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Crystal Oscillator XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier that can
be configured for use as an on-chip oscillator, as shown in Figure 2. Either a quartz
crystal or a ceramic resonator may be used. To drive the device from an external clock
source, XTAL2 should be left unconnected while XTAL1 is driven as shown in Figure 3.

Figure 2.  Oscillator Connections

Note: When using the MCU oscillator as a clock for an external device, an HC buffer should be
connected as indicated in the figure.

Figure 3.  External Clock Drive Configuration
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AT90S8515
Architectural 
Overview

The fast-access register file concept contains 32 x 8-bit general-purpose working regis-
ters with a single clock cycle access time. This means that during one single clock cycle,
one ALU (Arithmetic Logic Unit) operation is executed. Two operands are output from
the register file, the operation is executed and the result is stored back in the register file
– in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for
Data Space addressing, enabling efficient address calculations. One of the three
address pointers is also used as the address pointer for the constant table look-up func-
tion. These added function registers are the 16-bit X-, Y-, and Z-register.

The ALU supports arithmetic and logic functions between registers or between a con-
stant and a register. Single register operations are also executed in the ALU. Figure 4
shows the AT90S8515 AVR RISC microcontroller architecture.

In addition to the register operation, the conventional memory addressing modes can be
used on the register file as well. This is enabled by the fact that the register file is
assigned the 32 lowermost Data Space addresses ($00 - $1F), allowing them to be
accessed as though they were ordinary memory locations.

The I/O memory space contains 64 addresses for CPU peripheral functions such as
Control Registers, Timer/Counters, A/D converters and other I/O functions. The I/O
memory can be accessed directly or as the Data Space locations following those of the
register file, $20 - $5F.

The AVR uses a Harvard architecture concept – with separate memories and buses for
program and data. The program memory is executed with a two-stage pipeline. While
one instruction is being executed, the next instruction is pre-fetched from the program
memory. This concept enables instructions to be executed in every clock cycle. The pro-
gram memory is In-System Programmable Flash memory.

With the relative jump and call instructions, the whole 4K address space is directly
accessed. Most AVR instructions have a single 16-bit word format. Every program
memory address contains a 16- or 32-bit instruction.

During interrupts and subroutine calls, the return address Program Counter (PC) is
stored on the stack. The stack is effectively allocated in the general data SRAM and
consequently, the stack size is only limited by the total SRAM size and the usage of the
SRAM. All user programs must initialize the SP in the reset routine (before subroutines
or interrupts are executed). The 16-bit Stack Pointer (SP) is read/write-accessible in the
I/O space.

The 512-byte data SRAM can be easily accessed through the five different addressing
modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.
7
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General-purpose 
Register File

Figure 6 shows the structure of the 32 general-purpose working registers in the CPU.

Figure 6.  AVR CPU General-purpose Working Registers

All the register operating instructions in the instruction set have direct and single-cycle
access to all registers. The only exception are the five constant arithmetic and logic
instructions SBCI, SUBI, CPI, ANDI and ORI between a constant and a register and the
LDI instruction for load immediate constant data. These instructions apply to the second
half of the registers in the register file (R16..R31). The general SBC, SUB, CP, AND and
OR and all other operations between two registers or on a single register apply to the
entire register file.

As shown in Figure 6, each register is also assigned a data memory address, mapping
them directly into the first 32 locations of the user Data Space. Although not being phys-
ically implemented as SRAM locations, this memory organization provides great
flexibility in access of the registers, as the X-, Y- and Z-registers can be set to index any
register in the file.

X-register, Y-register and 
Z-register

The registers R26..R31 have some added functions to their general-purpose usage.
These registers are address pointers for indirect addressing of the Data Space. The
three indirect address registers X, Y, and Z are defined as:

Figure 7.  X-, Y-, and Z-registers

7 0 Addr.

R0 $00

R1 $01

R2 $02

…

R13 $0D

General R14 $0E

Purpose R15 $0F

Working R16 $10

Registers R17 $11

…

R26 $1A X-register low byte

R27 $1B X-register high byte

R28 $1C Y-register low byte

R29 $1D Y-register high byte

R30 $1E Z-register low byte

R31 $1F Z-register high byte

15 0

X - register 7 0 7                              0

R27 ($1B) R26 ($1A)

15 0

Y - register 7 0 7                                  0

R29 ($1D) R28 ($1C)

15 0

Z - register 7 0 7                              0

R31 ($1F) R30 ($1E)
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AT90S8515
A 16-bit data address is contained in the 16 LSBs of a 2-word instruction. Rd/Rr specify
the destination or source register.

