

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

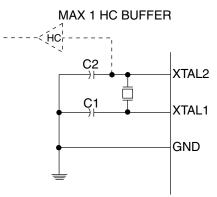
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

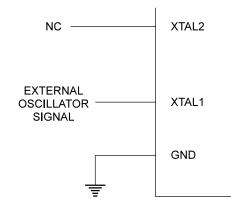
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

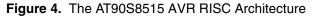
Product Status	Obsolete
Core Processor	AVR
Core Size	8-Bit
Speed	4MHz
Connectivity	SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	32
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at90s8515a-4ai

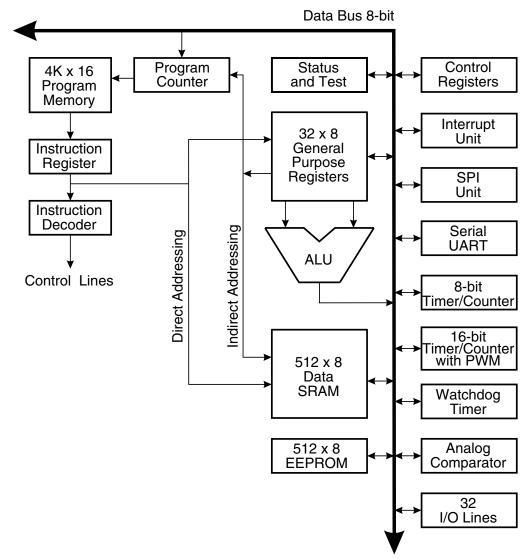
Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


Crystal Oscillator

XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier that can be configured for use as an on-chip oscillator, as shown in Figure 2. Either a quartz crystal or a ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven as shown in Figure 3.


Figure 2. Oscillator Connections



- Note: When using the MCU oscillator as a clock for an external device, an HC buffer should be connected as indicated in the figure.
- Figure 3. External Clock Drive Configuration

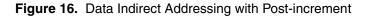
A flexible interrupt module has its control registers in the I/O space with an additional global interrupt enable bit in the status register. All the different interrupts have a separate interrupt vector in the interrupt vector table at the beginning of the program memory. The different interrupts have priority in accordance with their interrupt vector position. The lower the interrupt vector address, the higher the priority.

8

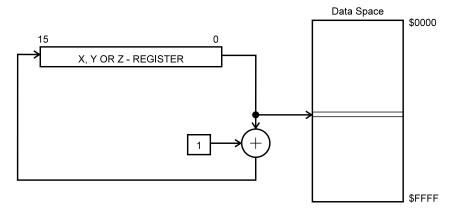
AT90S8515

d

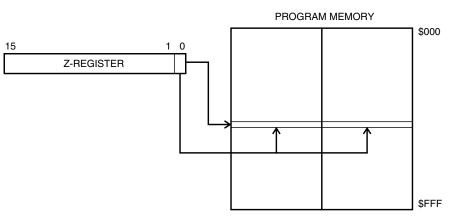
31


	two additional clock cycles is used per byte. This has the following effect: Data transfer instructions take two extra clock cycles, whereas interrupt, subroutine calls and returns will need four clock cycles more than specified in the instruction set manual.
	The five different addressing modes for the data memory cover: Direct, Indirect with Displacement, Indirect, Indirect with Pre-decrement and Indirect with Post-increment. In the register file, registers R26 to R31 feature the indirect addressing pointer registers.
	The direct addressing reaches the entire data space.
	The Indirect with Displacement mode features 63 address locations reached from the base address given by the Y- or Z-register.
	When using register indirect addressing modes with automatic pre-decrement and post- increment, the address registers X, Y and Z are decremented and incremented.
	The 32 general-purpose working registers, 64 I/O registers, the 512 bytes of internal data SRAM, and the 64K bytes of optional external data SRAM in the AT90S8515 are all accessible through all these addressing modes.
	See the next section for a detailed description of the different addressing modes.
Program and Data Addressing Modes	The AT90S8515 AVR RISC microcontroller supports powerful and efficient addressing modes for access to the program memory (Flash) and data memory (SRAM, Register file and I/O memory). This section describes the different addressing modes supported by the AVR architecture. In the figures, OP means the operation code part of the instruction word. To simplify, not all figures show the exact location of the addressing bits.
Register Direct, Single Register RD	Figure 9. Direct Single Register Addressing
	15 4 0 OP d

The operand is contained in register d (Rd).



The X-, Y-, or the Z-register is decremented before the operation. Operand address is the decremented contents of the X-, Y-, or the Z-register.


Data Indirect with Postincrement

The X-, Y-, or the Z-register is incremented after the operation. Operand address is the content of the X-, Y-, or the Z-register prior to incrementing.

Constant Addressing Using F the LPM Instruction

Figure 17. Code Memory Constant Addressing

Constant byte address is specified by the Z-register contents. The 15 MSBs select word address (0 - 4K), the LSB selects low byte if cleared (LSB = 0) or high byte if set (LSB = 1).

