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AT90S8515
Architectural 
Overview

The fast-access register file concept contains 32 x 8-bit general-purpose working regis-
ters with a single clock cycle access time. This means that during one single clock cycle,
one ALU (Arithmetic Logic Unit) operation is executed. Two operands are output from
the register file, the operation is executed and the result is stored back in the register file
– in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for
Data Space addressing, enabling efficient address calculations. One of the three
address pointers is also used as the address pointer for the constant table look-up func-
tion. These added function registers are the 16-bit X-, Y-, and Z-register.

The ALU supports arithmetic and logic functions between registers or between a con-
stant and a register. Single register operations are also executed in the ALU. Figure 4
shows the AT90S8515 AVR RISC microcontroller architecture.

In addition to the register operation, the conventional memory addressing modes can be
used on the register file as well. This is enabled by the fact that the register file is
assigned the 32 lowermost Data Space addresses ($00 - $1F), allowing them to be
accessed as though they were ordinary memory locations.

The I/O memory space contains 64 addresses for CPU peripheral functions such as
Control Registers, Timer/Counters, A/D converters and other I/O functions. The I/O
memory can be accessed directly or as the Data Space locations following those of the
register file, $20 - $5F.

The AVR uses a Harvard architecture concept – with separate memories and buses for
program and data. The program memory is executed with a two-stage pipeline. While
one instruction is being executed, the next instruction is pre-fetched from the program
memory. This concept enables instructions to be executed in every clock cycle. The pro-
gram memory is In-System Programmable Flash memory.

With the relative jump and call instructions, the whole 4K address space is directly
accessed. Most AVR instructions have a single 16-bit word format. Every program
memory address contains a 16- or 32-bit instruction.

During interrupts and subroutine calls, the return address Program Counter (PC) is
stored on the stack. The stack is effectively allocated in the general data SRAM and
consequently, the stack size is only limited by the total SRAM size and the usage of the
SRAM. All user programs must initialize the SP in the reset routine (before subroutines
or interrupts are executed). The 16-bit Stack Pointer (SP) is read/write-accessible in the
I/O space.

The 512-byte data SRAM can be easily accessed through the five different addressing
modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.
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AT90S8515
In the different addressing modes these address registers have functions as fixed dis-
placement, automatic increment and decrement (see the descriptions for the different
instructions).

ALU – Arithmetic Logic 
Unit

The high-performance AVR ALU operates in direct connection with all the 32 general-
purpose working registers. Within a single clock cycle, ALU operations between regis-
ters in the register file are executed. The ALU operations are divided into three main
categories: arithmetic, logical and bit functions.

In-System Programmable 
Flash Program Memory

The AT90S8515 contains 8K bytes On-chip In-System Programmable Flash memory for
program storage. Since all instructions are 16- or 32-bit words, the Flash is organized as
4K x 16. The Flash memory has an endurance of at least 1000 write/erase cycles. The
AT90S8515 Program Counter (PC) is 12 bits wide, thus addressing the 4096 program
memory addresses.

See page 86 for a detailed description of Flash data downloading.

See page 13 for the different program memory addressing modes.
11
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AT90S8515
two additional clock cycles is used per byte. This has the following effect: Data transfer
instructions take two extra clock cycles, whereas interrupt, subroutine calls and returns
will need four clock cycles more than specified in the instruction set manual.

The five different addressing modes for the data memory cover: Direct, Indirect with Dis-
placement, Indirect, Indirect with Pre-decrement and Indirect with Post-increment. In the
register file, registers R26 to R31 feature the indirect addressing pointer registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode features 63 address locations reached from the
base address given by the Y- or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-
increment, the address registers X, Y and Z are decremented and incremented.

The 32 general-purpose working registers, 64 I/O registers, the 512 bytes of internal
data SRAM, and the 64K bytes of optional external data SRAM in the AT90S8515 are all
accessible through all these addressing modes.

See the next section for a detailed description of the different addressing modes.

Program and Data 
Addressing Modes

The AT90S8515 AVR RISC microcontroller supports powerful and efficient addressing
modes for access to the program memory (Flash) and data memory (SRAM, Register
file and I/O memory). This section describes the different addressing modes supported
by the AVR architecture. In the figures, OP means the operation code part of the instruc-
tion word. To simplify, not all figures show the exact location of the addressing bits.