Data Indirect with 
Displacement

Figure 13.  Data Indirect with Displacement

Operand address is the result of the Y- or Z-register contents added to the address con-
tained in six bits of the instruction word.

Data Indirect Figure 14.  Data Indirect Addressing

Operand address is the contents of the X-, Y-, or the Z-register.

Data Indirect with Pre-
decrement

Figure 15.  Data Indirect Addressing with Pre-decrement
15
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AT90S8515
I/O Memory The I/O space definition of the AT90S8515 is shown in Table 1.

Table 1.  AT90S8515 I/O Space

Address Hex Name Function

$3F ($5F) SREG Status Register

$3E ($5E) SPH Stack Pointer High

$3D ($5D) SPL Stack Pointer Low

$3B ($5B) GIMSK General Interrupt Mask register

$3A ($5A) GIFR General Interrupt Flag Register

$39 ($59) TIMSK Timer/Counter Interrupt Mask register

$38 ($58) TIFR Timer/Counter Interrupt Flag register

$35 ($55) MCUCR MCU general Control Register

$33 ($53) TCCR0 Timer/Counter0 Control Register

$32 ($52) TCNT0 Timer/Counter0 (8-bit)

$2F ($4F) TCCR1A Timer/Counter1 Control Register A

$2E ($4E) TCCR1B Timer/Counter1 Control Register B

$2D ($4D) TCNT1H Timer/Counter1 High Byte

$2C ($4C) TCNT1L Timer/Counter1 Low Byte

$2B ($4B) OCR1AH Timer/Counter1 Output Compare Register A High Byte

$2A ($4A) OCR1AL Timer/Counter1 Output Compare Register A Low Byte

$29 ($49) OCR1BH Timer/Counter1 Output Compare Register B High Byte

$28 ($48) OCR1BL Timer/Counter1 Output Compare Register B Low Byte

$25 ($45) ICR1H T/C 1 Input Capture Register High Byte

$24 ($44) ICR1L T/C 1 Input Capture Register Low Byte

$21 ($41) WDTCR Watchdog Timer Control Register

$1F ($3E) EEARH EEPROM Address Register High Byte (AT90S8515)

$1E ($3E) EEARL EEPROM Address Register Low Byte

$1D ($3D) EEDR EEPROM Data Register

$1C ($3C) EECR EEPROM Control Register

$1B ($3B) PORTA Data Register, Port A

$1A ($3A) DDRA Data Direction Register, Port A

$19 ($39) PINA Input Pins, Port A

$18 ($38) PORTB Data Register, Port B

$17 ($37) DDRB Data Direction Register, Port B

$16 ($36) PINB Input Pins, Port B

$15 ($35) PORTC Data Register, Port C

$14 ($34) DDRC Data Direction Register, Port C

$13 ($33) PINC Input Pins, Port C

$12 ($32) PORTD Data Register, Port D
19
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AT90S8515
External Reset An external reset is generated by a low level on the RESET pin. Reset pulses longer
than 50 ns will generate a reset, even if the clock is not running. Shorter pulses are not
guaranteed to generate a reset. When the applied signal reaches the Reset Threshold
Voltage (VRST) on its positive edge, the delay timer starts the MCU after the Time-out
period tTOUT has expired.

Figure 26.  External Reset during Operation

Watchdog Reset When the Watchdog times out, it will generate a short reset pulse of 1 XTAL cycle dura-
tion. On the falling edge of this pulse, the delay timer starts counting the Time-out period
tTOUT. Refer to page 42 for details on operation of the Watchdog.

Figure 27.  Watchdog Reset during Operation

Interrupt Handling The AT90S8515 has two 8-bit interrupt mask control registers; GIMSK (General Inter-
rupt Mask register) and TIMSK (Timer/Counter Interrupt Mask register).

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared (zero) and all inter-
rupts are disabled. The user software can set (one) the I-bit to enable nested interrupts.
The I-bit is set (one) when a Return from Interrupt instruction (RETI) is executed.

For interrupts triggered by events that can remain static (e.g., the Output Compare
Register1 matching the value of Timer/Counter1), the interrupt flag is set when the event
occurs. If the interrupt flag is cleared and the interrupt condition persists, the flag will not
be set until the event occurs the next time.