• Bit 6 – INTF0: External Interrupt Flag0

When an edge on the INT0 pin triggers an interrupt request, the corresponding interrupt flag, INTF0, becomes set (one). If the I-bit in SREG and the corresponding interrupt enable bit, INT0 in GIMSK are set (one), the MCU will jump to the interrupt vector. The flag is cleared when the interrupt routine is executed. Alternatively, the flag is cleared by writing a logical "1" to it. This flag is always cleared when INT0 is configured as level interrupt.

Bits 5..0 – Res: Reserved Bits

These bits are reserved bits in the AT90S8515 and always read as zero.

Timer/Counter Interrupt Mask Register – TIMSK

Bit	7	6	5	4	3	2	1	0	
\$39 (\$59)	TOIE1	OCIE1A	OCIE1B	-	TICIE1	-	TOIE0	-	TIMSK
Read/Write	R/W	R/W	R/W	R	R/W	R	R/W	R	-
Initial Value	0	0	0	0	0	0	0	0	

Bit 7 – TOIE1: Timer/Counter1 Overflow Interrupt Enable

When the TOIE1 bit is set (one) and the I-bit in the Status Register is set (one), the Timer/Counter1 Overflow interrupt is enabled. The corresponding interrupt (at vector \$006) is executed if an overflow in Timer/Counter1 occurs, i.e., when the TOV1 bit is set in the Timer/Counter Interrupt Flag Register (TIFR).

• Bit 6 – OCE1A: Timer/Counter1 Output CompareA Match Interrupt Enable

When the OCIE1A bit is set (one) and the I-bit in the Status Register is set (one), the Timer/Counter1 CompareA Match interrupt is enabled. The corresponding interrupt (at vector \$004) is executed if a CompareA match in Timer/Counter1 occurs, i.e., when the OCF1A bit is set in the Timer/Counter Interrupt Flag Register (TIFR).

• Bit 5 – OCIE1B: Timer/Counter1 Output CompareB Match Interrupt Enable

When the OCIE1B bit is set (one) and the I-bit in the Status Register is set (one), the Timer/Counter1 CompareB Match interrupt is enabled. The corresponding interrupt (at vector \$005) is executed if a CompareB match in Timer/Counter1 occurs, i.e., when the OCF1B bit is set in the Timer/Counter Interrupt Flag Register (TIFR).

• Bit 4 – Res: Reserved Bit

This bit is a reserved bit in the AT90S8515 and always reads zero.

• Bit 3 – TICIE1: Timer/Counter1 Input Capture Interrupt Enable

When the TICIE1 bit is set (one) and the I-bit in the Status Register is set (one), the Timer/Counter1 Input Capture Event interrupt is enabled. The corresponding interrupt (at vector \$003) is executed if a capture-triggering event occurs on pin 31, ICP, i.e., when the ICF1 bit is set in the Timer/Counter Interrupt Flag Register (TIFR).

• Bit 2 - Res: Reserved Bit

This bit is a reserved bit in the AT90S8515 and always reads zero.

• Bit 1 – TOIE0: Timer/Counter0 Overflow Interrupt Enable

When the TOIE0 bit is set (one) and the I-bit in the Status Register is set (one), the Timer/Counter0 Overflow interrupt is enabled. The corresponding interrupt (at vector \$007) is executed if an overflow in Timer/Counter0 occurs, i.e., when the TOV0 bit is set in the Timer/Counter Interrupt Flag Register (TIFR).

• Bit 0 – Res: Reserved Bit

This bit is a reserved bit in the AT90S8515 and always reads zero.

Timer/Counter Interrupt Flag Register – TIFR

Bit	7	6	5	4	3	2	1	0	_
\$38 (\$58)	TOV1	OCF1A	OCIFB	-	ICF1	-	TOV0	-	TIFR
Read/Write	R/W	R/W	R/W	R	R/W	R	R/W	R	-
Initial Value	0	0	0	0	0	0	0	0	

• Bit 7 – TOV1: Timer/Counter1 Overflow Flag

The TOV1 is set (one) when an overflow occurs in Timer/Counter1. TOV1 is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, TOV1 is cleared by writing a logical "1" to the flag. When the I-bit in SREG, TOIE1 (Timer/Counter1 Overflow Interrupt Enable) and TOV1 are set (one), the Timer/Counter1 Overflow interrupt is executed. In PWM mode, this bit is set when Timer/Counter1 changes counting direction at \$0000.

• Bit 6 – OCF1A: Output Compare Flag 1A

The OCF1A bit is set (one) when compare match occurs between the Timer/Counter1 and the data in OCR1A (Output Compare Register 1A). OCF1A is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, OCF1A is cleared by writing a logical "1" to the flag. When the I-bit in SREG, OCIE1A (Timer/Counter1 Compare Match InterruptA Enable) and the OCF1A are set (one), the Timer/Counter1 CompareA Match interrupt is executed.

• Bit 5 – OCF1B: Output Compare Flag 1B

The OCF1B bit is set (one) when compare match occurs between the Timer/Counter1 and the data in OCR1B (Output Compare Register 1B). OCF1B is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, OCF1B is cleared by writing a logical "1" to the flag. When the I-bit in SREG, OCIE1B (Timer/Counter1 Compare Match InterruptB Enable) and the OCF1B are set (one), the Timer/Counter1 CompareB Match interrupt is executed.