Register Direct, Single 
Register RD

Figure 9.  Direct Single Register Addressing

The operand is contained in register d (Rd).
13
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AT90S8515
A 16-bit data address is contained in the 16 LSBs of a 2-word instruction. Rd/Rr specify
the destination or source register.

Data Indirect with 
Displacement

Figure 13.  Data Indirect with Displacement

Operand address is the result of the Y- or Z-register contents added to the address con-
tained in six bits of the instruction word.

Data Indirect Figure 14.  Data Indirect Addressing

Operand address is the contents of the X-, Y-, or the Z-register.

Data Indirect with Pre-
decrement

Figure 15.  Data Indirect Addressing with Pre-decrement
15
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Note: Reserved and unused locations are not shown in the table.

All AT90S8515 I/Os and peripherals are placed in the I/O space. The I/O locations are
accessed by the IN and OUT instructions transferring data between the 32 general-pur-
pose working registers and the I/O space. I/O registers within the address range $00 -
$1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the
value of single bits can be checked by using the SBIS and SBIC instructions. Refer to
the instruction set section for more details. When using the I/O-specific commands IN
and OUT, the I/O addresses $00 - $3F must be used. When addressing I/O registers as
SRAM, $20 must be added to this address. All I/O register addresses throughout this
document are shown with the SRAM address in parentheses.

For compatibility with future devices, reserved bits should be written to zero if accessed.
Reserved I/O memory addresses should never be written.

Some of the status flags are cleared by writing a logical “1” to them. Note that the CBI
and SBI instructions will operate on all bits in the I/O register, writing a “1” back into any
flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers
$00 to $1F only.

The I/O and peripherals control registers are explained in the following sections.

Status Register – SREG The AVR status register (SREG) at I/O space location $3F ($5F) is defined as:

• Bit 7 – I: Global Interrupt Enable

The global interrupt enable bit must be set (one) for the interrupts to be enabled. The
individual interrupt enable control is then performed in separate control registers. If the
global interrupt enable bit is cleared (zero), none of the interrupts are enabled indepen-
dent of the individual interrupt enable settings. The I-bit is cleared by hardware after an
interrupt has occurred and is set by the RETI instruction to enable subsequent
interrupts.

• Bit 6 – T: Bit Copy Storage

The bit copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source
and destination for the operated bit. A bit from a register in the register file can be copied

$11 ($31) DDRD Data Direction Register, Port D

$10 ($30) PIND Input Pins, Port D

$0F ($2F) SPDR SPI I/O Data Register

$0E ($2E) SPSR SPI Status Register

$0D ($2D) SPCR SPI Control Register

$0C ($2C) UDR UART I/O Data Register

$0B ($2B) USR UART Status Register

$0A ($2A) UCR UART Control Register

$09 ($29) UBRR UART Baud Rate Register

$08 ($28) ACSR Analog Comparator Control and Status Register

Table 1.  AT90S8515 I/O Space (Continued)

Address Hex Name Function

Bit 7 6 5 4 3 2 1 0

$3F ($5F) I T H S V N Z C SREG
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
20 AT90S8515
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AT90S8515
Sleep Modes To enter the sleep modes, the SE bit in MCUCR must be set (one) and a SLEEP instruc-
tion must be executed. If an enabled interrupt occurs while the MCU is in a sleep mode,
the MCU awakes, executes the interrupt routine and resumes execution from the
instruction following SLEEP. The contents of the register file, SRAM and I/O memory
are unaltered. If a reset occurs during Sleep Mode, the MCU wakes up and executes
from the Reset vector.

Idle Mode When the SM bit is cleared (zero), the SLEEP instruction forces the MCU into the Idle
Mode, stopping the CPU but allowing Timer/Counters, Watchdog and the interrupt sys-
tem to continue operating. This enables the MCU to wake up from external triggered
interrupts as well as internal ones like Timer Overflow interrupt and Watchdog reset. If
wake-up from the Analog Comparator interrupt is not required, the Analog Comparator
can be powered down by setting the ACD-bit in the Analog Comparator Control and Sta-
tus Register (ACSR). This will reduce power consumption in Idle Mode. When the MCU
wakes up from Idle Mode, the CPU starts program execution immediately.

Power-down Mode When the SM bit is set (one), the SLEEP instruction forces the MCU into the Power-
down mode. In this mode, the external oscillator is stopped, while the external interrupts
and the Watchdog (if enabled) continue operating. Only an external reset, a Watchdog
reset (if enabled), or an external level interrupt on INT0 or INT1 can wake up the MCU.

