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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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AT90S8515
Architectural 
Overview

The fast-access register file concept contains 32 x 8-bit general-purpose working regis-
ters with a single clock cycle access time. This means that during one single clock cycle,
one ALU (Arithmetic Logic Unit) operation is executed. Two operands are output from
the register file, the operation is executed and the result is stored back in the register file
– in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for
Data Space addressing, enabling efficient address calculations. One of the three
address pointers is also used as the address pointer for the constant table look-up func-
tion. These added function registers are the 16-bit X-, Y-, and Z-register.

The ALU supports arithmetic and logic functions between registers or between a con-
stant and a register. Single register operations are also executed in the ALU. Figure 4
shows the AT90S8515 AVR RISC microcontroller architecture.

In addition to the register operation, the conventional memory addressing modes can be
used on the register file as well. This is enabled by the fact that the register file is
assigned the 32 lowermost Data Space addresses ($00 - $1F), allowing them to be
accessed as though they were ordinary memory locations.

The I/O memory space contains 64 addresses for CPU peripheral functions such as
Control Registers, Timer/Counters, A/D converters and other I/O functions. The I/O
memory can be accessed directly or as the Data Space locations following those of the
register file, $20 - $5F.

The AVR uses a Harvard architecture concept – with separate memories and buses for
program and data. The program memory is executed with a two-stage pipeline. While
one instruction is being executed, the next instruction is pre-fetched from the program
memory. This concept enables instructions to be executed in every clock cycle. The pro-
gram memory is In-System Programmable Flash memory.

With the relative jump and call instructions, the whole 4K address space is directly
accessed. Most AVR instructions have a single 16-bit word format. Every program
memory address contains a 16- or 32-bit instruction.

During interrupts and subroutine calls, the return address Program Counter (PC) is
stored on the stack. The stack is effectively allocated in the general data SRAM and
consequently, the stack size is only limited by the total SRAM size and the usage of the
SRAM. All user programs must initialize the SP in the reset routine (before subroutines
or interrupts are executed). The 16-bit Stack Pointer (SP) is read/write-accessible in the
I/O space.

The 512-byte data SRAM can be easily accessed through the five different addressing
modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.
7
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Figure 4.  The AT90S8515 AVR RISC Architecture

A flexible interrupt module has its control registers in the I/O space with an additional
global interrupt enable bit in the status register. All the different interrupts have a sepa-
rate interrupt vector in the interrupt vector table at the beginning of the program
memory. The different interrupts have priority in accordance with their interrupt vector
position. The lower the interrupt vector address, the higher the priority.
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Register Direct, Two Registers 
Rd and Rr 

Figure 10.  Direct Register Addressing, Two Registers

Operands are contained in register r (Rr) and d (Rd). The result is stored in register d
(Rd).

I/O Direct Figure 11.  I/O Direct Addressing

Operand address is contained in six bits of the instruction word. n is the destination or
source register address.

Data Direct Figure 12.  Direct Data Addressing
14 AT90S8515
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The X-, Y-, or the Z-register is decremented before the operation. Operand address is
the decremented contents of the X-, Y-, or the Z-register.

Data Indirect with Post-
increment

Figure 16.  Data Indirect Addressing with Post-increment

The X-, Y-, or the Z-register is incremented after the operation. Operand address is the
content of the X-, Y-, or the Z-register prior to incrementing.

Constant Addressing Using 
the LPM Instruction

Figure 17.  Code Memory Constant Addressing

Constant byte address is specified by the Z-register contents. The 15 MSBs select word
address (0 - 4K), the LSB selects low byte if cleared (LSB = 0) or high byte if set (LSB =
1).

$000

$FFF

PROGRAM MEMORY

15 1 0

Z-REGISTER
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AT90S8515
External Reset An external reset is generated by a low level on the RESET pin. Reset pulses longer
than 50 ns will generate a reset, even if the clock is not running. Shorter pulses are not
guaranteed to generate a reset. When the applied signal reaches the Reset Threshold
Voltage (VRST) on its positive edge, the delay timer starts the MCU after the Time-out
period tTOUT has expired.