• Bit 4 - Res: Reserved Bit

This bit is a reserved bit in the AT90S8515 and always reads zero.

• Bit 3 – ICF1: Input Capture Flag 1

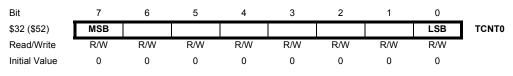
The ICF1 bit is set (one) to flag an input capture event, indicating that the Timer/Counter1 value has been transferred to the input capture register (ICR1). ICF1 is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, ICF1 is cleared by writing a logical "1" to the flag. When the SREG I-bit, TICIE1 (Timer/Counter1 Input Capture Interrupt Enable) and ICF1 are set (one), the Timer/Counter1 Capture interrupt is executed.

• Bit 2 - Res: Reserved Bit

This bit is a reserved bit in the AT90S8515 and always reads zero.

• Bit 1 – TOV: Timer/Counter0 Overflow Flag

The bit TOV0 is set (one) when an overflow occurs in Timer/Counter0. TOV0 is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, TOV0 is cleared by writing a logical "1" to the flag. When the SREG I-bit, TOIE0 (Timer/Counter0 Overflow Interrupt Enable) and TOV0 are set (one), the Timer/Counter0 Overflow interrupt is executed.

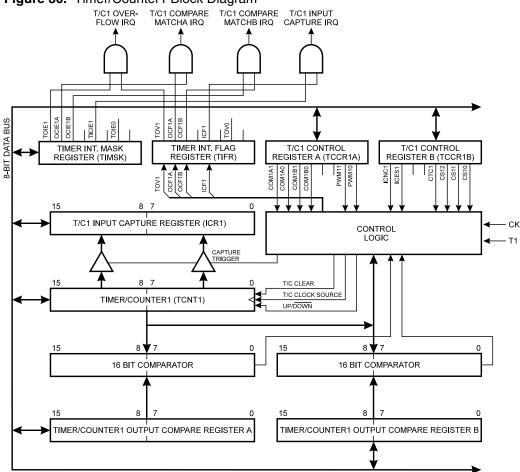

• Bit 0 – Res: Reserved Bit

This bit is a reserved bit in the AT90S8515 and always reads zero.

<u>AÎMEL</u>

The Stop condition provides a Timer Enable/Disable function. The CK down divided modes are scaled directly from the CK oscillator clock. If the external pin modes are used for Timer/Counter0, transitions on PB0/(T0) will clock the counter even if the pin is configured as an output. This feature can give the user software control of the counting.

Timer Counter0 – TCNT0



The Timer/Counter0 is realized as an up-counter with read and write access. If the Timer/Counter0 is written and a clock source is present, the Timer/Counter0 continues counting in the clock cycle following the write operation.

16-bit Timer/Counter1

Figure 30 shows the block diagram for Timer/Counter1.

Figure 30. Timer/Counter1 Block Diagram

The 16-bit Timer/Counter1 can select clock source from CK, prescaled CK or an external pin. In addition, it can be stopped as described in the specification for the Timer/Counter1 Control Registers (TCCR1A and TCCR1B). The different status flags (overflow, compare match and capture event) are found in the Timer/Counter Interrupt Flag Register (TIFR). Control signals are found in the Timer/Counter1 Control Registers

Timer/Counter1 Control Register A – TCCR1A

Bit	7	6	5	4	3	2	1	0	
\$2F (\$4F)	COM1A1	COM1A0	COM1B1	COM1B0	-	-	PWM11	PWM10	TCCR1A
Read/Write	R/W	R/W	R/W	R/W	R	R	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

• Bits 7, 6 - COM1A1, COM1A0: Compare Output Mode1A, Bits 1 and 0

The COM1A1 and COM1A0 control bits determine any output pin action following a compare match in Timer/Counter1. Any output pin actions affect pin OC1A (Output CompareA pin 1). This is an alternative function to an I/O port and the corresponding direction control bit must be set (one) to control the output pin. The control configuration is shown in Table 8.

• Bits 5, 4 – COM1B1, COM1B0: Compare Output Mode1B, Bits 1 and 0

The COM1B1 and COM1B0 control bits determine any output pin action following a compare match in Timer/Counter1. Any output pin actions affect pin OC1B (Output CompareB). The control configuration is given in Table 8.

Table 8.	Compare 1	Mode Select
----------	-----------	-------------

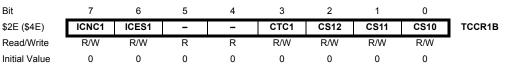
COM1X1	COM1X0	Description
0	0	Timer/Counter1 disconnected from output pin OC1X
0	1	Toggle the OC1X output line.
1	0	Clear the OC1X output line (to zero).
1	1	Set the OC1X output line (to one).

Note: X = A or B

In PWM mode, these bits have a different function. Refer to Table 12 on page 40 for a detailed description.

• Bits 3..2 - Res: Reserved Bits

These bits are reserved bits in the AT90S8515 and always read zero.


