 2.5 ms at VCC = 5V or 4 ms at VCC = 2.7V) has
elapsed, the EEWE bit is cleared (zero) by hardware. The user software can poll this bit
and wait for a zero before writing the next byte. When EEWE has been set, the CPU is
halted for two cycles before the next instruction is executed.

Caution: An interrupt between step 4 and step 5 will make the write cycle fail, since the
EEPROM Master Write Enable will time-out. If an interrupt routine accessing the
EEPROM is interrupting another EEPROM access, the EEAR or EEDR registers will be
modified, causing the interrupted EEPROM access to fail. It is recommended to have
the global interrupt flag cleared during the four last steps to avoid these problems.

• Bit 0 – EERE: EEPROM Read Enable

The EEPROM Read Enable signal EERE is the read strobe to the EEPROM. When the
correct address is set up in the EEAR register, the EERE bit must be set. When the
EERE bit is cleared (zero) by hardware, requested data is found in the EEDR register.
The EEPROM read access takes one instruction and there is no need to poll the EERE
bit. When EERE has been set, the CPU is halted for four cycles before the next instruc-
tion is executed.

The user should poll the EEWE bit before starting the read operation. If a write operation
is in progress when new data or address is written to the EEPROM I/O registers, the
write operation will be interrupted and the result is undefined.
45
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AT90S8515
Serial Peripheral 
Interface – SPI

The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer
between the AT90S8515 and peripheral devices or between several AVR devices. The
AT90S8515 SPI features include the following:
• Full-duplex, 3-wire Synchronous Data Transfer
• Master or Slave Operation
• LSB First or MSB First Data Transfer
• Four Programmable Bit Rates
• End-of-Transmission Interrupt Flag
• Write Collision Flag Protection
• Wake-up from Idle Mode (Slave Mode Only)

Figure 34.  SPI Block Diagram

The interconnection between master and slave CPUs with SPI is shown in Figure 35.
The PB7(SCK) pin is the clock output in the Master Mode and is the clock input in the
Slave Mode. Writing to the SPI Data Register of the master CPU starts the SPI clock
generator and the data written shifts out of the PB5(MOSI) pin and into the PB5(MOSI)
pin of the slave CPU. After shifting one byte, the SPI clock generator stops, setting the
end-of-transmission flag (SPIF). If the SPI interrupt enable bit (SPIE) in the SPCR regis-
ter is set, an interrupt is requested. The Slave Select input, PB4(SS), is set low to select
an individual slave SPI device. The two shift registers in the master and the slave can be
considered as one distributed 16-bit circular shift register. This is shown in Figure 35.
When data is shifted from the master to the slave, data is also shifted in the opposite
direction, simultaneously. This means that during one shift cycle, data in the master and
the slave are interchanged.
47
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• Bit 5 – DORD: Data Order

When the DORD bit is set (one), the LSB of the data word is transmitted first.

When the DORD bit is cleared (zero), the MSB of the data word is transmitted first.

• Bit 4 – MSTR: Master/Slave Select

This bit selects Master SPI Mode when set (one), and Slave SPI Mode when cleared
(zero). If SS is configured as an input and is driven low while MSTR is set, MSTR will be
cleared and SPIF in SPSR will become set. The user will then have to set MSTR to re-
enable SPI Master Mode.

• Bit 3 – CPOL: Clock Polarity

When this bit is set (one), SCK is high when idle. When CPOL is cleared (zero), SCK is
low when idle. Refer to Figure 36 and Figure 37 for additional information.

• Bit 2 – CPHA: Clock Phase

Refer to Figure 36 or Figure 37 for the functionality of this bit.

• Bits 1, 0 – SPR1, SPR0: SPI Clock Rate Select 1 and 0

These two bits control the SCK rate of the device configured as a master. SPR1 and
SPR0 have no effect on the slave. The relationship between SCK and the oscillator
clock frequency fcl is shown in Table 16.

