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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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Figure 20.  The Parallel Instruction Fetches and Instruction Executions

Figure 21 shows the internal timing concept for the register file. In a single clock cycle
an ALU operation using two register operands is executed and the result is stored back
to the destination register.

Figure 21.  Single Cycle ALU Operation

The internal data SRAM access is performed in two System Clock cycles as described
in Figure 22.

Figure 22.  On-chip Data SRAM Access Cycles

See “Interface to External SRAM” on page 60 for a description of the access to the
external SRAM.
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AT90S8515
into T by the BST instruction and a bit in T can be copied into a bit in a register in the
register file by the BLD instruction.

• Bit 5 – H: Half-carry Flag

The half-carry flag H indicates a half-carry in some arithmetic operations. See the
Instruction Set description for detailed information.

• Bit 4 – S: Sign Bit, S = N⊄⊕ V

The S-bit is always an exclusive or between the negative flag N and the two’s comple-
ment overflow flag V. See the Instruction Set description for detailed information.

• Bit 3 – V: Two’s Complement Overflow Flag

The two’s complement overflow flag V supports two’s complement arithmetics. See the
Instruction Set description for detailed information.

• Bit 2 – N: Negative Flag

The negative flag N indicates a negative result after the different arithmetic and logic
operations. See the Instruction Set description for detailed information.

• Bit 1 – Z: Zero Flag

The zero flag Z indicates a zero result after the different arithmetic and logic operations.
See the Instruction Set description for detailed information.

• Bit 0 – C: Carry Flag

The carry flag C indicates a carry in an arithmetic or logic operation. See the Instruction
Set description for detailed information.

Note that the Status Register is not automatically stored when entering an interrupt rou-
tine and restored when returning from an interrupt routine. This must be handled by
software.

Stack Pointer – SP The general AVR 16-bit Stack Pointer is effectively built up of two 8-bit registers in the
I/O space locations $3E ($5E) and $3D ($5D). As the AT90S8515 supports up to 64 Kb
external SRAM, all 16 bits are used.

The Stack Pointer points to the data SRAM stack area where the Subroutine and Inter-
rupt stacks are located. This stack space in the data SRAM must be defined by the
program before any subroutine calls are executed or interrupts are enabled. The Stack
Pointer must be set to point above $60. The Stack Pointer is decremented by 1 when
data is pushed onto the stack with the PUSH instruction and it is decremented by 2
when an address is pushed onto the stack with subroutine calls and interrupts. The
Stack Pointer is incremented by 1 when data is popped from the stack with the POP
instruction and it is incremented by 2 when an address is popped from the stack with
return from subroutine RET or return from interrupt RETI.

Bit 15 14 13 12 11 10 9 8

$3E ($5E) SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH
$3D ($5D) SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL

7 6 5 4 3 2 1 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
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Reset and Interrupt 
Handling

The AT90S8515 provides 12 different interrupt sources. These interrupts and the sepa-
rate reset vector each have a separate program vector in the program memory space.
All interrupts are assigned individual enable bits that must be set (one) together with the
I-bit in the Status Register in order to enable the interrupt.

The lowest addresses in the program memory space are automatically defined as the
Reset and Interrupt vectors. The complete list of vectors is shown in Table 2. The list
also determines the priority levels of the different interrupts. The lower the address, the
higher the priority level. RESET has the highest priority, and next is INT0 (the External
Interrupt Request 0), etc.

The most typical and general program setup for the Reset and Interrupt vector
addresses are:

Address Labels Code Comments

$000 rjmp RESET ; Reset Handler

$001 rjmp EXT_INT0 ; IRQ0 Handler

$002 rjmp EXT_INT1 ; IRQ1 Handler

$003 rjmp TIM1_CAPT ; Timer1 Capture Handler

$004 rjmp TIM1_COMPA ; Timer1 CompareA Handler

$005 rjmp TIM1_COMPB ; Timer1 CompareB Handler

$006 rjmp TIM1_OVF ; Timer1 Overflow Handler

$007 rjmp TIM0_OVF ; Timer0 Overflow Handler

$008 rjmp SPI_STC ; SPI Transfer Complete Handler

$009 rjmp UART_RXC ; UART RX Complete Handler

$00a rjmp UART_DRE ; UDR Empty Handler

$00b rjmp UART_TXC ; UART TX Complete Handler

$00c rjmp ANA_COMP ; Analog Comparator Handler

;