When the Program Counter is vectored to the actual interrupt vector in order to execute
the interrupt handling routine, hardware clears the corresponding flag that generated the
25
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interrupt. Some of the interrupt flags can also be cleared by writing a logical “1” to the
flag bit position(s) to be cleared.

If an interrupt condition occurs when the corresponding interrupt enable bit is cleared
(zero), the interrupt flag will be set and remembered until the interrupt is enabled or the
flag is cleared by software.

If one or more interrupt conditions occur when the global interrupt enable bit is cleared
(zero), the corresponding interrupt flag(s) will be set and remembered until the global
interrupt enable bit is set (one) and will be executed by order of priority.

Note that external level interrupt does not have a flag and will only be remembered for
as long as the interrupt condition is active.

General Interrupt Mask 
Register – GIMSK

• Bit 7 – INT1: External Interrupt Request 1 Enable

When the INT1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one),
the external pin interrupt is enabled. The Interrupt Sense Control1 bits 1/0 (ISC11 and
ISC10) in the MCU general Control Register (MCUCR) define whether the external
interrupt is activated on rising or falling edge of the INT1 pin or is level-sensed. Activity
on the pin will cause an interrupt request even if INT1 is configured as an output. The
corresponding interrupt of External Interrupt Request 1 is executed from program mem-
ory address $002. See also “External Interrupts”.

• Bit 6 – INT0: External Interrupt Request 0 Enable

When the INT0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one),
the external pin interrupt is enabled. The Interrupt Sense Control0 bits 1/0 (ISC01 and
ISC00) in the MCU general Control Register (MCUCR) define whether the external
interrupt is activated on rising or falling edge of the INT0 pin or is level-sensed. Activity
on the pin will cause an interrupt request even if INT0 is configured as an output. The
corresponding interrupt of External Interrupt Request 0 is executed from program mem-
ory address $001. See also “External Interrupts”.

• Bits 5..0 – Res: Reserved Bits

These bits are reserved bits in the AT90S8515 and always read as zero.

General Interrupt Flag 
Register – GIFR

• Bit 7 – INTF1: External Interrupt Flag1

When an edge on the INT1 pin triggers an interrupt request, the corresponding interrupt
flag, INTF1 becomes set (one). If the I-bit in SREG and the corresponding interrupt
enable bit, INT1 in GIMSK is set (one), the MCU will jump to the interrupt vector. The
flag is cleared when the interrupt routine is executed. Alternatively, the flag can be
cleared by writing a logical “1” to it. This flag is always cleared when INT1 is configured
as level interrupt.

Bit 7 6 5 4 3 2 1 0

$3B ($5B) INT1 INT0 – – – – – – GIMSK
Read/Write R/W R/W R R R R R R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

$3A ($5A) INTF1 INTF0 – – – – – – GIFR
Read/Write R/W R/W R R R R R R

Initial Value 0 0 0 0 0 0 0 0
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Figure 35.  SPI Master-slave Interconnection

The system is single-buffered in the transmit direction and double-buffered in the
receive direction. This means that bytes to be transmitted cannot be written to the SPI
Data Register before the entire shift cycle is completed. When receiving data, however,
a received byte must be read from the SPI Data Register before the next byte has been
completely shifted in. Otherwise, the first byte is lost.

When the SPI is enabled, the data direction of the MOSI, MISO, SCK and SS pins is
overridden according to Table 15.

Note: See “Alternate Functions of Port B” on page 66 for a detailed description of how to define
the direction of the user-defined SPI pins.

SS Pin Functionality When the SPI is configured as a master (MSTR in SPCR is set), the user can determine
the direction of the SS pin. If SS is configured as an output, the pin is a general output
pin, which does not affect the SPI system. If SS is configured as an input, it must be held
high to ensure master SPI operation. If the SS pin is driven low by peripheral circuitry
when the SPI is configured as master with the SS pin defined as an input, the SPI sys-
tem interprets this as another master selecting the SPI as a slave and starts to send
data to it. To avoid bus contention, the SPI system takes the following actions:

1. The MSTR bit in SPCR is cleared and the SPI system becomes a slave. As a 
result of the SPI becoming a slave, the MOSI and SCK pins become inputs.

2. The SPIF flag in SPSR is set, and if the SPI interrupt is enabled and the I-bit in 
SREG is set, the interrupt routine will be executed.