Figure 26.  External Reset during Operation

Watchdog Reset When the Watchdog times out, it will generate a short reset pulse of 1 XTAL cycle dura-
tion. On the falling edge of this pulse, the delay timer starts counting the Time-out period
tTOUT. Refer to page 42 for details on operation of the Watchdog.

Figure 27.  Watchdog Reset during Operation

Interrupt Handling The AT90S8515 has two 8-bit interrupt mask control registers; GIMSK (General Inter-
rupt Mask register) and TIMSK (Timer/Counter Interrupt Mask register).

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared (zero) and all inter-
rupts are disabled. The user software can set (one) the I-bit to enable nested interrupts.
The I-bit is set (one) when a Return from Interrupt instruction (RETI) is executed.

For interrupts triggered by events that can remain static (e.g., the Output Compare
Register1 matching the value of Timer/Counter1), the interrupt flag is set when the event
occurs. If the interrupt flag is cleared and the interrupt condition persists, the flag will not
be set until the event occurs the next time.

When the Program Counter is vectored to the actual interrupt vector in order to execute
the interrupt handling routine, hardware clears the corresponding flag that generated the
25
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AT90S8515
• Bit 6 – INTF0: External Interrupt Flag0

When an edge on the INT0 pin triggers an interrupt request, the corresponding interrupt
flag, INTF0, becomes set (one). If the I-bit in SREG and the corresponding interrupt
enable bit, INT0 in GIMSK are set (one), the MCU will jump to the interrupt vector. The
flag is cleared when the interrupt routine is executed. Alternatively, the flag is cleared by
writing a logical “1” to it. This flag is always cleared when INT0 is configured as level
interrupt.

• Bits 5..0 – Res: Reserved Bits

These bits are reserved bits in the AT90S8515 and always read as zero.

Timer/Counter Interrupt Mask 
Register – TIMSK

• Bit 7 – TOIE1: Timer/Counter1 Overflow Interrupt Enable

When the TOIE1 bit is set (one) and the I-bit in the Status Register is set (one), the
Timer/Counter1 Overflow interrupt is enabled. The corresponding interrupt (at vector
$006) is executed if an overflow in Timer/Counter1 occurs, i.e., when the TOV1 bit is set
in the Timer/Counter Interrupt Flag Register (TIFR).

• Bit 6 – OCE1A: Timer/Counter1 Output CompareA Match Interrupt Enable

When the OCIE1A bit is set (one) and the I-bit in the Status Register is set (one), the
Timer/Counter1 CompareA Match interrupt is enabled. The corresponding interrupt (at
vector $004) is executed if a CompareA match in Timer/Counter1 occurs, i.e., when the
OCF1A bit is set in the Timer/Counter Interrupt Flag Register (TIFR).

• Bit 5 – OCIE1B: Timer/Counter1 Output CompareB Match Interrupt Enable

When the OCIE1B bit is set (one) and the I-bit in the Status Register is set (one), the
Timer/Counter1 CompareB Match interrupt is enabled. The corresponding interrupt (at
vector $005) is executed if a CompareB match in Timer/Counter1 occurs, i.e., when the
OCF1B bit is set in the Timer/Counter Interrupt Flag Register (TIFR).

• Bit 4 – Res: Reserved Bit

This bit is a reserved bit in the AT90S8515 and always reads zero.

• Bit 3 – TICIE1: Timer/Counter1 Input Capture Interrupt Enable

When the TICIE1 bit is set (one) and the I-bit in the Status Register is set (one), the
Timer/Counter1 Input Capture Event interrupt is enabled. The corresponding interrupt
(at vector $003) is executed if a capture-triggering event occurs on pin 31, ICP, i.e.,
when the ICF1 bit is set in the Timer/Counter Interrupt Flag Register (TIFR).