SPI Status Register – SPSR

• Bit 7 – SPIF: SPI Interrupt Flag

When a serial transfer is complete, the SPIF bit is set (one) and an interrupt is gener-
ated if SPIE in SPCR is set (one) and global interrupts are enabled. If SS is an input and
is driven low when the SPI is in Master Mode, this will also set the SPIF flag. SPIF is
cleared by hardware when executing the corresponding interrupt handling vector. Alter-
natively, the SPIF bit is cleared by first reading the SPI Status Register when SPIF is set
(one), then by accessing the SPI Data Register (SPDR).

• Bit 6 – WCOL: Write Collision Flag

The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer.
The WCOL bit (and the SPIF bit) are cleared (zero) by first reading the SPI Status Reg-
ister when WCOL is set (one), and then by accessing the SPI Data Register.

• Bits 5..0 – Res: Reserved Bits

These bits are reserved bits in the AT90S8515 and will always read as zero.

The SPI interface on the AT90S8515 is also used for program memory and EEPROM
downloading or uploading. See page 86 for serial programming and verification.

Table 16.  Relationship between SCK and the Oscillator Frequency

SPR1 SPR0 SCK Frequency

0 0 fcl/4

0 1 fcl/16

1 0 fcl/64

1 1 fcl/128

Bit 7 6 5 4 3 2 1 0

$0E ($2E) SPIF WCOL – – – – – – SPSR
Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0
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Figure 56.  Port D Schematic Diagram (Pin PD4)

Figure 57.  Port D Schematic Diagram (Pin PD5)
76 AT90S8515
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AT90S8515
the self-timed write operation in the serial programming mode. During programming, the
supply voltage must be in accordance with Table 26.

Parallel Programming This section describes how to parallel program and verify Flash program memory,
EEPROM data memory, Lock bits and Fuse bits in the AT90S8515.

Signal Names In this section, some pins of the AT908515 are referenced by signal names describing
their function during parallel programming. See Figure 60 and Table 27. Pins not
described in Table 27 are referenced by pin names.

The XA1/XA0 pins determine the action executed when the XTAL1 pin is given a posi-
tive pulse. The bit coding are shown in Table 28.

When pulsing WR or OE, the command loaded determines the action executed. The
command is a byte where the different bits are assigned functions as shown in Table 29.

Figure 60.  Parallel Programming

Table 26.  Supply Voltage during Programming

Part Serial Programming Parallel Programming

AT90S8515 2.7 - 6.0V 4.5 - 5.5V

AT90S8515

VCC

+5V

RESETGND

XTAL1

PD1

PD2

PD3

PD4

PD5

PD6

+12 V

RDY/BSY

OE

BS

XA0

XA1

WR

PB7 - PB0 DATA
79
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Serial Downloading Both the program and data memory arrays can be programmed using the SPI bus while
RESET is pulled to GND. The serial interface consists of pins SCK, MOSI (input) and
MISO (output). See Figure 64. After RESET is set low, the Programming Enable instruc-
tion needs to be executed first before program/erase instructions can be executed.

Figure 64.  Serial Programming and Verify

For the EEPROM, an auto-erase cycle is provided within the self-timed Write instruction
and there is no need to first execute the Chip Erase instruction. The Chip Erase instruc-
tion turns the content of every memory location in both the program and EEPROM
arrays into $FF.

The program and EEPROM memory arrays have separate address spaces: $0000 to
$0FFF (AT90S8515) for program memory and $0000 to $01FF (AT90S8515) for
EEPROM memory.

Either an external clock is supplied at pin XTAL1 or a crystal needs to be connected
across pins XTAL1 and XTAL2. The minimum low and high periods for the serial clock
(SCK) input are defined as follows:

Low: > 2 XTAL1 clock cycles

High: > 2 XTAL1 clock cycles

Serial Programming 
Algorithm

When writing serial data to the AT90S8515, data is clocked on the rising edge of SCK.

When reading data from the AT90S8515, data is clocked on the falling edge of SCK.
See Figure 65, Figure 66 and Table 33 on page 89 for timing details.