$00d MAIN: ldi r16,high(RAMEND); Main program start

$00e out SPH,r16

Table 2.  Reset and Interrupt Vectors

Vector No.
Program 
Address Source Interrupt Definition

1 $000 RESET
External Reset, Power-on Reset and 
Watchdog Reset

2 $001 INT0 External Interrupt Request 0

3 $002 INT1 External Interrupt Request 1

4 $003 TIMER1 CAPT Timer/Counter1 Capture Event

5 $004 TIMER1 COMPA Timer/Counter1 Compare Match A

6 $005 TIMER1 COMPB Timer/Counter1 Compare Match B

7 $006 TIMER1 OVF Timer/Counter1 Overflow

8 $007 TIMER0, OVF Timer/Counter0 Overflow

9 $008 SPI, STC Serial Transfer Complete

10 $009 UART, RX UART, Rx Complete

11 $00A UART, UDRE UART Data Register Empty

12 $00B UART, TX UART, Tx Complete

13 $00C ANA_COMP Analog Comparator
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interrupt. Some of the interrupt flags can also be cleared by writing a logical “1” to the
flag bit position(s) to be cleared.

If an interrupt condition occurs when the corresponding interrupt enable bit is cleared
(zero), the interrupt flag will be set and remembered until the interrupt is enabled or the
flag is cleared by software.

If one or more interrupt conditions occur when the global interrupt enable bit is cleared
(zero), the corresponding interrupt flag(s) will be set and remembered until the global
interrupt enable bit is set (one) and will be executed by order of priority.

Note that external level interrupt does not have a flag and will only be remembered for
as long as the interrupt condition is active.

General Interrupt Mask 
Register – GIMSK

• Bit 7 – INT1: External Interrupt Request 1 Enable

When the INT1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one),
the external pin interrupt is enabled. The Interrupt Sense Control1 bits 1/0 (ISC11 and
ISC10) in the MCU general Control Register (MCUCR) define whether the external
interrupt is activated on rising or falling edge of the INT1 pin or is level-sensed. Activity
on the pin will cause an interrupt request even if INT1 is configured as an output. The
corresponding interrupt of External Interrupt Request 1 is executed from program mem-
ory address $002. See also “External Interrupts”.

• Bit 6 – INT0: External Interrupt Request 0 Enable

When the INT0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one),
the external pin interrupt is enabled. The Interrupt Sense Control0 bits 1/0 (ISC01 and
ISC00) in the MCU general Control Register (MCUCR) define whether the external
interrupt is activated on rising or falling edge of the INT0 pin or is level-sensed. Activity
on the pin will cause an interrupt request even if INT0 is configured as an output. The
corresponding interrupt of External Interrupt Request 0 is executed from program mem-
ory address $001. See also “External Interrupts”.

• Bits 5..0 – Res: Reserved Bits

These bits are reserved bits in the AT90S8515 and always read as zero.

General Interrupt Flag 
Register – GIFR

• Bit 7 – INTF1: External Interrupt Flag1

When an edge on the INT1 pin triggers an interrupt request, the corresponding interrupt
flag, INTF1 becomes set (one). If the I-bit in SREG and the corresponding interrupt
enable bit, INT1 in GIMSK is set (one), the MCU will jump to the interrupt vector. The
flag is cleared when the interrupt routine is executed. Alternatively, the flag can be
cleared by writing a logical “1” to it. This flag is always cleared when INT1 is configured
as level interrupt.

