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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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one clock cycle. The resulting architecture is more code efficient while achieving
throughputs up to ten times faster than conventional CISC microcontrollers.

The AT90S8515 provides the following features: 8K bytes of In-System Programmable
Flash, 512 bytes EEPROM, 512 bytes SRAM, 32 general-purpose I/O lines, 32 general-
purpose working registers, flexible timer/counters with compare modes, internal and
external interrupts, a programmable serial UART, programmable Watchdog Timer with
internal oscillator, an SPI serial port and two software-selectable power-saving modes.
The Idle Mode stops the CPU while allowing the SRAM, timer/counters, SPI port and
interrupt system to continue functioning. The Power-down mode saves the register con-
tents but freezes the oscillator, disabling all other chip functions until the next external
interrupt or hardware reset.

The device is manufactured using Atmel’s high-density nonvolatile memory technology.
The On-chip In-System Programmable Flash allows the program memory to be repro-
grammed In-System through an SPI serial interface or by a conventional nonvolatile
memory programmer. By combining an enhanced RISC 8-bit CPU with In-System Pro-
grammable Flash on a monolithic chip, the Atmel AT90S8515 is a powerful
microcontroller that provides a highly flexible and cost-effective solution to many embed-
ded control applications.

The AT90S8515 AVR is supported with a full suite of program and system development
tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit
emulators and evaluation kits.

Pin Descriptions

VCC Supply voltage.

GND Ground.

Port A (PA7..PA0) Port A is an 8-bit bi-directional I/O port. Port pins can provide internal pull-up resistors
(selected for each bit). The Port A output buffers can sink 20 mA and can drive LED dis-
plays directly. When pins PA0 to PA7 are used as inputs and are externally pulled low,
they will source current if the internal pull-up resistors are activated. The Port A pins are
tri-stated when a reset condition becomes active, even if the clock is not active.

Port A serves as multiplexed address/data input/output when using external SRAM.

Port B (PB7..PB0) Port B is an 8-bit bi-directional I/O port with internal pull-up resistors. The Port B output
buffers can sink 20 mA. As inputs, Port B pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset
condition becomes active, even if the clock is not active.

Port B also serves the functions of various special features of the AT90S8515 as listed
on page 66.

Port C (PC7..PC0) Port C is an 8-bit bi-directional I/O port with internal pull-up resistors. The Port C output
buffers can sink 20 mA. As inputs, Port C pins that are externally pulled low will source
current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset
condition becomes active, even if the clock is not active.

Port C also serves as address output when using external SRAM.

Port D (PD7..PD0) Port D is an 8-bit bi-directional I/O port with internal pull-up resistors. The Port D output
buffers can sink 20 mA. As inputs, Port D pins that are externally pulled low will source
4 AT90S8515
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AT90S8515
Architectural 
Overview

The fast-access register file concept contains 32 x 8-bit general-purpose working regis-
ters with a single clock cycle access time. This means that during one single clock cycle,
one ALU (Arithmetic Logic Unit) operation is executed. Two operands are output from
the register file, the operation is executed and the result is stored back in the register file
– in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for
Data Space addressing, enabling efficient address calculations. One of the three
address pointers is also used as the address pointer for the constant table look-up func-
tion. These added function registers are the 16-bit X-, Y-, and Z-register.

The ALU supports arithmetic and logic functions between registers or between a con-
stant and a register. Single register operations are also executed in the ALU. Figure 4
shows the AT90S8515 AVR RISC microcontroller architecture.

In addition to the register operation, the conventional memory addressing modes can be
used on the register file as well. This is enabled by the fact that the register file is
assigned the 32 lowermost Data Space addresses ($00 - $1F), allowing them to be
accessed as though they were ordinary memory locations.

The I/O memory space contains 64 addresses for CPU peripheral functions such as
Control Registers, Timer/Counters, A/D converters and other I/O functions. The I/O
memory can be accessed directly or as the Data Space locations following those of the
register file, $20 - $5F.