Thus, when interrupt-driven SPI transmittal is used in Master Mode and there exists a
possibility that SS is driven low, the interrupt should always check that the MSTR bit is
still set. Once the MSTR bit has been cleared by a slave select, it must be set by the
user to re-enable SPI Master Mode.

When the SPI is configured as a slave, the SS pin is always input. When SS is held low,
the SPI is activated and MISO becomes an output if configured so by the user. All other

Table 15.  SPI Pin Overrides

Pin Direction, Master SPI Direction, Slave SPI

MOSI User Defined Input

MISO Input User Defined

SCK User Defined Input

SS User Defined Input

MSB MSBMASTER LSB LSBSLAVE

SPI
CLOCK GENERATOR

8-BIT SHIFT REGISTER 8-BIT SHIFT REGISTER

MISO MISO

MOSI MOSI

SCK SCK

SSSS

VCC
48 AT90S8515
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• Bit 5 – DORD: Data Order

When the DORD bit is set (one), the LSB of the data word is transmitted first.

When the DORD bit is cleared (zero), the MSB of the data word is transmitted first.

• Bit 4 – MSTR: Master/Slave Select

This bit selects Master SPI Mode when set (one), and Slave SPI Mode when cleared
(zero). If SS is configured as an input and is driven low while MSTR is set, MSTR will be
cleared and SPIF in SPSR will become set. The user will then have to set MSTR to re-
enable SPI Master Mode.

• Bit 3 – CPOL: Clock Polarity

When this bit is set (one), SCK is high when idle. When CPOL is cleared (zero), SCK is
low when idle. Refer to Figure 36 and Figure 37 for additional information.

• Bit 2 – CPHA: Clock Phase

Refer to Figure 36 or Figure 37 for the functionality of this bit.

• Bits 1, 0 – SPR1, SPR0: SPI Clock Rate Select 1 and 0

These two bits control the SCK rate of the device configured as a master. SPR1 and
SPR0 have no effect on the slave. The relationship between SCK and the oscillator
clock frequency fcl is shown in Table 16.

SPI Status Register – SPSR

• Bit 7 – SPIF: SPI Interrupt Flag

When a serial transfer is complete, the SPIF bit is set (one) and an interrupt is gener-
ated if SPIE in SPCR is set (one) and global interrupts are enabled. If SS is an input and
is driven low when the SPI is in Master Mode, this will also set the SPIF flag. SPIF is
cleared by hardware when executing the corresponding interrupt handling vector. Alter-
natively, the SPIF bit is cleared by first reading the SPI Status Register when SPIF is set
(one), then by accessing the SPI Data Register (SPDR).

• Bit 6 – WCOL: Write Collision Flag

The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer.
The WCOL bit (and the SPIF bit) are cleared (zero) by first reading the SPI Status Reg-
ister when WCOL is set (one), and then by accessing the SPI Data Register.

• Bits 5..0 – Res: Reserved Bits

These bits are reserved bits in the AT90S8515 and will always read as zero.

The SPI interface on the AT90S8515 is also used for program memory and EEPROM
downloading or uploading. See page 86 for serial programming and verification.

Table 16.  Relationship between SCK and the Oscillator Frequency

SPR1 SPR0 SCK Frequency

0 0 fcl/4

0 1 fcl/16

1 0 fcl/64

1 1 fcl/128

Bit 7 6 5 4 3 2 1 0

$0E ($2E) SPIF WCOL – – – – – – SPSR
Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0
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AT90S8515
If the 10(11)-bit Transmitter shift register is empty, data is transferred from UDR to the
shift register. At this time the UDRE (UART Data Register Empty) bit in the UART Status
Register, USR, is set. When this bit is set (one), the UART is ready to receive the next
character. At the same time as the data is transferred from UDR to the 10(11)-bit shift
register, bit 0 of the shift register is cleared (start bit) and bit 9 or 10 is set (stop bit). If
9-bit data word is selected (the CHR9 bit in the UART Control Register, UCR is set), the
TXB8 bit in UCR is transferred to bit 9 in the Transmit shift register. 

On the baud rate clock following the transfer operation to the shift register, the start bit is
shifted out on the TXD pin. Then follows the data, LSB first. When the stop bit has been
shifted out, the shift register is loaded if any new data has been written to the UDR dur-
ing the transmission. During loading, UDRE is set. If there is no new data in the UDR
register to send when the stop bit is shifted out, the UDRE flag will remain set until UDR
is written again. When no new data has been written and the stop bit has been present
on TXD for one bit length, the TX Complete flag (TXC) in USR is set.