Bit 7 6 5 4 3 2 1 0

$3B ($5B) INT1 INT0 – – – – – – GIMSK
Read/Write R/W R/W R R R R R R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

$3A ($5A) INTF1 INTF0 – – – – – – GIFR
Read/Write R/W R/W R R R R R R

Initial Value 0 0 0 0 0 0 0 0
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AT90S8515
Timer/Counter1 Output 
Compare Register – OCR1BH 
AND OCR1BL

The output compare registers are 16-bit read/write registers.

The Timer/Counter1 Output Compare registers contain the data to be continuously com-
pared with Timer/Counter1. Actions on compare matches are specified in the
Timer/Counter1 Control and Status registers. A compare match only occurs if
Timer/Counter1 counts to the OCR value. A software write that sets TCNT1 and OCR1A
or OCR1B to the same value does not generate a compare match.

A compare match will set the compare interrupt flag in the CPU clock cycle following the
compare event.

Since the Output Compare Registers (OCR1A and OCR1B) are 16-bit registers, a tem-
porary register (TEMP) is used when OCR1A/B are written to ensure that both bytes are
updated simultaneously. When the CPU writes the high byte, OCR1AH or OCR1BH, the
data is temporarily stored in the TEMP register. When the CPU writes the low byte,
OCR1AL or OCR1BL, the TEMP register is simultaneously written to OCR1AH or
OCR1BH. Consequently, the high byte OCR1AH or OCR1BH must be written first for a
full 16-bit register write operation.

The TEMP register is also used when accessing TCNT1 and ICR1. If the main program
and interrupt routines perform access to registers using TEMP, interrupts must be dis-
abled during access from the main program (and from interrupt routines if interrupts are
allowed from within interrupt routines).

Timer/Counter1 Input Capture 
Register – ICR1H AND ICR1L

The input capture register is a 16-bit read-only register.

When the rising or falling edge (according to the input capture edge setting [ICES1]) of
the signal at the input capture pin (ICP) is detected, the current value of the
Timer/Counter1 is transferred to the Input Capture Register (ICR1). At the same time,
the input capture flag (ICF1) is set (one).

Since the Input Capture Register (ICR1) is a 16-bit register, a temporary register
(TEMP) is used when ICR1 is read to ensure that both bytes are read simultaneously.
When the CPU reads the low byte ICR1L, the data is sent to the CPU and the data of
the high byte ICR1H is placed in the TEMP register. When the CPU reads the data in
the high byte ICR1H, the CPU receives the data in the TEMP register. Consequently,
the low byte ICR1L must be accessed first for a full 16-bit register read operation.

Bit 15 14 13 12 11 10 9 8

$29 ($49) MSB OCR1BH
$28 ($48) LSB OCR1BL

7 6 5 4 3 2 1 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8

$25 ($45) MSB ICR1H
$24 ($44) LSB ICR1L

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
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AT90S8515
If the 10(11)-bit Transmitter shift register is empty, data is transferred from UDR to the
shift register. At this time the UDRE (UART Data Register Empty) bit in the UART Status
Register, USR, is set. When this bit is set (one), the UART is ready to receive the next
character. At the same time as the data is transferred from UDR to the 10(11)-bit shift
register, bit 0 of the shift register is cleared (start bit) and bit 9 or 10 is set (stop bit). If
9-bit data word is selected (the CHR9 bit in the UART Control Register, UCR is set), the
TXB8 bit in UCR is transferred to bit 9 in the Transmit shift register. 

On the baud rate clock following the transfer operation to the shift register, the start bit is
shifted out on the TXD pin. Then follows the data, LSB first. When the stop bit has been
shifted out, the shift register is loaded if any new data has been written to the UDR dur-
ing the transmission. During loading, UDRE is set. If there is no new data in the UDR
register to send when the stop bit is shifted out, the UDRE flag will remain set until UDR
is written again. When no new data has been written and the stop bit has been present
on TXD for one bit length, the TX Complete flag (TXC) in USR is set.

The TXEN bit in UCR enables the UART Transmitter when set (one). When this bit is
cleared (zero), the PD1 pin can be used for general I/O. When TXEN is set, the UART
Transmitter will be connected to PD1, which is forced to be an output pin regardless of
the setting of the DDD1 bit in DDRD.