Note that when a level-triggered interrupt is used for wake-up from power-down, the low
level must be held for a time longer than the reset delay Time-out period tTOUT. Other-
wise, the MCU will fail to wake up.
31
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EEPROM Read/Write 
Access

The EEPROM access registers are accessible in the I/O space.

The write access time is in the range of 2.5 - 4 ms, depending on the VCC voltages. A
self-timing function, however, lets the user software detect when the next byte can be
written. If the user code contains code that writes the EEPROM, some precaution must
be taken. In heavily filtered power supplies, VCC is likely to rise or fall slowly on power-
up/down. This causes the device for some period of time to run at a voltage lower than
specified as minimum for the clock frequency used. CPU operation under these condi-
tions is likely cause the program counter to perform unintentional jumps and eventually
execute the EEPROM write code. To secure EEPROM integrity, the user is advised to
use an external under-voltage reset circuit in this case.

In order to prevent unintentional EEPROM writes, a specific write procedure must be fol-
lowed. Refer to the description of the EEPROM Control Register for details on this.

When the EEPROM is written, the CPU is halted for two clock cycles before the next
instruction is executed. When the EEPROM is read, the CPU is halted for four clock
cycles before the next instruction is executed.

EEPROM Address Register – 
EEARH and EEARL

The EEPROM address registers (EEARH and EEARL) specify the EEPROM address in
the 512-byte EEPROM space for AT90S8515. The EEPROM data bytes are addressed
linearly between 0 and 512.

EEPROM Data Register – 
EEDR

• Bits 7..0 – EEDR7..0: EEPROM Data

For the EEPROM write operation, the EEDR register contains the data to be written to
the EEPROM in the address given by the EEAR register. For the EEPROM read opera-
tion, the EEDR contains the data read out from the EEPROM at the address given by
EEAR.

EEPROM Control Register – 
EECR

• Bits 7..3 – Res: Reserved Bits

These bits are reserved bits in the AT90S8515 and will always read as zero.

Bit 15 14 13 12 11 10 9 8

$1F ($3F) – – – – – – – EEAR8 EEARH
$1E ($3E) EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 EEARL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

$1D ($3D) MSB LSB EEDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

$1C ($3C) – – – – – EEMWE EEWE EERE EECR
Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
44 AT90S8515
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Prevent EEPROM 
Corruption

During periods of low VCC, the EEPROM data can be corrupted because the supply volt-
age is too low for the CPU and the EEPROM to operate properly. These issues are the
same as for board level systems using the EEPROM and the same design solutions
should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too
low. First, a regular write sequence to the EEPROM requires a minimum voltage to
operate correctly. Second, the CPU itself can execute instructions incorrectly if the sup-
ply voltage for executing instructions is too low.

EEPROM data corruption can easily be avoided by following these design recommen-
dations (one is sufficient):

1. Keep the AVR RESET active (low) during periods of insufficient power supply 
voltage. This is best done by an external low VCC Reset Protection circuit, often 
referred to as a Brown-out Detector (BOD). Please refer to application note AVR 
180 for design considerations regarding power-on reset and low-voltage 
detection.

2. Keep the AVR core in Power-down Sleep mode during periods of low VCC. This 
will prevent the CPU from attempting to decode and execute instructions, effec-
tively protecting the EEPROM registers from unintentional writes.

3. Store constants in Flash memory if the ability to change memory contents from 
software is not required. Flash memory cannot be updated by the CPU and will 
not be subject to corruption.
46 AT90S8515
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AT90S8515
SPI Data Register – SPDR

The SPI Data Register is a read/write register used for data transfer between the regis-
ter file and the SPI Shift Register. Writing to the register initiates data transmission.
Reading the register causes the Shift Register Receive buffer to be read.

Bit 7 6 5 4 3 2 1 0

$0F ($2F) MSB LSB SPDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value x x x x x x x x Undefined
51
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The receiver front-end logic samples the signal on the RXD pin at a frequency 16 times
the baud rate. While the line is idle, one single sample of logical “0” will be interpreted as
the falling edge of a start bit and the start bit detection sequence is initiated. Let sample
1 denote the first zero-sample. Following the 1-to-0 transition, the receiver samples the
RXD pin at samples 8, 9 and 10. If two or more of these three samples are found to be
logical “1”s, the start bit is rejected as a noise spike and the receiver starts looking for
the next 1-to-0 transition.