To program and verify the AT90S8515 in the Serial Programming Mode, the following
sequence is recommended (see 4-byte instruction formats in Table 32):
1. Power-up sequence:

Apply power between VCC and GND while RESET and SCK are set to “0”. If a crys-
tal is not connected across pins XTAL1 and XTAL2, apply a clock signal to the
XTAL1 pin. In some systems, the programmer cannot guarantee that SCK is held
low during power-up. In this case, RESET must be given a positive pulse of at least
two XTAL1 cycles duration after SCK has been set to “0”.

2. Wait for at least 20 ms and enable serial programming by sending the Program-
ming Enable serial instruction to the MOSI (PB5) pin.

3. The serial programming instructions will not work if the communication is out of 
synchronization. When in sync, the second byte ($53) will echo back when issu-

VCC

2.7 - 6.0V

PB7
PB6
PB5

RESET

GND

XTAL1

SCK
MISO
MOSI

GND

CLOCK INPUT

AT90S8515
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AT90S8515
Notes: 1. “Max” means the highest value where the pin is guaranteed to be read as low.
2. “Min” means the lowest value where the pin is guaranteed to be read as high.
3. Although each I/O port can sink more than the test conditions (20 mA at VCC = 5V, 10 mA at VCC = 3V) under steady state

conditions (non-transient), the following must be observed:
1] The sum of all IOL, for all ports, should not exceed 200 mA.
2] The sum of all IOL, for ports B0 - B7, D0 - D7 and XTAL2, should not exceed 100 mA.
3] The sum of all IOL, for ports A0 - A7, ALE, OC1B and C0 - C7 should not exceed 100 mA.
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater
than the listed test condition.

4. Although each I/O port can source more than the test conditions (3 mA at VCC = 5V, 1.5 mA at VCC = 3V) under steady state
conditions (non-transient), the following must be observed:
1] The sum of all IOH, for all ports, should not exceed 200 mA.
2] The sum of all IOH, for ports B0 - B7, D0 - D7 and XTAL2, should not exceed 100 mA.
3] The sum of all IOH, for ports A0 - A7, ALE, OC1B and C0 - C7 should not exceed 100 mA.
If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current
greater than the listed test condition.

5. Minimum VCC for power-down is 2V.
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Figure 72.  Idle Supply Current vs. VCC

Figure 73.  Power-down Supply Current vs. VCC
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AT90S8515
Analog Comparator offset voltage is measured as absolute offset.

Figure 76.  Analog Comparator Offset Voltage vs. Common Mode Voltage

Figure 77.  Analog Comparator Offset Voltage vs. Common Mode Voltage
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Figure 82.  I/O Pin Sink Current vs. Output Voltage

Figure 83.  I/O Pin Source Current vs. Output Voltage
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Figure 84.  I/O Pin Source Current vs. Output Voltage

Figure 85.  I/O Pin Input Threshold Voltage vs. VCC
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44J

1.14(0.045) X 45˚ PIN NO. 1
IDENTIFY

0.813(0.032)
0.660(0.026)

1.27(0.050) TYP
12.70(0.500) REF SQ

1.14(0.045) X 45˚

0.51(0.020)MAX 45˚ MAX (3X)

0.318(0.0125)
0.191(0.0075)

0.533(0.021)

0.330(0.013)

0.50(0.020)MIN

3.05(0.120)
2.29(0.090)

4.57(0.180)
4.19(0.165)

16.70(0.656)
16.50(0.650)

17.70(0.695)
17.40(0.685)

SQ

SQ

2.11(0.083)
1.57(0.062)

16.00(0.630)
 15.00(0.590)

SQ

44J, 44-lead, Plastic J-leaded Chip Carrier (PLCC)
Dimensions in Milimeters and (Inches)*
JEDEC STANDARD MS-018 AC

*Controlling dimensions: Inches

REV. A     04/11/2001
110 AT90S8515
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