Data Reception Figure 39 shows a block diagram of the UART Receiver.

Figure 39.  UART Receiver
53
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Figure 44.  External Data SRAM Memory Cycles with Wait State
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Figure 47.  Port B Schematic Diagram (Pins PB2 and PB3)

Figure 48.  Port B Schematic Diagram (Pin PB4)
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AT90S8515
Figure 49.  Port B Schematic Diagram (Pin PB5)

Figure 50.  Port B Schematic Diagram (Pin PB6)
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Figure 51.  Port B Schematic Diagram (Pin PB7)

Port C Port C is an 8-bit bi-directional I/O port. Three I/O memory address locations are allo-
cated for the Port C, one each for the Data Register – PORTC, $15($35), Data Direction
Register – DDRC, $14($34) and the Port C Input Pins – PINC, $13($33). The Port C
Input Pins address is read-only, while the Data Register and the Data Direction Register
are read/write.

All port pins have individually selectable pull-up resistors. The Port C output buffers can
sink 20 mA and thus drive LED displays directly. When pins PC0 to PC7 are used as
inputs and are externally pulled low, they will source current if the internal pull-up resis-
tors are activated.

The Port C pins have alternate functions related to the optional external data SRAM.
Port C can be configured to be the high-order address byte during accesses to external
data memory. When Port C is set to the alternate function by the SRE (external SRAM
enable) bit in the MCUCR (MCU Control Register), the alternate settings override the
Data Direction Register.

Port C Data Register – PORTC
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Bit 7 6 5 4 3 2 1 0

$15 ($35) PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 PORTC

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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Port C Schematics Note that all port pins are synchronized. The synchronization latch is, however, not
shown in the figure.

Figure 52.  Port C Schematic Diagram (Pins PC0 - PC7)

Port D Port D is an 8-bit bi-directional I/O port with internal pull-up resistors.

Three I/O memory address locations are allocated for the Port D, one each for the Data
Register – PORTD, $12($32), Data Direction Register – DDRD, $11($31) and the Port D
Input Pins – PIND, $10($30). The Port D Input Pins address is read-only, while the Data
Register and the Data Direction Register are read/write.

The Port D output buffers can sink 20 mA. As inputs, Port D pins that are externally
pulled low will source current if the pull-up resistors are activated.

Some Port D pins have alternate functions as shown in Table 23.

When the pins are used for the alternate function, the DDRD and PORTD registers have
to be set according to the alternate function description.

Table 23.  Port D Pin Alternate Functions

Port Pin Alternate Function

PD0 RXD (UART Input Line)

PD1 TXD (UART Output Line)

PD2 INT0 (External interrupt 0 Input)

PD3 INT1 (External interrupt 1 Input)

PD5 OC1A (Timer/Counter1 Output CompareA Match Output)

PD6 WR (Write Strobe to External Memory)

PD7 RD (Read Strobe to External Memory)
72 AT90S8515
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Figure 56.  Port D Schematic Diagram (Pin PD4)

Figure 57.  Port D Schematic Diagram (Pin PD5)
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Figure 58.  Port D Schematic Diagram (Pin PD6)

Figure 59.  Port D Schematic Diagram (Pin PD7)
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Enter Programming Mode The following algorithm puts the device in Parallel Programming Mode:

1. Apply supply voltage according to Table 26, between VCC and GND.

2. Set the RESET and BS pin to “0” and wait at least 100 ns.

3. Apply 11.5 - 12.5V to RESET. Any activity on BS within 100 ns after +12V has 
been applied to RESET will cause the device to fail entering programming mode.