• Bit 2 – Res: Reserved Bit

This bit is a reserved bit in the AT90S8515 and always reads zero.

• Bit 1 – TOIE0: Timer/Counter0 Overflow Interrupt Enable

When the TOIE0 bit is set (one) and the I-bit in the Status Register is set (one), the
Timer/Counter0 Overflow interrupt is enabled. The corresponding interrupt (at vector
$007) is executed if an overflow in Timer/Counter0 occurs, i.e., when the TOV0 bit is set
in the Timer/Counter Interrupt Flag Register (TIFR).

• Bit 0 – Res: Reserved Bit

This bit is a reserved bit in the AT90S8515 and always reads zero.

Bit 7 6 5 4 3 2 1 0

$39 ($59) TOIE1 OCIE1A OCIE1B – TICIE1 – TOIE0 – TIMSK
Read/Write R/W R/W R/W R R/W R R/W R

Initial Value 0 0 0 0 0 0 0 0
27
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Timer/Counters The AT90S8515 provides two general-purpose Timer/Counters – one 8-bit T/C and one
16-bit T/C. The Timer/Counters have individual prescaling selection from the same 10-
bit prescaling timer. Both Timer/Counters can either be used as a timer with an internal
clock time base or as a counter with an external pin connection that triggers the
counting.

Timer/Counter Prescaler Figure 28 shows the general Timer/Counter prescaler.

Figure 28.  Timer/Counter Prescaler

The four different prescaled selections are: CK/8, CK/64, CK/256 and CK/1024, where
CK is the oscillator clock. For the two Timer/Counters, added selections such as CK,
external source and stop can be selected as clock sources.

8-bit Timer/Counter0 Figure 29 shows the block diagram for Timer/Counter0.

The 8-bit Timer/Counter0 can select clock source from CK, prescaled CK or an external
pin. In addition, it can be stopped as described in the specification for the
Timer/Counter0 Control Register (TCCR0). The overflow status flag is found in the
Timer/Counter Insterrupt Flag Register (TIFR). Control signals are found in the
Timer/Counter0 Control Register (TCCR0). The interrupt enable/disable settings for
Timer/Counter0 are found in the Timer/Counter Interrupt Mask Register (TIMSK).

When Timer/Counter0 is externally clocked, the external signal is synchronized with the
oscillator frequency of the CPU. To assure proper sampling of the external clock, the
minimum time between two external clock transitions must be at least one internal CPU
clock period. The external clock signal is sampled on the rising edge of the internal CPU
clock.

The 8-bit Timer/Counter0 features both a high-resolution and a high-accuracy usage
with the lower prescaling opportunities. Similarly, the high prescaling opportunities make
the Timer/Counter0 useful for lower speed functions or exact timing functions with infre-
quent actions.

TCK1 TCK0
32 AT90S8515
0841G–09/01



AT90S8515
Timer/Counter1 Control 
Register B – TCCR1B

• Bit 7 – ICNC1: Input Capture1 Noise Canceler (4 CKs)

When the ICNC1 bit is cleared (zero), the input capture trigger noise canceler function is
disabled. The input capture is triggered at the first rising/falling edge sampled on the ICP
(input capture pin) as specified. When the ICNC1 bit is set (one), four successive sam-
ples are measured on the ICP, and all samples must be high/low according to the input
capture trigger specification in the ICES1 bit. The actual sampling frequency is XTAL
clock frequency.

• Bit 6 – ICES1: Input Capture1 Edge Select

While the ICES1 bit is cleared (zero), the Timer/Counter1 contents are transferred to the
Input Capture Register (ICR1) on the falling edge of the input capture pin (ICP). While
the ICES1 bit is set (one), the Timer/Counter1 contents are transferred to the ICR1 on
the rising edge of the ICP.

• Bits 5, 4 – Res: Reserved Bits

These bits are reserved bits in the AT90S8515 and always read zero.