If, however, a valid start bit is detected, sampling of the data bits following the start bit is
performed. These bits are also sampled at samples 8, 9 and 10. The logical value found
in at least two of the three samples is taken as the bit value. All bits are shifted into the
Transmitter Shift register as they are sampled. Sampling of an incoming character is
shown in Figure 40.

Figure 40.  Sampling Received Data

When the stop bit enters the receiver, the majority of the three samples must be “1” to
accept the stop bit. If two or more samples are logical “0”s, the Framing Error (FE) flag in
the UART Status Register (USR) is set. Before reading the UDR register, the user
should always check the FE bit to detect framing errors.

Whether or not a valid stop bit is detected at the end of a character reception cycle, the
data is transferred to UDR and the RXC flag in USR is set. UDR is in fact two physically
separate registers, one for transmitted data and one for received data. When UDR is
read, the Receive Data register is accessed, and when UDR is written, the Transmit
Data register is accessed. If 9-bit data word is selected (the CHR9 bit in the UART Con-
trol Register, UCR is set), the RXB8 bit in UCR is loaded with bit 9 in the Transmit Shift
register when data is transferred to UDR.

If, after having received a character, the UDR register has not been read since the last
receive, the OverRun (OR) flag in USR is set. This means that the last data byte shifted
into the shift register could not be transferred to UDR and has been lost. The OR bit is
buffered and is updated when the valid data byte in UDR is read. Thus, the user should
always check the OR bit after reading the UDR register in order to detect any overruns if
the baud rate is high or CPU load is high.

When the RXEN bit in the UCR register is cleared (zero), the receiver is disabled. This
means that the PD0 pin can be used as a general I/O pin. When RXEN is set, the UART
Receiver will be connected to PD0, which is forced to be an input pin regardless of the
setting of the DDD0 bit in DDRD. When PD0 is forced to input by the UART, the
PORTD0 bit can still be used to control the pull-up resistor on the pin.

When the CHR9 bit in the UCR register is set, transmitted and received characters are
9 bits long, plus start and stop bits. The ninth data bit to be transmitted is the TXB8 bit in
UCR register. This bit must be set to the wanted value before a transmission is initiated
by writing to the UDR register. The ninth data bit received is the RXB8 bit in the UCR
register.
54 AT90S8515
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Table 17.  UBRR Settings at Various Crystal Frequencies

UART BAUD Rate Register – 
UBRR

The UBRR register is an 8-bit read/write register that specifies the UART Baud Rate
according to the equation on the previous page.

Baud Rate 1 MHz %Error 1.8432 MHz %Error 2 MHz %Error 2.4576 MHz %Error
2400 UBRR= 25 0.2 UBRR= 47 0.0 UBRR= 51 0.2 UBRR= 63 0.0
4800 UBRR= 12 0.2 UBRR= 23 0.0 UBRR= 25 0.2 UBRR= 31 0.0
9600 UBRR= 6 7.5 UBRR= 11 0.0 UBRR= 12 0.2 UBRR= 15 0.0

14400 UBRR= 3 7.8 UBRR= 7 0.0 UBRR= 8 3.7 UBRR= 10 3.1
19200 UBRR= 2 7.8 UBRR= 5 0.0 UBRR= 6 7.5 UBRR= 7 0.0
28800 UBRR= 1 7.8 UBRR= 3 0.0 UBRR= 3 7.8 UBRR= 4 6.3
38400 UBRR= 1 22.9 UBRR= 2 0.0 UBRR= 2 7.8 UBRR= 3 0.0
57600 UBRR= 0 7.8 UBRR= 1 0.0 UBRR= 1 7.8 UBRR= 2 12.5
76800 UBRR= 0 22.9 UBRR= 1 33.3 UBRR= 1 22.9 UBRR= 1 0.0

115200 UBRR= 0 84.3 UBRR= 0 0.0 UBRR= 0 7.8 UBRR= 0 25.0

Baud Rate 3.2768 MHz %Error 3.6864 MHz %Error 4 MHz %Error 4.608 MHz %Error
2400 UBRR= 84 0.4 UBRR= 95 0.0 UBRR= 103 0.2 UBRR= 119 0.0
4800 UBRR= 42 0.8 UBRR= 47 0.0 UBRR= 51 0.2 UBRR= 59 0.0
9600 UBRR= 20 1.6 UBRR= 23 0.0 UBRR= 25 0.2 UBRR= 29 0.0