Table 27.  Pin Name Mapping

Signal Name in 
Programming Mode Pin Name I/O Function

RDY/BSY PD1 O
0: Device is busy programming, 1: Device is ready 
for new command

OE PD2 I Output Enable (Active low)

WR PD3 I Write Pulse (Active low)

BS PD4 I
Byte Select (“0” selects low byte, “1” selects high 
byte)

XA0 PD5 I XTAL Action Bit 0

XA1 PD6 I XTAL Action Bit 1

DATA PB7-0 I/O Bi-directional Data Bus (Output when OE is low)

Table 28.  XA1 and XA0 Coding

XA1 XA0 Action when XTAL1 is Pulsed

0 0 Load Flash or EEPROM Address (High or low address byte determined by BS)

0 1 Load Data (High or low data byte for Flash determined by BS)

1 0 Load Command

1 1 No Action, Idle

Table 29.  Command Byte Bit Coding

Command Byte Command Executed

1000 0000 Chip Erase

0100 0000 Write Fuse Bits

0010 0000 Write Lock Bits

0001 0000 Write Flash

0001 0001 Write EEPROM

0000 1000 Read Signature Bytes

0000 0100 Read Lock and Fuse Bits

0000 0010 Read Flash

0000 0011 Read EEPROM
80 AT90S8515
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1. Set BS to “1”. This selects high data.

2. Give WR a negative pulse. This starts programming of the data byte. RDY/BSY 
goes low.

3. Wait until RDY/BSY goes high to program the next byte.

(See Figure 62 for signal waveforms.)

The loaded command and address are retained in the device during programming. For
efficient programming, the following should be considered:

• The command needs only be loaded once when writing or reading multiple memory 
locations.

• Address high byte needs only be loaded before programming a new 256-word page 
in the Flash.

• Skip writing the data value $FF, that is, the contents of the entire Flash and 
EEPROM after a Chip Erase.

These considerations also apply to EEPROM programming and Flash, EEPROM and
signature byte reading.

Figure 61.  Programming the Flash Waveforms
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AT90S8515
Notes: 1. “Max” means the highest value where the pin is guaranteed to be read as low.
2. “Min” means the lowest value where the pin is guaranteed to be read as high.
3. Although each I/O port can sink more than the test conditions (20 mA at VCC = 5V, 10 mA at VCC = 3V) under steady state

conditions (non-transient), the following must be observed:
1] The sum of all IOL, for all ports, should not exceed 200 mA.
2] The sum of all IOL, for ports B0 - B7, D0 - D7 and XTAL2, should not exceed 100 mA.
3] The sum of all IOL, for ports A0 - A7, ALE, OC1B and C0 - C7 should not exceed 100 mA.
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater
than the listed test condition.

4. Although each I/O port can source more than the test conditions (3 mA at VCC = 5V, 1.5 mA at VCC = 3V) under steady state
conditions (non-transient), the following must be observed:
1] The sum of all IOH, for all ports, should not exceed 200 mA.
2] The sum of all IOH, for ports B0 - B7, D0 - D7 and XTAL2, should not exceed 100 mA.
3] The sum of all IOH, for ports A0 - A7, ALE, OC1B and C0 - C7 should not exceed 100 mA.
If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current
greater than the listed test condition.

5. Minimum VCC for power-down is 2V.
91
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AT90S8515
External Data Memory Timing

Notes: 1. This assumes 50% clock duty cycle. The half-period is actually the high time of the external clock, XTAL1.
2. This assumes 50% clock duty cycle. The half-period is actually the low time of the external clock, XTAL1.