• Bits 1..0 – PWM11, PWM10: Pulse Width Modulator Select Bits 1 and 0

These bits select PWM operation of Timer/Counter1 as specified in Table 9. This mode is described on page 40.

 Table 9.
 PWM Mode Select

PWM11	PWM10	Description
0	0	PWM operation of Timer/Counter1 is disabled
0	1	Timer/Counter1 is an 8-bit PWM
1	0	Timer/Counter1 is a 9-bit PWM
1	1	Timer/Counter1 is a 10-bit PWM

Timer/Counter1 Control Register B – TCCR1B

• Bit 7 – ICNC1: Input Capture1 Noise Canceler (4 CKs)

When the ICNC1 bit is cleared (zero), the input capture trigger noise canceler function is disabled. The input capture is triggered at the first rising/falling edge sampled on the ICP (input capture pin) as specified. When the ICNC1 bit is set (one), four successive samples are measured on the ICP, and all samples must be high/low according to the input capture trigger specification in the ICES1 bit. The actual sampling frequency is XTAL clock frequency.

• Bit 6 – ICES1: Input Capture1 Edge Select

While the ICES1 bit is cleared (zero), the Timer/Counter1 contents are transferred to the Input Capture Register (ICR1) on the falling edge of the input capture pin (ICP). While the ICES1 bit is set (one), the Timer/Counter1 contents are transferred to the ICR1 on the rising edge of the ICP.

• Bits 5, 4 - Res: Reserved Bits

These bits are reserved bits in the AT90S8515 and always read zero.

• Bit 3 – CTC1: Clear Timer/Counter1 on Compare Match

When the CTC1 control bit is set (one), the Timer/Counter1 is reset to \$0000 in the clock cycle after a compareA match. If the CTC1 control bit is cleared, Timer/Counter1 continues counting and is unaffected by a compare match. Since the compare match is detected in the CPU clock cycle following the match, this function will behave differently when a prescaling higher than 1 is used for the timer. When a prescaling of 1 is used, and the compareA register is set to C, the timer will count as follows if CTC1 is set:

... | C-2 | C-1 | C | 0 | 1 | ...

When the prescaler is set to divide by 8, the timer will count like this:

In PWM mode, this bit has no effect.

• Bits 2, 1, 0 - CS12, CS11, CS10: Clock Select1, Bits 2, 1 and 0

The Clock Select1 bits 2, 1 and 0 define the prescaling source of Timer/Counter1.

CS12	CS11	CS10	Description
0	0	0	Stop, the Timer/Counter1 is stopped.
0	0	1	СК
0	1	0	CK/8
0	1	1	CK/64
1	0	0	CK/256
1	0	1	CK/1024
1	1	0	External Pin T1, falling edge
1	1	1	External Pin T1, rising edge

 Table 10.
 Clock 1 Prescale Select

- 1. In the same operation, write a logical "1" to WDTOE and WDE. A logical "1" must be written to WDE even though it is set to one before the disable operation starts.
- 2. Within the next four clock cycles, write a logical "0" to WDE. This disables the Watchdog.
- Bits 2..0 WDP2, WDP1, WDP0: Watchdog Timer Prescaler 2, 1 and 0

The WDP2, WDP1 and WDP0 bits determine the Watchdog Timer prescaling when the Watchdog Timer is enabled. The different prescaling values and their corresponding Time-out periods are shown in Table 14.

WDP2	WDP1	WDP0	Number of WDT Oscillator Cycles	Typical Time-out at V _{CC} = 3.0V	Typical Time-out at V _{CC} = 5.0V
0	0	0	16K cycles	47.0 ms	15.0 ms
0	0	1	32K cycles	94.0 ms	30.0 ms
0	1	0	64K cycles	0.19 s	60.0 ms
0	1	1	128K cycles	0.38 s	0.12 s
1	0	0	256K cycles	0.75 s	0.24 s
1	0	1	512K cycles	1.5 s	0.49 s
1	1	0	1,024K cycles	3.0 s	0.97 s
1	1	1	2,048K cycles	6.0 s	1.9 s

Table 14.	Watchdog	Timer Pre	scale Select
-----------	----------	-----------	--------------

Note: The frequency of the Watchdog oscillator is voltage-dependent as shown in the Electrical Characteristics section.

The WDR (Watchdog Reset) instruction should always be executed before the Watchdog Timer is enabled. This ensures that the reset period will be in accordance with the Watchdog Timer prescale settings. If the Watchdog Timer is enabled without reset, the Watchdog Timer may not start to count from zero.

To avoid unintentional MCU reset, the Watchdog Timer should be disabled or reset before changing the Watchdog Timer Prescale Select.

Port B is an 8-bit bi-directional I/O port.

Three I/O memory address locations are allocated for the Port B, one each for the Data Register – PORTB, \$18(\$38), Data Direction Register – DDRB, \$17(\$37) and the Port B Input Pins – PINB, \$16(\$36). The Port B Input Pins address is read-only, while the Data Register and the Data Direction Register are read/write.