The TXEN bit in UCR enables the UART Transmitter when set (one). When this bit is
cleared (zero), the PD1 pin can be used for general I/O. When TXEN is set, the UART
Transmitter will be connected to PD1, which is forced to be an output pin regardless of
the setting of the DDD1 bit in DDRD.

Data Reception Figure 39 shows a block diagram of the UART Receiver.

Figure 39.  UART Receiver
53
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PORTAn has to be cleared (zero) or the pin has to be configured as an output pin. The
Port A pins are tri-stated when a reset condition becomes active, even if the clock is not
active..

Note: n: 7,6…0, pin number.

Port A Schematics Note that all port pins are synchronized. The synchronization latch is, however, not
shown in the figure.

Figure 45.  Port A Schematic Diagrams (Pins PA0 - PA7)

Table 19.  DDAn Effects on Port A Pins

DDAn PORTAn I/O Pull-up Comment

0 0 Input No Tri-state (high-Z)

0 1 Input Yes PAn will source current if ext. pulled low.

1 0 Output No Push-pull Zero Output

1 1 Output No Push-pull One Output
64 AT90S8515
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Port B as General Digital I/O All eight pins in Port B have equal functionality when used as digital I/O pins.

PBn, general I/O pin: The DDBn bit in the DDRB register selects the direction of this pin.
If DDBn is set (one), PBn is configured as an output pin. If DDBn is cleared (zero), PBn
is configured as an input pin. If PORTBn is set (one) when the pin is configured as an
input pin, the MOS pull-up resistor is activated. To switch the pull-up resistor off, the
PORTBn has to be cleared (zero) or the pin has to be configured as an output pin. The
Port B pins are tri-stated when a reset condition becomes active, even if the clock is not
active.

Note: n: 7,6…0, pin number.

Alternate Functions of Port B The alternate pin configuration is as follows:

• SCK – Port B, Bit 7

SCK: Master clock output, slave clock input pin for SPI channel. When the SPI is
enabled as a slave, this pin is configured as an input regardless of the setting of DDB7.
When the SPI is enabled as a master, the data direction of this pin is controlled by
DDB7. When the pin is forced to be an input, the pull-up can still be controlled by the
PORTB7 bit. See the description of the SPI port for further details.

• MISO – Port B, Bit 6

MISO: Master data input, slave data output pin for SPI channel. When the SPI is
enabled as a master, this pin is configured as an input regardless of the setting of
DDB6. When the SPI is enabled as a slave, the data direction of this pin is controlled by
DDB6. When the pin is forced to be an input, the pull-up can still be controlled by the
PORTB6 bit. See the description of the SPI port for further details.

• MOSI – Port B, Bit 5

MOSI: SPI Master data output, slave data input for SPI channel. When the SPI is
enabled as a slave, this pin is configured as an input regardless of the setting of DDB5.
When the SPI is enabled as a master, the data direction of this pin is controlled by
DDB5. When the pin is forced to be an input, the pull-up can still be controlled by the
PORTB5 bit. See the description of the SPI port for further details.

• SS – Port B, Bit 4

SS: Slave port select input. When the SPI is enabled as a slave, this pin is configured as
an input regardless of the setting of DDB4. As a slave, the SPI is activated when this pin
is driven low. When the SPI is enabled as a master, the data direction of this pin is con-
trolled by DDB4. When the pin is forced to be an input, the pull-up can still be controlled
by the PORTB4 bit. See the description of the SPI port for further details.

• AIN1 – Port B, Bit 3

AIN1: Analog Comparator Negative Input. When configured as an input (DDB3 is
cleared [zero]) and with the internal MOS pull-up resistor switched off (PB3 is cleared
[zero]), this pin also serves as the negative input of the On-chip Analog Comparator.

Table 21.  DDBn Effects on Port B Pins

DDBn PORTBn I/O Pull up Comment

0 0 Input No Tri-state (high-Z)

0 1 Input Yes PBn will source current if ext. pulled low.

1 0 Output No Push-pull Zero Output

1 1 Output No Push-pull One Output
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Figure 47.  Port B Schematic Diagram (Pins PB2 and PB3)

Figure 48.  Port B Schematic Diagram (Pin PB4)
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Port C Schematics Note that all port pins are synchronized. The synchronization latch is, however, not
shown in the figure.