• Bit 3 – CTC1: Clear Timer/Counter1 on Compare Match

When the CTC1 control bit is set (one), the Timer/Counter1 is reset to $0000 in the clock
cycle after a compareA match. If the CTC1 control bit is cleared, Timer/Counter1 contin-
ues counting and is unaffected by a compare match. Since the compare match is
detected in the CPU clock cycle following the match, this function will behave differently
when a prescaling higher than 1 is used for the timer. When a prescaling of 1 is used,
and the compareA register is set to C, the timer will count as follows if CTC1 is set:

... | C-2 | C-1 | C | 0 | 1 | ...

When the prescaler is set to divide by 8, the timer will count like this:

... | C-2, C-2, C-2, C-2, C-2, C-2, C-2, C-2 | C-1, C-1, C-1, C-1, C-1, C-1, C-1, C-1 | C, 0,
0, 0, 0, 0, 0, 0 | ...

In PWM mode, this bit has no effect.

• Bits 2, 1, 0 – CS12, CS11, CS10: Clock Select1, Bits 2, 1 and 0

The Clock Select1 bits 2, 1 and 0 define the prescaling source of Timer/Counter1.

Bit 7 6 5 4 3 2 1 0

$2E ($4E) ICNC1 ICES1 – – CTC1 CS12 CS11 CS10 TCCR1B
Read/Write R/W R/W R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 10.  Clock 1 Prescale Select

CS12 CS11 CS10 Description

0 0 0 Stop, the Timer/Counter1 is stopped.

0 0 1 CK

0 1 0 CK/8

0 1 1 CK/64

1 0 0 CK/256

1 0 1 CK/1024

1 1 0 External Pin T1, falling edge

1 1 1 External Pin T1, rising edge
37
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The TEMP register is also used when accessing TCNT1, OCR1A and OCR1B. If the
main program and interrupt routines perform access to registers using TEMP, interrupts
must be disabled during access from the main program (and from interrupt routines if
interrupts are allowed from within interrupt routines).

Timer/Counter1 in PWM Mode When the PWM mode is selected, Timer/Counter1, the Output Compare Register1A
(OCR1A) and the Output Compare Register1B (OCR1B) form a dual 8-, 9- or 10-bit,
free-running, glitch-free and phase-correct PWM with outputs on the PD5(OC1A) and
OC1B pins. Timer/Counter1 acts as an up/down counter, counting up from $0000 to
TOP (see Table 11), where it turns and counts down again to zero before the cycle is
repeated. When the counter value matches the contents of the 10 least significant bits of
OCR1A or OCR1B, the PD5(OC1A)/OC1B pins are set or cleared according to the set-
tings of the COM1A1/COM1A0 or COM1B1/COM1B0 bits in the Timer/Counter1 Control
Register (TCCR1A). Refer to Table 12 for details.

Note: X = A or B

Note that in the PWM mode, the 10 least significant OCR1A/OCR1B bits, when written,
are transferred to a temporary location. They are latched when Timer/Counter1 reaches
the value TOP. This prevents the occurrence of odd-length PWM pulses (glitches) in the
event of an unsynchronized OCR1A/OCR1B write. See Figure 32 for an example.

Table 11.  Timer TOP Values and PWM Frequency

PWM Resolution Timer TOP Value Frequency

8-bit $00FF (255) fTCK1/510

9-bit $01FF (511) fTCK1/1022

10-bit $03FF(1023) fTCK1/2046

Table 12.  Compare1 Mode Select in PWM Mode

COM1X1 COM1X0 Effect on OCX1

0 0 Not connected

0 1 Not connected

1 0
Cleared on compare match, up-counting. Set on compare match, 
down-counting (non-inverted PWM).