All port pins have individually selectable pull-up resistors. The Port B output buffers can sink 20 mA and thus drive LED displays directly. When pins PB0 to PB7 are used as inputs and are externally pulled low, they will source current if the internal pull-up resistors are activated.

The Port B pins with alternate functions are shown in Table 20.

Port Pin	Alternate Functions
PB0	T0 (Timer/Counter 0 External Counter Input)
PB1	T1 (Timer/Counter 1 External Counter Input)
PB2	AIN0 (Analog Comparator positive input)
PB3	AIN1 (Analog Comparator negative input)
PB4	SS (SPI Slave Select Input)
PB5	MOSI (SPI Bus Master Output/Slave Input)
PB6	MISO (SPI Bus Master Input/Slave Output)
PB7	SCK (SPI Bus Serial Clock)

 Table 20.
 Port B Pin Alternate Functions

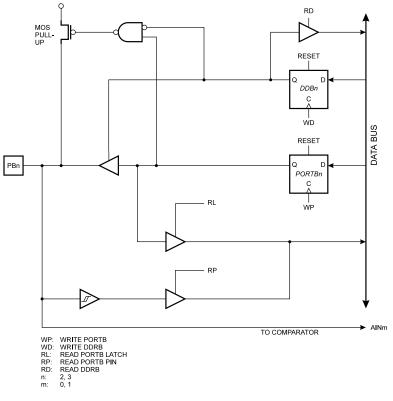
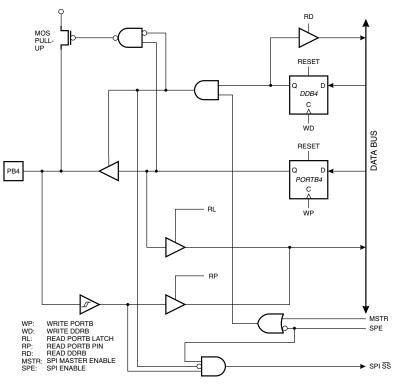
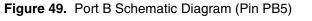
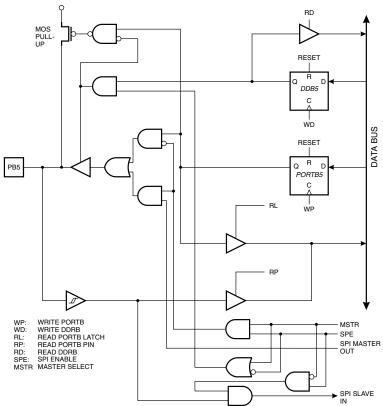
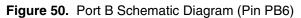
When the pins are used for the alternate function, the DDRB and PORTB registers have to be set according to the alternate function description.

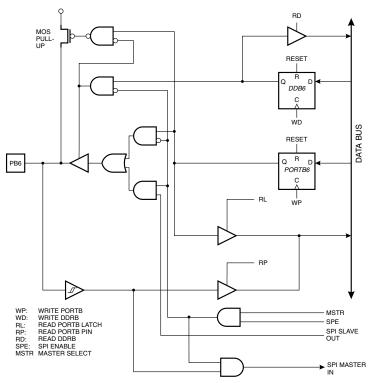
Port B Data Register – PORTB

	Bit	7	6	5	4	3	2	1	0	
	\$18 (\$38)	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	PORTB
	Read/Write	R/W								
	Initial Value	0	0	0	0	0	0	0	0	
Port B Data Direction Register										
– DDRB	Bit	7	6	5	4	3	2	1	0	
	\$17 (\$37)	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	DDRB
	Read/Write	R/W								
	Initial Value	0	0	0	0	0	0	0	0	
Port B Input Pins Address –										
PINB	Bit	7	6	5	4	3	2	1	0	
	\$16 (\$36)	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	PINB
	Read/Write	R	R	R	R	R	R	R	R	
	Initial Value	N/A								

The Port B Input Pins address (PINB) is not a register; this address enables access to the physical value on each Port B pin. When reading PORTB, the Port B Data Latch is read and when reading PINB, the logical values present on the pins are read.

Figure 47. Port B Schematic Diagram (Pins PB2 and PB3)


Figure 48. Port B Schematic Diagram (Pin PB4)

AT90S8515

Port D Data Register – PORTD

	Bit	7	6	5	4	3	2	1	0	
	\$12 (\$32)	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	PORTD
	Read/Write	R/W								
	Initial Value	0	0	0	0	0	0	0	0	
Port D Data Direction Register										
– DDRD	Bit	7	6	5	4	3	2	1	0	
	\$11 (\$31)	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	DDRD
	Read/Write	R/W								
	Initial Value	0	0	0	0	0	0	0	0	
Port D Input Pins Address –										
PIND	Bit	7	6	5	4	3	2	1	0	
	\$10 (\$30)	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	PIND
	Read/Write	R	R	R	R	R	R	R	R	
	Initial Value	N/A								
	The Port D the physica	•		•	,	•				

Port D as General Digital I/O If DDDn is set (one), PDn is configured as an output pin. If DDDn is cleared (zero), PDn is configured as an input pin. If PDn is set (one) when configured as an input pin, the MOS pull-up resistor is activated. To switch the pull-up resistor off the PDn has to be cleared (zero) or the pin has to be configured as an output pin. The Port D pins are tristated when a reset condition becomes active, even if the clock is not active.