Table 37.  External Data Memory Characteristics, 4.0V - 6.0V, No Wait State

Symbol Parameter

8 MHz Oscillator Variable Oscillator

UnitMin Max Min Max

0 1/tCLCL Oscillator Frequency 0.0 8.0 MHz

1 tLHLL ALE Pulse Width 32.5 0.5 tCLCL - 30.0(1) ns

2 tAVLL Address Valid A to ALE Low 22.5 0.5 tCLCL - 40.0(1) ns

3a tLLAX_ST
Address Hold after ALE Low, 
ST/STD/STS Instructions

67.5 0.5 tCLCL + 5.0(2) ns

3b tLLAX_LD
Address Hold after ALE Low, 
LD/LDD/LDS Instructions

15.0 15.0 ns

4 tAVLLC Address Valid C to ALE Low 22.5 0.5 tCLCL - 40.0(1) ns

5 tAVRL Address Valid to RD Low 95.0 1.0 tCLCL - 30.0 ns

6 tAVWL Address Valid to WR Low 157.5 1.5 tCLCL - 30.0(1) ns

7 tLLWL ALE Low to WR Low 105.0 145.0 1.0 tCLCL - 20.0 1.0 tCLCL + 20.0 ns

8 tLLRL ALE Low to RD Low 42.5 82.5 0.5 tCLCL - 20.0(2) 0.5 tCLCL + 20.0(2) ns

9 tDVRH Data Setup to RD High 60.0 60.0 ns

10 tRLDV Read Low to Data Valid 70.0 1.0 tCLCL - 55.0 ns

11 tRHDX Data Hold after RD High 0.0 0.0 ns

12 tRLRH RD Pulse Width 105.0 1.0 tCLCL - 20.0 ns

13 tDVWL Data Setup to WR Low 27.5 0.5 tCLCL - 35.0(2) ns

14 tWHDX Data Hold after WR High 0.0 0.0 ns

15 tDVWH Data Valid to WR High 95.0 1.0 tCLCL - 30.0 ns

16 tWLWH WR Pulse Width 42.5 0.5 tCLCL - 20.0(1) ns

Table 38.  External Data Memory Characteristics, 4.0V - 6.0V, One Cycle Wait State

Symbol Parameter

8 MHz Oscillator Variable Oscillator

UnitMin Max Min Max

0 1/tCLCL Oscillator Frequency 0.0 8.0 MHz

10 tRLDV Read Low to Data Valid 195.0 2.0 tCLCL - 55.0 ns

12 tRLRH RD Pulse Width 230.0 2.0 tCLCL - 20.0 ns

15 tDVWH Data Valid to WR High 220.0 2.0 tCLCL - 30.0 ns

16 tWLWH WR Pulse Width 167.5 1.5 tCLCL - 20.0(2) ns
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Figure 84.  I/O Pin Source Current vs. Output Voltage