1 1
Cleared on compare match, down-counting. Set on compare match, 
up-counting (inverted PWM).
40 AT90S8515
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AT90S8515
• Bit 2 – EEMWE: EEPROM Master Write Enable

The EEMWE bit determines whether setting EEWE to one causes the EEPROM to be
written. When EEMWE is set (one), setting EEWE will write data to the EEPROM at the
selected address. If EEMWE is zero, setting EEWE will have no effect. When EEMWE
has been set (one) by software, hardware clears the bit to zero after four clock cycles.
See the description of the EEWE bit for a EEPROM write procedure.

• Bit 1 – EEWE: EEPROM Write Enable

The EEPROM Write Enable signal (EEWE) is the write strobe to the EEPROM. When
address and data are correctly set up, the EEWE bit must be set to write the value into
the EEPROM. The EEMWE bit must be set when the logical “1” is written to EEWE, oth-
erwise no EEPROM write takes place. The following procedure should be followed
when writing the EEPROM (the order of steps 2 and 3 is unessential):

1. Wait until EEWE becomes zero.

2. Write new EEPROM address to EEARL and EEARH (optional).

3. Write new EEPROM data to EEDR (optional).

4. Write a logical “1” to the EEMWE bit in EECR (to be able to write a logical “1” to 
the EEMWE bit, the EEWE bit must be written to zero in the same cycle).

5. Within four clock cycles after setting EEMWE, write a logical “1” to EEWE.

When the write access time (typically 2.5 ms at VCC = 5V or 4 ms at VCC = 2.7V) has
elapsed, the EEWE bit is cleared (zero) by hardware. The user software can poll this bit
and wait for a zero before writing the next byte. When EEWE has been set, the CPU is
halted for two cycles before the next instruction is executed.

Caution: An interrupt between step 4 and step 5 will make the write cycle fail, since the
EEPROM Master Write Enable will time-out. If an interrupt routine accessing the
EEPROM is interrupting another EEPROM access, the EEAR or EEDR registers will be
modified, causing the interrupted EEPROM access to fail. It is recommended to have
the global interrupt flag cleared during the four last steps to avoid these problems.

• Bit 0 – EERE: EEPROM Read Enable

The EEPROM Read Enable signal EERE is the read strobe to the EEPROM. When the
correct address is set up in the EEAR register, the EERE bit must be set. When the
EERE bit is cleared (zero) by hardware, requested data is found in the EEDR register.
The EEPROM read access takes one instruction and there is no need to poll the EERE
bit. When EERE has been set, the CPU is halted for four cycles before the next instruc-
tion is executed.

The user should poll the EEWE bit before starting the read operation. If a write operation
is in progress when new data or address is written to the EEPROM I/O registers, the
write operation will be interrupted and the result is undefined.
45
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AT90S8515
SPI Data Register – SPDR

The SPI Data Register is a read/write register used for data transfer between the regis-
ter file and the SPI Shift Register. Writing to the register initiates data transmission.
Reading the register causes the Shift Register Receive buffer to be read.

Bit 7 6 5 4 3 2 1 0

$0F ($2F) MSB LSB SPDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value x x x x x x x x Undefined
51
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AT90S8515
UART Control

UART I/O Data Register – UDR

The UDR register is actually two physically separate registers sharing the same I/O
address. When writing to the register, the UART Transmit Data register is written. When
reading from UDR, the UART Receive Data register is read.

UART Status Register – USR

The USR register is a read-only register providing information on the UART status.

• Bit 7 – RXC: UART Receive Complete

This bit is set (one) when a received character is transferred from the Receiver Shift reg-
ister to UDR. The bit is set regardless of any detected framing errors. When the RXCIE
bit in UCR is set, the UART Receive Complete interrupt will be executed when RXC is
set (one). RXC is cleared by reading UDR. When interrupt-driven data reception is used,
the UART Receive Complete Interrupt routine must read UDR in order to clear RXC,
otherwise a new interrupt will occur once the interrupt routine terminates.

• Bit 6 – TXC: UART Transmit Complete

This bit is set (one) when the entire character (including the stop bit) in the Transmit
Shift register has been shifted out and no new data has been written to UDR. This flag is
especially useful in half-duplex communications interfaces, where a transmitting appli-
cation must enter receive mode and free the communications bus immediately after
completing the transmission.