Figure 52.  Port C Schematic Diagram (Pins PC0 - PC7)

Port D Port D is an 8-bit bi-directional I/O port with internal pull-up resistors.

Three I/O memory address locations are allocated for the Port D, one each for the Data
Register – PORTD, $12($32), Data Direction Register – DDRD, $11($31) and the Port D
Input Pins – PIND, $10($30). The Port D Input Pins address is read-only, while the Data
Register and the Data Direction Register are read/write.

The Port D output buffers can sink 20 mA. As inputs, Port D pins that are externally
pulled low will source current if the pull-up resistors are activated.

Some Port D pins have alternate functions as shown in Table 23.

When the pins are used for the alternate function, the DDRD and PORTD registers have
to be set according to the alternate function description.

Table 23.  Port D Pin Alternate Functions

Port Pin Alternate Function

PD0 RXD (UART Input Line)

PD1 TXD (UART Output Line)

PD2 INT0 (External interrupt 0 Input)

PD3 INT1 (External interrupt 1 Input)

PD5 OC1A (Timer/Counter1 Output CompareA Match Output)

PD6 WR (Write Strobe to External Memory)

PD7 RD (Read Strobe to External Memory)
72 AT90S8515
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Memory 
Programming

Program and Data 
Memory Lock Bits

The AT90S8515 MCU provides two Lock bits that can be left unprogrammed (“1”) or can
be programmed (“0”) to obtain the additional features listed in Table 25. The Lock bits
can only be erased with the Chip Erase command.

Note: 1. In Parallel Mode, further programming of the Fuse bits is also disabled. Program the
Fuse bits before programming the Lock bits.

Fuse Bits The AT90S8515 has two Fuse bits, SPIEN and FSTRT.

• When the SPIEN Fuse is programmed (“0”), Serial Program and Data Downloading 
is enabled. Default value is programmed (“0”).

• When the FSTRT Fuse is programmed (“0”), the short start-up time is selected. 
Default value is unprogrammed (“1”). Parts with this bit pre-programmed (“0”) can 
be delivered on demand.

The Fuse bits are not accessible in Serial Programming Mode. The status of the Fuse
bits is not affected by Chip Erase.

Signature Bytes All Atmel microcontrollers have a three-byte signature code that identifies the device.
This code can be read in both Serial and Parallel mode. The three bytes reside in a sep-
arate address space.

For the AT90S8515(1) they are:

1. $000: $1E (indicates manufactured by Atmel)

2. $001: $93 (indicates 8 KB Flash memory)

3. $002: $01 (indicates AT90S8515 device when signature byte $001 is $93)
Note: 1. When both Lock bits are programmed (lock mode 3), the signature bytes cannot be

read in Serial Mode. Reading the signature bytes will return: $00, $01 and $02.

Programming the Flash 
and EEPROM

Atmel’s AT90S8515 offers 8K bytes of In-System Reprogrammable Flash program
memory and 512 bytes of EEPROM data memory.

The AT90S8515 is shipped with the On-chip Flash program and EEPROM data memory
arrays in the erased state (i.e., contents = $FF) and ready to be programmed. This
device supports a high-voltage (12V) Parallel Programming Mode and a low-voltage
Serial Programming Mode. The +12V is used for programming enable only, and no cur-
rent of significance is drawn by this pin. The Serial Programming Mode provides a
convenient way to download program and data into the AT90S8515 inside the user’s
system.

The program and data memory arrays on the AT90S8515 are programmed byte-by-byte
in either programming mode. For the EEPROM, an auto-erase cycle is provided within

Table 25.  Lock Bit Protection Modes

Memory Lock Bits

Protection TypeMode LB1 LB2

1 1 1 No memory lock features enabled.

2 0 1 Further programming of the Flash and EEPROM is disabled.(1)

3 0 0 Same as mode 2, and verify is also disabled.
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Enter Programming Mode The following algorithm puts the device in Parallel Programming Mode:

1. Apply supply voltage according to Table 26, between VCC and GND.

2. Set the RESET and BS pin to “0” and wait at least 100 ns.

3. Apply 11.5 - 12.5V to RESET. Any activity on BS within 100 ns after +12V has 
been applied to RESET will cause the device to fail entering programming mode.