Table 24. DDDn Bits on Port D Pins

DDDn	PORTDn	I/O	Pull-up	Comment					
0	0	Input	No	Tri-state (high-Z)					
0	1	Input	Yes	PDn will source current if ext. pulled low.					
1	0	Output	No	Push-pull Zero Output					
1	1	Output	No	Push-pull One Output					

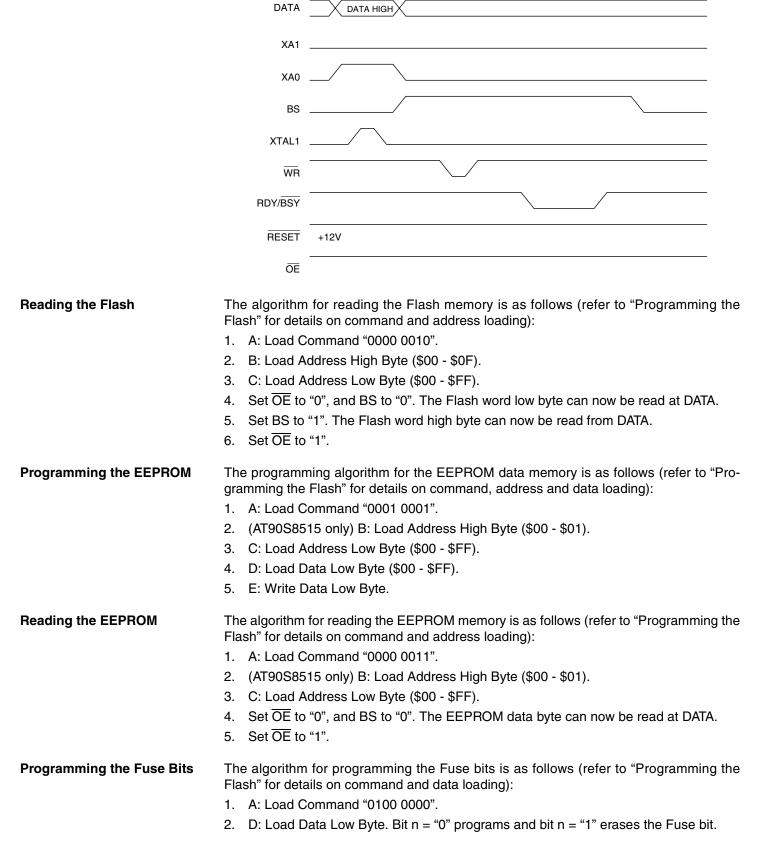
read and when reading PIND, the logical values present on the pins are read.

Note: n: 7,6...0, pin number.

Alternate Functions of Port D • RD – Port D, Bit 7

RD is the external data memory read control strobe. See "Interface to External SRAM" on page 60 for detailed information.

• WR – Port D, Bit 6


WR is the external data memory write control strobe. See "Interface to External SRAM" on page 60 for detailed information.

• OC1A - Port D, Bit 5

OC1A: Output compare match output. The PD5 pin can serve as an external output when the Timer/Counter1 compare matches. The PD5 pin has to be configured as an output (DDD5 set [one]) to serve this function. See the Timer/Counter1 description for further details and how to enable the output. The OC1A pin is also the output pin for the PWM mode timer function.

AT90S8515

External Data Memory Timing

			8 MHz O	scillator	Variable		
	Symbol	Parameter	Min	Мах	Min	Max	Unit
0	1/t _{CLCL}	Oscillator Frequency			0.0	8.0	MHz
1	t _{LHLL}	ALE Pulse Width	32.5		0.5 t _{CLCL} - 30.0 ⁽¹⁾		ns
2	t _{AVLL}	Address Valid A to ALE Low	22.5		0.5 t _{CLCL} - 40.0 ⁽¹⁾		ns
За	t _{LLAX_ST}	Address Hold after ALE Low, ST/STD/STS Instructions	67.5		0.5 t _{CLCL} + 5.0 ⁽²⁾		ns
3b	t _{LLAX_LD}	Address Hold after ALE Low, LD/LDD/LDS Instructions	15.0		15.0		ns
4	t _{AVLLC}	Address Valid C to ALE Low	22.5		0.5 t _{CLCL} - 40.0 ⁽¹⁾		ns
5	t _{AVRL}	Address Valid to RD Low	95.0		1.0 t _{CLCL} - 30.0		ns
6	t _{AVWL}	Address Valid to WR Low	157.5		1.5 t _{CLCL} - 30.0 ⁽¹⁾		ns
7	t _{LLWL}	ALE Low to WR Low	105.0	145.0	1.0 t _{CLCL} - 20.0	1.0 t _{CLCL} + 20.0	ns
8	t _{LLRL}	ALE Low to RD Low	42.5	82.5	0.5 t _{CLCL} - 20.0 ⁽²⁾	$0.5 t_{CLCL} + 20.0^{(2)}$	ns
9	t _{DVRH}	Data Setup to RD High	60.0		60.0		ns
10	t _{RLDV}	Read Low to Data Valid		70.0		1.0 t _{CLCL} - 55.0	ns
11	t _{RHDX}	Data Hold after RD High	0.0		0.0		ns
12	t _{RLRH}	RD Pulse Width	105.0		1.0 t _{CLCL} - 20.0		ns
13	t _{DVWL}	Data Setup to WR Low	27.5		0.5 t _{CLCL} - 35.0 ⁽²⁾		ns
14	t _{WHDX}	Data Hold after WR High	0.0		0.0		ns
15	t _{DVWH}	Data Valid to WR High	95.0		1.0 t _{CLCL} - 30.0		ns
16	t _{wLWH}	WR Pulse Width	42.5		0.5 t _{CLCL} - 20.0 ⁽¹⁾		ns