When the TXCIE bit in UCR is set, setting of TXC causes the UART Transmit Complete
interrupt to be executed. TXC is cleared by hardware when executing the corresponding
interrupt handling vector. Alternatively, the TXC bit is cleared (zero) by writing a logical
“1” to the bit.

• Bit 5 – UDRE: UART Data Register Empty

This bit is set (one) when a character written to UDR is transferred to the Transmit Shift
register. Setting of this bit indicates that the transmitter is ready to receive a new charac-
ter for transmission.

When the UDRIE bit in UCR is set, the UART Transmit Complete interrupt to be exe-
cuted as long as UDRE is set. UDRE is cleared by writing UDR. When interrupt-driven
data transmittal is used, the UART Data Register Empty Interrupt routine must write
UDR in order to clear UDRE, otherwise a new interrupt will occur once the interrupt rou-
tine terminates.

UDRE is set (one) during reset to indicate that the transmitter is ready.

• Bit 4 – FE: Framing Error

This bit is set if a Framing Error condition is detected, i.e., when the stop bit of an incom-
ing character is zero.

Bit 7 6 5 4 3 2 1 0

$0C ($2C) MSB LSB UDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

$0B ($2B) RXC TXC UDRE FE OR – – – USR
Read/Write R R/W R R R R R R

Initial Value 0 0 1 0 0 0 0 0
55
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AT90S8515
BAUD Rate Generator The baud rate generator is a frequency divider that generates baud rates according to
the following equation:

• BAUD = Baud rate

• fCK = Crystal Clock frequency

• UBRR = Contents of the UART Baud Rate register, UBRR (0 - 255)

For standard crystal frequencies, the most commonly used baud rates can be generated
by using the UBRR settings in Table 17. UBRR values that yield an actual baud rate dif-
fering less than 2% from the target baud rate are boldface in the table. However, using
baud rates that have more than 1% error is not recommended. High error ratings give
less noise immunity.

BAUD
fCK

16(UBRR 1)+
-------------------------------------=
57
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Figure 44.  External Data SRAM Memory Cycles with Wait State
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AT90S8515
Port D Data Register – PORTD

Port D Data Direction Register 
– DDRD

Port D Input Pins Address – 
PIND

The Port D Input Pins address (PIND) is not a register; this address enables access to
the physical value on each Port D pin. When reading PORTD, the Port D Data Latch is
read and when reading PIND, the logical values present on the pins are read.

Port D as General Digital I/O PDn, general I/O pin: The DDDn bit in the DDRD register selects the direction of this pin.
If DDDn is set (one), PDn is configured as an output pin. If DDDn is cleared (zero), PDn
is configured as an input pin. If PDn is set (one) when configured as an input pin, the
MOS pull-up resistor is activated. To switch the pull-up resistor off the PDn has to be
cleared (zero) or the pin has to be configured as an output pin. The Port D pins are tri-
stated when a reset condition becomes active, even if the clock is not active.

Note: n: 7,6…0, pin number.

Alternate Functions of Port D • RD – Port D, Bit 7

RD is the external data memory read control strobe. See “Interface to External SRAM”
on page 60 for detailed information.

• WR – Port D, Bit 6

WR is the external data memory write control strobe. See “Interface to External SRAM”
on page 60 for detailed information.

• OC1A – Port D, Bit 5

OC1A: Output compare match output. The PD5 pin can serve as an external output
when the Timer/Counter1 compare matches. The PD5 pin has to be configured as an
output (DDD5 set [one]) to serve this function. See the Timer/Counter1 description for
further details and how to enable the output. The OC1A pin is also the output pin for the
PWM mode timer function.