14400 UBRR= 13 1.6 UBRR= 15 0.0 UBRR= 16 2.1 UBRR= 19 0.0
19200 UBRR= 10 3.1 UBRR= 11 0.0 UBRR= 12 0.2 UBRR= 14 0.0
28800 UBRR= 6 1.6 UBRR= 7 0.0 UBRR= 8 3.7 UBRR= 9 0.0
38400 UBRR= 4 6.3 UBRR= 5 0.0 UBRR= 6 7.5 UBRR= 7 6.7
57600 UBRR= 3 12.5 UBRR= 3 0.0 UBRR= 3 7.8 UBRR= 4 0.0
76800 UBRR= 2 12.5 UBRR= 2 0.0 UBRR= 2 7.8 UBRR= 3 6.7

115200 UBRR= 1 12.5 UBRR= 1 0.0 UBRR= 1 7.8 UBRR= 2 20.0

Baud Rate 7.3728 MHz %Error 8 MHz %Error 9.216 MHz %Error 11.059 MHz %Error
2400 UBRR= 191 0.0 UBRR= 207 0.2 UBRR= 239 0.0 UBRR= 287 -
4800 UBRR= 95 0.0 UBRR= 103 0.2 UBRR= 119 0.0 UBRR= 143 0.0
9600 UBRR= 47 0.0 UBRR= 51 0.2 UBRR= 59 0.0 UBRR= 71 0.0

14400 UBRR= 31 0.0 UBRR= 34 0.8 UBRR= 39 0.0 UBRR= 47 0.0
19200 UBRR= 23 0.0 UBRR= 25 0.2 UBRR= 29 0.0 UBRR= 35 0.0
28800 UBRR= 15 0.0 UBRR= 16 2.1 UBRR= 19 0.0 UBRR= 23 0.0
38400 UBRR= 11 0.0 UBRR= 12 0.2 UBRR= 14 0.0 UBRR= 17 0.0
57600 UBRR= 7 0.0 UBRR= 8 3.7 UBRR= 9 0.0 UBRR= 11 0.0
76800 UBRR= 5 0.0 UBRR= 6 7.5 UBRR= 7 6.7 UBRR= 8 0.0

115200 UBRR= 3 0.0 UBRR= 3 7.8 UBRR= 4 0.0 UBRR= 5 0.0

Bit 7 6 5 4 3 2 1 0

$09 ($29) MSB LSB UBRR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
58 AT90S8515
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AT90S8515
Analog Comparator The Analog Comparator compares the input values on the positive input PB2 (AIN0) and
negative input PB3 (AIN1). When the voltage on the positive input PB2 (AIN0) is higher
than the voltage on the negative input PB3 (AIN1), the Analog Comparator Output
(ACO) is set (one). The comparator’s output can be set to trigger the Timer/Counter1
Input Capture function. In addition, the comparator can trigger a separate interrupt,
exclusive to the Analog Comparator. The user can select interrupt triggering on compar-
ator output rise, fall or toggle. A block diagram of the comparator and its surrounding
logic is shown in Figure 41.

Figure 41.  Analog Comparator Block Diagram

Analog Comparator Control 
and Status Register – ACSR

• Bit 7 – ACD: Analog Comparator Disable

When this bit is set (one), the power to the Analog Comparator is switched off. This bit
can be set at any time to turn off the Analog Comparator. This will reduce power con-
sumption in active and idle mode. When changing the ACD bit, the Analog Comparator
interrupt must be disabled by clearing the ACIE bit in ACSR. Otherwise an interrupt can
occur when the bit is changed.

• Bit 6 – Res: Reserved Bit

This bit is a reserved bit in the AT90S8515 and will always read as zero.

• Bit 5 – ACO: Analog Comparator Output

ACO is directly connected to the comparator output.