Table 27.  Pin Name Mapping

Signal Name in 
Programming Mode Pin Name I/O Function

RDY/BSY PD1 O
0: Device is busy programming, 1: Device is ready 
for new command

OE PD2 I Output Enable (Active low)

WR PD3 I Write Pulse (Active low)

BS PD4 I
Byte Select (“0” selects low byte, “1” selects high 
byte)

XA0 PD5 I XTAL Action Bit 0

XA1 PD6 I XTAL Action Bit 1

DATA PB7-0 I/O Bi-directional Data Bus (Output when OE is low)

Table 28.  XA1 and XA0 Coding

XA1 XA0 Action when XTAL1 is Pulsed

0 0 Load Flash or EEPROM Address (High or low address byte determined by BS)

0 1 Load Data (High or low data byte for Flash determined by BS)

1 0 Load Command

1 1 No Action, Idle

Table 29.  Command Byte Bit Coding

Command Byte Command Executed

1000 0000 Chip Erase

0100 0000 Write Fuse Bits

0010 0000 Write Lock Bits

0001 0000 Write Flash

0001 0001 Write EEPROM

0000 1000 Read Signature Bytes

0000 0100 Read Lock and Fuse Bits

0000 0010 Read Flash

0000 0011 Read EEPROM
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Notes: 1. This assumes 50% clock duty cycle. The half-period is actually the high time of the external clock, XTAL1.
2. This assumes 50% clock duty cycle. The half-period is actually the low time of the external clock, XTAL1.

Table 39.  External Data Memory Characteristics, 2.7V - 4.0V, No Wait State

Symbol Parameter

4 MHz Oscillator Variable Oscillator

UnitMin Max Min Max

0 1/tCLCL Oscillator Frequency 0.0 4.0 MHz

1 tLHLL ALE Pulse Width 70.0 0.5 tCLCL - 55.0(1) ns

2 tAVLL Address Valid A to ALE Low 60.0 0.5 tCLCL - 65.0(1) ns

3a tLLAX_ST
Address Hold after ALE Low, 
ST/STD/STS Instructions

130.0 0.5 tCLCL + 5.0(2) ns

3b tLLAX_LD
Address Hold after ALE Low, 
LD/LDD/LDS Instructions

15.0 15.0 ns

4 tAVLLC Address Valid C to ALE Low 60.0 0.5 tCLCL - 65.0(1) ns

5 tAVRL Address Valid to RD Low 200.0 1.0 tCLCL - 50.0 ns

6 tAVWL Address Valid to WR Low 325.0 1.5 tCLCL - 50.0(1) ns

7 tLLWL ALE Low to WR Low 230.0 270.0 1.0 tCLCL - 20.0 1.0 tCLCL + 20.0 ns

8 tLLRL ALE Low to RD Low 105.0 145.0 0.5 tCLCL - 20.0(2) 0.5 tCLCL + 20.0(2) ns

9 tDVRH Data Setup to RD High 95.0 95.0 ns

10 tRLDV Read Low to Data Valid 170.0 1.0 tCLCL - 80.0 ns

11 tRHDX Data Hold after RD High 0.0 0.0 ns

12 tRLRH RD Pulse Width 230.0 1.0 tCLCL - 20.0 ns

13 tDVWL Data Setup to WR Low 70.0 0.5 tCLCL - 55.0(1) ns

14 tWHDX Data Hold after WR High 0.0 0.0 ns

15 tDVWH Data Valid to WR High 210.0 1.0 tCLCL - 40.0 ns

16 tWLWH WR Pulse Width 105.0 0.5 tCLCL - 20.0(2) ns

Table 40.  External Data Memory Characteristics, 2.7V - 4.0V, One Cycle Wait State

Symbol Parameter

4 MHz Oscillator Variable Oscillator

UnitMin Max Min Max

0 1/tCLCL Oscillator Frequency 0.0 4.0 MHz

10 tRLDV Read Low to Data Valid 420.00 2.0 tCLCL - 80.0 ns

12 tRLRH RD Pulse Width 480.0 2.0 tCLCL - 20.0 ns

15 tDVWH Data Valid to WR High 460.0 2.0 tCLCL - 40.0 ns

16 tWLWH WR Pulse Width 355.0 1.5 tCLCL - 20.0(2) ns
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Figure 70.  Active Supply Current vs. VCC

Figure 71.  Idle Supply Current vs. Frequency
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Figure 78.  Analog Comparator Input Leakage Current

Figure 79.  Watchdog Oscillator Frequency vs. VCC
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AT90S8515
Figure 84.  I/O Pin Source Current vs. Output Voltage

Figure 85.  I/O Pin Input Threshold Voltage vs. VCC
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