Bit 7 6 5 4 3 2 1 0

$12 ($32) PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 PORTD

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

$11 ($31) DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 DDRD
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

$10 ($30) PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 PIND
Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Table 24.  DDDn Bits on Port D Pins

DDDn PORTDn I/O Pull-up Comment

0 0 Input No Tri-state (high-Z)

0 1 Input Yes PDn will source current if ext. pulled low.

1 0 Output No Push-pull Zero Output

1 1 Output No Push-pull One Output
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• INT1 – Port D, Bit 3

INT1: External Interrupt source 1. The PD3 pin can serve as an external interrupt source
to the MCU. See the interrupt description for further details and how to enable the
source.

• INT0 – Port D, Bit 2

INT0: External Interrupt source 0. The PD2 pin can serve as an external interrupt source
to the MCU. See the interrupt description for further details and how to enable the
source.

• TXD – Port D, Bit 1

Transmit Data (data output pin for the UART). When the UART transmitter is enabled,
this pin is configured as an output, regardless of the value of DDRD1.

• RXD – Port D, Bit 0

Receive Data (data input pin for the UART). When the UART receiver is enabled, this
pin is configured as an input, regardless of the value of DDRD0. When the UART forces
this pin to be an input, a logical “1” in PORTD0 will turn on the internal pull-up.

Port D Schematics Note that all port pins are synchronized. The synchronization latches are, however, not
shown in the figures.

Figure 53.  Port D Schematic Diagram (Pin PD0)
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Bit 5 = SPIEN Fuse bit

Bit 0 = FSTRT Fuse bit

Bit 7 - 6, 4 - 1 = “1”. These bits are reserved and should be left unprogrammed (“1”).

3. Give WR a tWLWH_PFB-wide negative pulse to execute the programming, 
tWLWH_PFB is found in Table 30. Programming the Fuse bits does not generate 
any activity on the RDY/BSY pin.

Programming the Lock Bits The algorithm for programming the Lock bits is as follows (refer to “Programming the
Flash” on page 81 for details on command and data loading):

1. A: Load Command “0010 0000”.

2. D: Load Data Low Byte. Bit n = “0” programs the Lock bit.

Bit 2 = Lock Bit2

Bit 1 = Lock Bit1

Bit 7 - 3, 0 = “1”. These bits are reserved and should be left unprogrammed (“1”).

3. E: Write Data Low Byte.

The Lock bits can only be cleared by executing Chip Erase.

Reading the Fuse and Lock 
Bits

The algorithm for reading the Fuse and Lock bits is as follows (refer to “Programming
the Flash” on page 81 for details on Command loading):

1. A: Load Command “0000 0100”.

2. Set OE to “0”, and BS to “1”. The status of the Fuse and Lock bits can now be 
read at DATA (“0” means programmed).

Bit 7 = Lock Bit1

Bit 6 = Lock Bit2

Bit 5 = SPIEN Fuse bit

Bit 0 = FSTRT Fuse bit

3. Set OE to “1”.

Observe that BS needs to be set to “1”.

Reading the Signature Bytes The algorithm for reading the signature bytes is as follows (refer to “Programming the
Flash” on page 81 for details on command and address loading):

1. A: Load Command “0000 1000”.

2. C: Load Address Low Byte ($00 - $02).

Set OE to “0”, and BS to “0”. The selected signature byte can now be read at DATA.

3. Set OE to “1”.
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AT90S8515
Parallel Programming 
Characteristics

Figure 63.  Parallel Programming Timing

Notes: 1. Use tWLWH_CE for Chip Erase and tWLWH_PFB for programming the Fuse bits.
2. If tWLWH is held longer than tWLRH, no RDY/BSY pulse will be seen.