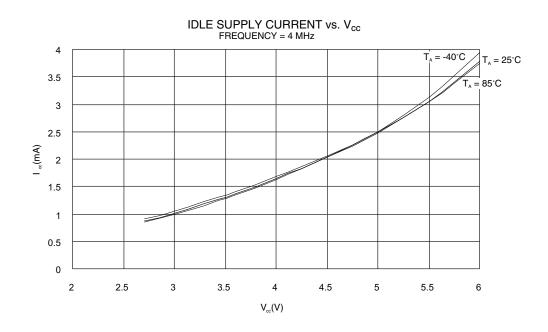
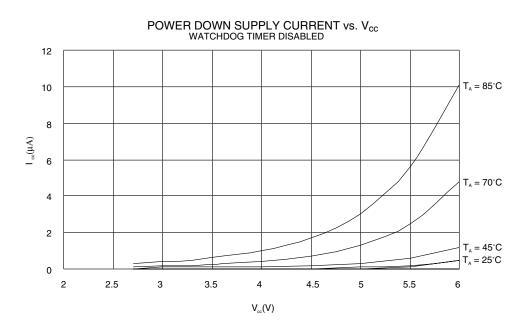
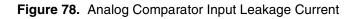
Table 38. External Data Memory Characteristics, 4.0V - 6.0V, One Cycle Wait State

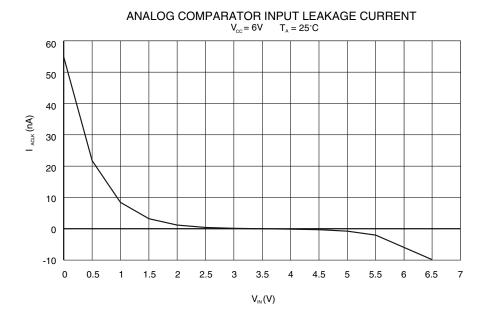
			8 MHz Os	scillator	Variable	Oscillator	
	Symbol	Parameter	Min	Max	Min	Max	Unit
0	1/t _{CLCL}	Oscillator Frequency			0.0	8.0	MHz
10	t _{RLDV}	Read Low to Data Valid		195.0		2.0 t _{CLCL} - 55.0	ns
12	t _{RLRH}	RD Pulse Width	230.0		2.0 t _{CLCL} - 20.0		ns
15	t _{DVWH}	Data Valid to WR High	220.0		2.0 t _{CLCL} - 30.0		ns
16	t _{wLWH}	WR Pulse Width	167.5		1.5 t _{CLCL} - 20.0 ⁽²⁾		ns

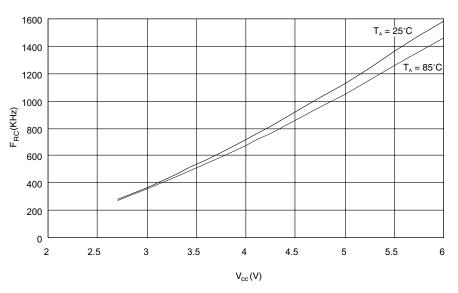
Notes: 1. This assumes 50% clock duty cycle. The half-period is actually the high time of the external clock, XTAL1.

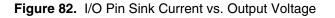
2. This assumes 50% clock duty cycle. The half-period is actually the low time of the external clock, XTAL1.

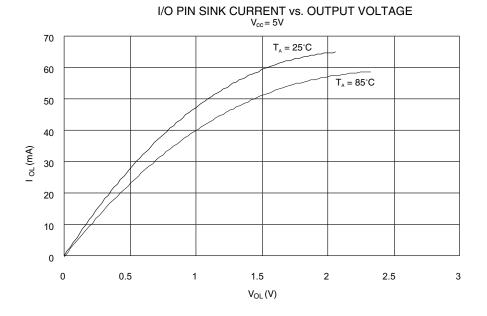
Figure 72. Idle Supply Current vs. V_{CC}