• Bit 4 – ACI: Analog Comparator Interrupt Flag

This bit is set (one) when a comparator output event triggers the interrupt mode defined
by ACI1 and ACI0. The Analog Comparator Interrupt routine is executed if the ACIE bit
is set (one) and the I-bit in SREG is set (one). ACI is cleared by hardware when execut-
ing the corresponding interrupt handling vector. Alternatively, ACI is cleared by writing a
logical “1” to the flag. Observe however, that if another bit in this register is modified

Bit 7 6 5 4 3 2 1 0

$08 ($28) ACD – ACO ACI ACIE ACIC ACIS1 ACIS0 ACSR
Read/Write R/W R R R/W R/W R/W R/W R/W

Initial Value 0 0 N/A 0 0 0 0 0
59
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Figure 47.  Port B Schematic Diagram (Pins PB2 and PB3)

Figure 48.  Port B Schematic Diagram (Pin PB4)
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Figure 51.  Port B Schematic Diagram (Pin PB7)

Port C Port C is an 8-bit bi-directional I/O port. Three I/O memory address locations are allo-
cated for the Port C, one each for the Data Register – PORTC, $15($35), Data Direction
Register – DDRC, $14($34) and the Port C Input Pins – PINC, $13($33). The Port C
Input Pins address is read-only, while the Data Register and the Data Direction Register
are read/write.

All port pins have individually selectable pull-up resistors. The Port C output buffers can
sink 20 mA and thus drive LED displays directly. When pins PC0 to PC7 are used as
inputs and are externally pulled low, they will source current if the internal pull-up resis-
tors are activated.

The Port C pins have alternate functions related to the optional external data SRAM.
Port C can be configured to be the high-order address byte during accesses to external
data memory. When Port C is set to the alternate function by the SRE (external SRAM
enable) bit in the MCUCR (MCU Control Register), the alternate settings override the
Data Direction Register.

Port C Data Register – PORTC

D
A

TA
 B

U
S

D

D

Q

Q

RESET

RESET

C

C

WD

WP

RD

MOS
PULL-
UP

PB7

R

R

WP:
WD:
RL:
RP:
RD:
SPE:
MSTR

WRITE PORTB
WRITE DDRB
READ PORTB LATCH
READ PORTB PIN
READ DDRB
SPI ENABLE
MASTER SELECT

DDB7

PORTB7

SPE
MSTR

SPI CLOCK
OUT

SPI CLOCK
IN

RL

RP

Bit 7 6 5 4 3 2 1 0

$15 ($35) PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 PORTC

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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Port C Schematics Note that all port pins are synchronized. The synchronization latch is, however, not
shown in the figure.

Figure 52.  Port C Schematic Diagram (Pins PC0 - PC7)

Port D Port D is an 8-bit bi-directional I/O port with internal pull-up resistors.

Three I/O memory address locations are allocated for the Port D, one each for the Data
Register – PORTD, $12($32), Data Direction Register – DDRD, $11($31) and the Port D
Input Pins – PIND, $10($30). The Port D Input Pins address is read-only, while the Data
Register and the Data Direction Register are read/write.

The Port D output buffers can sink 20 mA. As inputs, Port D pins that are externally
pulled low will source current if the pull-up resistors are activated.

Some Port D pins have alternate functions as shown in Table 23.

When the pins are used for the alternate function, the DDRD and PORTD registers have
to be set according to the alternate function description.

Table 23.  Port D Pin Alternate Functions

Port Pin Alternate Function

PD0 RXD (UART Input Line)

PD1 TXD (UART Output Line)

PD2 INT0 (External interrupt 0 Input)

PD3 INT1 (External interrupt 1 Input)

PD5 OC1A (Timer/Counter1 Output CompareA Match Output)

PD6 WR (Write Strobe to External Memory)

PD7 RD (Read Strobe to External Memory)
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AT90S8515
the self-timed write operation in the serial programming mode. During programming, the
supply voltage must be in accordance with Table 26.

Parallel Programming This section describes how to parallel program and verify Flash program memory,
EEPROM data memory, Lock bits and Fuse bits in the AT90S8515.

Signal Names In this section, some pins of the AT908515 are referenced by signal names describing
their function during parallel programming. See Figure 60 and Table 27. Pins not
described in Table 27 are referenced by pin names.

The XA1/XA0 pins determine the action executed when the XTAL1 pin is given a posi-
tive pulse. The bit coding are shown in Table 28.

When pulsing WR or OE, the command loaded determines the action executed. The
command is a byte where the different bits are assigned functions as shown in Table 29.

Figure 60.  Parallel Programming

Table 26.  Supply Voltage during Programming

Part Serial Programming Parallel Programming

AT90S8515 2.7 - 6.0V 4.5 - 5.5V

AT90S8515

VCC

+5V

RESETGND

XTAL1

PD1

PD2

PD3

PD4

PD5

PD6

+12 V

RDY/BSY

OE

BS

XA0

XA1

WR

PB7 - PB0 DATA
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Bit 5 = SPIEN Fuse bit

Bit 0 = FSTRT Fuse bit

Bit 7 - 6, 4 - 1 = “1”. These bits are reserved and should be left unprogrammed (“1”).