Table 30.  Parallel Programming Characteristics, TA = 25°C ± 10%, VCC = 5V ± 10% 

Symbol Parameter Min Typ Max Units

VPP Programming Enable Voltage 11.5 12.5 V

IPP Programming Enable Current 250.0 µA

tDVXH Data and Control Setup before XTAL1 High 67.0 ns

tXHXL XTAL1 Pulse Width High 67.0 ns

tXLDX Data and Control Hold after XTAL1 Low 67.0 ns

tXLWL XTAL1 Low to WR Low 67.0 ns

tBVWL BS Valid to WR Low 67.0 ns

tRHBX BS Hold after RDY/BSY High 67.0 ns

tWLWH WR Pulse Width Low(1) 67.0 ns

tWHRL WR High to RDY/BSY Low(2) 20.0 ns

tWLRH WR Low to RDY/BSY High(2) 0.5 0.7 0.9 ms

tXLOL XTAL1 Low to OE Low 67.0 ns

tOLDV OE Low to DATA Valid 20.0 ns

tOHDZ OE High to DATA Tri-stated 20.0 ns

tWLWH_CE WR Pulse Width Low for Chip Erase 5.0 10.0 15.0 ms

tWLWH_PFB

WR Pulse Width Low for Programming the Fuse 
Bits 1.0 1.5 1.8 ms
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Electrical Characteristics
Absolute Maximum Ratings*

Operating Temperature.................................. -55°C to +125°C *NOTICE: Stresses beyond those listed under “Absolute 
Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and 
functional operation of the device at these or 
other conditions beyond those indicated in the 
operational sections of this specification is not 
implied. Exposure to absolute maximum rating 
conditions for extended periods may affect 
device reliability.

Storage Temperature ..................................... -65°C to +150°C

Voltage on Any Pin except RESET
with Respect to Ground .............................-1.0V to VCC + 0.5V

Voltage on RESET
with Respect to Ground ...................................-1.0V to +13.0V

Maximum Operating Voltage ............................................ 6.6V

DC Current per I/O Pin ............................................... 40.0 mA

DC Current VCC and GND Pins................................ 200.0 mA

DC Characteristics

TA = -40°C to 85°C, VCC = 2.7V to 6.0V (unless otherwise noted)

Symbol Parameter Condition Min Typ Max Units

VIL Input Low Voltage (Except XTAL1) -0.5 0.3 VCC
(1) V

VIL1 Input Low Voltage (XTAL1) -0.5 0.2 VCC
(1) V

VIH Input High Voltage (Except XTAL1, RESET) 0.6 VCC
(2) VCC + 0.5 V

VIH1 Input High Voltage (XTAL1) 0.8 VCC
(2) VCC + 0.5 V

VIH2 Input High Voltage (RESET) 0.9 VCC
(2) VCC + 0.5 V

VOL
Output Low Voltage(3)

(Ports A, B, C, D)
IOL = 20 mA, VCC = 5V
IOL = 10 mA, VCC = 3V

0.6
0.5

V
V

VOH
Output High Voltage(4)

(Ports A, B, C, D)
IOH = -3 mA, VCC = 5V
IOH = -1.5 mA, VCC = 3V

4.2
2.3

V
V

IIL
Input Leakage
Current I/O Pin

VCC = 6V, pin low
(absolute value)

8.0 µA

IIH
Input Leakage
Current I/O Pin

VCC = 6V, pin high
(absolute value)

980.0 nA

RRST Reset Pull-up Resistor 100.0 500.0 kΩ

RI/O I/O Pin Pull-up Resistor 35.0 120.0 kΩ

ICC

Power Supply Current
Active Mode, VCC = 3V, 4 MHz 3.0 mA

Idle Mode VCC = 3V, 4 MHz 1.2 mA

Power-down mode(5)
WDT enabled, VCC = 3V 9.0 15.0 µA

WDT disabled, VCC = 3V <1.0 2.0 µA

VACIO
Analog Comparator 
Input Offset Voltage

VCC = 5V
Vin = VCC/2

40.0 mV

IACLK
Analog Comparator 
Input Leakage Current

VCC = 5V
Vin = VCC/2

-50.0 50.0 nA

tACPD
Analog Comparator 
Propagation Delay

VCC = 2.7V
VCC = 4.0V

750.0
500.0

ns
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