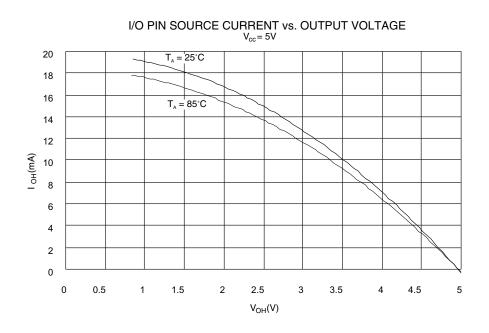





Figure 73. Power-down Supply Current vs. V_{CC}








WATCHDOG OSCILLATOR FREQUENCY vs. V_{cc}

Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
\$3F (\$5F)	SREG	I	Т	Н	S	V	N	Z	С	page 20
\$3E (\$5E)	SPH	SP15	SP14	SP13	SP12	SP11	SP10	SP9	SP8	page 21
\$3D (\$5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	page 21
\$3C (\$5C)	Reserved									
\$3B (\$5B)	GIMSK	INT1	INT0	-	-	-	-	-	-	page 26
\$3A (\$5A)	GIFR	INTF1	INTF0							page 26
\$39 (\$59)	TIMSK	TOIE1	OCIE1A	OCIE1B	-	TICIE1	-	TOIE0	-	page 27
\$38 (\$58)	TIFR	TOV1	OCF1A	OCF1B	-	ICF1	-	TOV0	-	page 28
\$37 (\$57)	Reserved									
\$36 (\$56)	Reserved									
\$35 (\$55)	MCUCR	SRE	SRW	SE	SM	ISC11	ISC10	ISC01	ISC00	page 29
\$34 (\$54)	Reserved									P9
\$33 (\$53)	TCCR0	-	-	-	_	-	CS02	CS01	CS00	page 33
\$32 (\$52)	TCNT0				Timer/Cou	inter0 (8 Bits)	0001		0000	page 34
ψυ <u>Σ</u> (ψυ <u>Σ</u>) 	Reserved				111101/000					page 04
\$2F (\$4F)	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0			PWM11	PWM10	page 36
\$2E (\$4E)	TCCR1B	ICNC1	ICES1	-	-	CTC1	- CS12	CS11	CS10	page 30
\$2E (\$4E) \$2D (\$4D)	TCOR IB		10201		Counter1 – Co			0311	0310	
	TCNT1H TCNT1L	1			Counter1 – Co Counter1 – Co					page 38
\$2C (\$4C)	OCR1AH	1								page 38
\$2B (\$4B)					ter1 – Output C					page 38
\$2A (\$4A)	OCR1AL				iter1 – Output (page 38
\$29 (\$49)	OCR1BH				ter1 – Output C					page 39
\$28 (\$48)	OCR1BL			Timer/Cour	iter1 – Output C	Compare Regis	ter B Low Byte			page 39
	Reserved									
\$25 (\$45)	ICR1H				unter1 – Input					page 39
\$24 (\$44)	ICR1L			Timer/Co	ounter1 – Input	Capture Regist	er Low Byte			page 39
	Reserved					-	-	-		
\$21 (\$41)	WDTCR	-	-	-	WDTOE	WDE	WDP2	WDP1	WDP0	page 42
\$20 (\$40)	Reserved									
\$1F (\$3F)	EEARH	-	-	-	-	-	-	-	EEAR8	page 44
\$1E (\$3E)	EEARL			EE	EPROM Addres	s Register Low	/ Byte			page 44
\$1D (\$3D)	EEDR				EEPROM	Data Register				page 44
\$1C (\$3C)	EECR	-	-	-	-	-	EEMWE	EEWE	EERE	page 44
\$1B (\$3B)	PORTA	PORTA7	PORTA6	PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0	page 63
\$1A (\$3A)	DDRA	DDA7	DDA6	DDA5	DDA4	DDA3	DDA2	DDA1	DDA0	page 63
\$19 (\$39)	PINA	PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINA0	page 63
\$18 (\$38)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	page 65
\$17 (\$37)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	page 65
\$16 (\$36)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	page 65
\$15 (\$35)	PORTC	PORTC7	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	page 70
\$14 (\$34)	DDRC	DDC7	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0	page 70
\$13 (\$33)	PINC	PINC7	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0	page 71 page 71
\$12 (\$32)	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	page 73
\$11 (\$31)	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	page 73
\$10 (\$30)	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	page 73 page 73
				FINDS		a Register	FINDZ		FINDU	
\$0F (\$2F)	SPDR	801F	WCO			U U				page 51
\$0E (\$2E)	SPSR	SPIF	WCOL	-	-	-	-	-	-	page 50
\$0D (\$2D)	SPCR	SPIE	SPE	DORD	MSTR	CPOL	CPHA	SPR1	SPR0	page 49
\$0C (\$2C)	UDR	D) (2				Data Register				page 55
\$0B (\$2B)	USR	RXC	TXC	UDRE	FE	OR	-	-	-	page 55
\$0A (\$2A)	UCR	RXCIE	TXCIE	UDRIE	RXEN	TXEN	CHR9	RXB8	TXB8	page 56
\$09 (\$29)	UBRR			I		Rate Register				page 58
\$08 (\$28)	ACSR	ACD	-	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	page 59
	Decembed									
	Reserved									

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.

 Some of the status flags are cleared by writing a logical "1" to them. Note that the CBI and SBI instructions will operate on all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers \$00 to \$1F only.