Figure 85.  I/O Pin Input Threshold Voltage vs. VCC
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DATA TRANSFER INSTRUCTIONS
MOV Rd, Rr Move between Registers Rd ← Rr None 1
LDI Rd, K Load Immediate Rd ← K None 1
LD Rd, X Load Indirect Rd ← (X) None 2
LD Rd, X+ Load Indirect and Post-inc. Rd ← (X), X ← X + 1 None 2
LD Rd, -X Load Indirect and Pre-dec. X ← X - 1, Rd ← (X) None 2
LD Rd, Y Load Indirect Rd ← (Y) None 2
LD Rd, Y+ Load Indirect and Post-inc. Rd ← (Y), Y ← Y + 1 None 2
LD Rd, -Y Load Indirect and Pre-dec. Y ← Y - 1, Rd ← (Y) None 2
LDD Rd, Y+q Load Indirect with Displacement Rd ← (Y + q) None 2
LD Rd, Z Load Indirect Rd ← (Z) None 2
LD Rd, Z+ Load Indirect and Post-inc. Rd ← (Z), Z ← Z + 1 None 2
LD Rd, -Z Load Indirect and Pre-dec. Z ← Z - 1, Rd ← (Z) None 2
LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2
LDS Rd, k Load Direct from SRAM Rd ← (k) None 2
ST X, Rr Store Indirect (X)=← Rr None 2
ST X+, Rr Store Indirect and Post-inc. (X)=← Rr, X ← X + 1 None 2
ST -X, Rr Store Indirect and Pre-dec. X ← X - 1, (X) ← Rr None 2
ST Y, Rr Store Indirect (Y) ← Rr None 2
ST Y+, Rr Store Indirect and Post-inc. (Y) ← Rr, Y ← Y + 1 None 2
ST -Y, Rr Store Indirect and Pre-dec. Y ← Y - 1, (Y) ← Rr None 2
STD Y+q, Rr Store Indirect with Displacement (Y + q) ← Rr None 2
ST Z, Rr Store Indirect (Z) ← Rr None 2
ST Z+, Rr Store Indirect and Post-inc. (Z) ← Rr, Z ← Z + 1 None 2
ST -Z, Rr Store Indirect and Pre-dec. Z ← Z - 1, (Z) ← Rr None 2
STD Z+q, Rr Store Indirect with Displacement (Z + q) ← Rr None 2
STS k, Rr Store Direct to SRAM (k) ← Rr None 2
LPM Load Program Memory R0 ← (Z) None 3
IN Rd, P In Port Rd ← P None 1
OUT P, Rr Out Port P ← Rr None 1
PUSH Rr Push Register on Stack STACK ← Rr None 2
POP Rd Pop Register from Stack Rd ← STACK None 2
BIT AND BIT-TEST INSTRUCTIONS
SBI P, b Set Bit in I/O Register I/O(P,b) ← 1 None 2
CBI P, b Clear Bit in I/O Register I/O(P,b) ← 0 None 2
LSL Rd Logical Shift Left Rd(n+1) ← Rd(n), Rd(0) ← 0 Z,C,N,V 1
LSR Rd Logical Shift Right Rd(n) ← Rd(n+1), Rd(7) ← 0 Z,C,N,V 1
ROL Rd Rotate Left through Carry Rd(0) ←=C, Rd(n+1) ← Rd(n), C ←=Rd(7) Z,C,N,V 1
ROR Rd Rotate Right through Carry Rd(7) ←=C, Rd(n) ← Rd(n+1), C ←=Rd(0) Z,C,N,V 1
ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n = 0..6 Z,C,N,V 1
SWAP Rd Swap Nibbles Rd(3..0) ←=Rd(7..4), Rd(7..4) ←=Rd(3..0) None 1
BSET s Flag Set SREG(s) ← 1 SREG(s) 1
BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1
BST Rr, b Bit Store from Register to T T ← Rr(b) T 1
BLD Rd, b Bit Load from T to Register Rd(b) ← T None 1
SEC Set Carry C ← 1 C 1
CLC Clear Carry C ← 0 C 1
SEN Set Negative Flag N ← 1 N 1
CLN Clear Negative Flag N ← 0 N 1
SEZ Set Zero Flag Z ← 1 Z 1
CLZ Clear Zero Flag Z ← 0 Z 1
SEI Global Interrupt Enable I ← 1 I 1
CLI Global Interrupt Disable I=← 0 I 1
SES Set Signed Test Flag S ← 1 S 1
CLS Clear Signed Test Flag S ← 0 S 1
SEV Set Two’s Complement Overflow V ← 1 V 1
CLV Clear Two’s Complement Overflow V ← 0 V 1
SET Set T in SREG T ← 1 T 1
CLT Clear T in SREG T ← 0 T 1
SEH Set Half-carry Flag in SREG H ← 1 H 1
CLH Clear Half-carry Flag in SREG H ← 0 H 1
NOP No Operation None 1
SLEEP Sleep (see specific descr. for Sleep function) None 1
WDR Watchdog Reset (see specific descr. for WDR/timer) None 1

Instruction Set Summary (Continued)
Mnemonic Operands Description Operation Flags # Clocks
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40P6

52.71(2.075)
51.94(2.045) PIN

1

13.97(0.550)
13.46(0.530)

0.38(0.015)MIN

0.56(0.022)
0.38(0.015)

REF

15.88(0.625)
15.24(0.600)

1.65(0.065)
1.27(0.050)

17.78(0.700)MAX

0.38(0.015)
0.20(0.008)

2.54(0.100)BSC

3.56(0.140)
3.05(0.120)

SEATING
PLANE

4.83(0.190)MAX

48.26(1.900) REF

0º ~ 15º  

40-lead, Plastic Dual Inline
Parkage (PDIP), 0.600" wide
Demension in Millimeters and (Inches)*
JEDEC STANDARD MS-011 AC

*Controlling dimension: Inches

REV. A     04/11/2001
111
0841G–09/01