3. Give WR a tWLWH_PFB-wide negative pulse to execute the programming, 
tWLWH_PFB is found in Table 30. Programming the Fuse bits does not generate 
any activity on the RDY/BSY pin.

Programming the Lock Bits The algorithm for programming the Lock bits is as follows (refer to “Programming the
Flash” on page 81 for details on command and data loading):

1. A: Load Command “0010 0000”.

2. D: Load Data Low Byte. Bit n = “0” programs the Lock bit.

Bit 2 = Lock Bit2

Bit 1 = Lock Bit1

Bit 7 - 3, 0 = “1”. These bits are reserved and should be left unprogrammed (“1”).

3. E: Write Data Low Byte.

The Lock bits can only be cleared by executing Chip Erase.

Reading the Fuse and Lock 
Bits

The algorithm for reading the Fuse and Lock bits is as follows (refer to “Programming
the Flash” on page 81 for details on Command loading):

1. A: Load Command “0000 0100”.

2. Set OE to “0”, and BS to “1”. The status of the Fuse and Lock bits can now be 
read at DATA (“0” means programmed).

Bit 7 = Lock Bit1

Bit 6 = Lock Bit2

Bit 5 = SPIEN Fuse bit

Bit 0 = FSTRT Fuse bit

3. Set OE to “1”.

Observe that BS needs to be set to “1”.

Reading the Signature Bytes The algorithm for reading the signature bytes is as follows (refer to “Programming the
Flash” on page 81 for details on command and address loading):

1. A: Load Command “0000 1000”.

2. C: Load Address Low Byte ($00 - $02).

Set OE to “0”, and BS to “0”. The selected signature byte can now be read at DATA.

3. Set OE to “1”.
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AT90S8515
Serial Programming 
Characteristics

Figure 66.  Serial Programming Timing

Table 33.  Serial Programming Characteristics, TA = -40°C to 85°C, VCC = 2.7V - 6.0V
(unless otherwise noted)

Symbol Parameter Min Typ Max Units

1/tCLCL Oscillator Frequency (VCC = 2.7 - 4.0V) 0 4.0 MHz

tCLCL Oscillator Period (VCC = 2.7 - 4.0V) 250.0 ns

1/tCLCL Oscillator Frequency (VCC = 4.0 - 6.0V) 0 8.0 MHz

tCLCL Oscillator Period (VCC = 4.0 - 6.0V) 125.0 ns

tSHSL SCK Pulse Width High 2.0 tCLCL ns

tSLSH SCK Pulse Width Low 2.0 tCLCL ns

tOVSH MOSI Setup to SCK High tCLCL ns

tSHOX MOSI Hold after SCK High 2.0 tCLCL ns

tSLIV SCK Low to MISO Valid 10.0 16.0 32.0 ns

Table 34.  Minimum Wait Delay after the Chip Erase Instruction

Symbol 3.2V 3.6V 4.0V 5.0V

tWD_ERASE 18 ms 14 ms 12 ms 8 ms

Table 35.  Minimum Wait Delay after Writing a Flash or EEPROM Location

Symbol 3.2V 3.6V 4.0V 5.0V

tWD_PROG 9 ms 7 ms 6 ms 4 ms

MOSI

MISO

SCK

tOVSH

tSHSL

tSLSHtSHOX

tSLIV
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Figure 82.  I/O Pin Sink Current vs. Output Voltage

Figure 83.  I/O Pin Source Current vs. Output Voltage
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AT90S8515
Packaging Information

44A

1.20(0.047) MAX

10.10(0.394)
  9.90(0.386)

SQ

12.25(0.482)
11.75(0.462)

SQ

0.75(0.030)
0.45(0.018)

0.15(0.006)
0.05(0.002)

0.20(0.008)
0.09(0.004)

0˚~7˚ 

0.80(0.0315) BSC

PIN 1 ID

0.45(0.018)
0.30(0.012)

    PIN 1

*Controlling dimension: millimetter

44-lead, Thin (1.0mm) Plastic Quad Flat Package 
(TQFP), 10x10mm body, 2.0mm footprint, 0.8mm pitch.
Dimension in Millimeters and  (Inches)*
JEDEC STANDARD MS-026 ACB

REV. A     04/11/2001
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