The AVR uses a Harvard architecture concept – with separate memories and buses for
program and data. The program memory is executed with a two-stage pipeline. While
one instruction is being executed, the next instruction is pre-fetched from the program
memory. This concept enables instructions to be executed in every clock cycle. The pro-
gram memory is In-System Programmable Flash memory.

With the relative jump and call instructions, the whole 4K address space is directly
accessed. Most AVR instructions have a single 16-bit word format. Every program
memory address contains a 16- or 32-bit instruction.

During interrupts and subroutine calls, the return address Program Counter (PC) is
stored on the stack. The stack is effectively allocated in the general data SRAM and
consequently, the stack size is only limited by the total SRAM size and the usage of the
SRAM. All user programs must initialize the SP in the reset routine (before subroutines
or interrupts are executed). The 16-bit Stack Pointer (SP) is read/write-accessible in the
I/O space.

The 512-byte data SRAM can be easily accessed through the five different addressing
modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.
7
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AT90S8515
External Reset An external reset is generated by a low level on the RESET pin. Reset pulses longer
than 50 ns will generate a reset, even if the clock is not running. Shorter pulses are not
guaranteed to generate a reset. When the applied signal reaches the Reset Threshold
Voltage (VRST) on its positive edge, the delay timer starts the MCU after the Time-out
period tTOUT has expired.

Figure 26.  External Reset during Operation

Watchdog Reset When the Watchdog times out, it will generate a short reset pulse of 1 XTAL cycle dura-
tion. On the falling edge of this pulse, the delay timer starts counting the Time-out period
tTOUT. Refer to page 42 for details on operation of the Watchdog.

Figure 27.  Watchdog Reset during Operation

Interrupt Handling The AT90S8515 has two 8-bit interrupt mask control registers; GIMSK (General Inter-
rupt Mask register) and TIMSK (Timer/Counter Interrupt Mask register).

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared (zero) and all inter-
rupts are disabled. The user software can set (one) the I-bit to enable nested interrupts.
The I-bit is set (one) when a Return from Interrupt instruction (RETI) is executed.

For interrupts triggered by events that can remain static (e.g., the Output Compare
Register1 matching the value of Timer/Counter1), the interrupt flag is set when the event
occurs. If the interrupt flag is cleared and the interrupt condition persists, the flag will not
be set until the event occurs the next time.

When the Program Counter is vectored to the actual interrupt vector in order to execute
the interrupt handling routine, hardware clears the corresponding flag that generated the
25
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AT90S8515
Sleep Modes To enter the sleep modes, the SE bit in MCUCR must be set (one) and a SLEEP instruc-
tion must be executed. If an enabled interrupt occurs while the MCU is in a sleep mode,
the MCU awakes, executes the interrupt routine and resumes execution from the
instruction following SLEEP. The contents of the register file, SRAM and I/O memory
are unaltered. If a reset occurs during Sleep Mode, the MCU wakes up and executes
from the Reset vector.

Idle Mode When the SM bit is cleared (zero), the SLEEP instruction forces the MCU into the Idle
Mode, stopping the CPU but allowing Timer/Counters, Watchdog and the interrupt sys-
tem to continue operating. This enables the MCU to wake up from external triggered
interrupts as well as internal ones like Timer Overflow interrupt and Watchdog reset. If
wake-up from the Analog Comparator interrupt is not required, the Analog Comparator
can be powered down by setting the ACD-bit in the Analog Comparator Control and Sta-
tus Register (ACSR). This will reduce power consumption in Idle Mode. When the MCU
wakes up from Idle Mode, the CPU starts program execution immediately.

Power-down Mode When the SM bit is set (one), the SLEEP instruction forces the MCU into the Power-
down mode. In this mode, the external oscillator is stopped, while the external interrupts
and the Watchdog (if enabled) continue operating. Only an external reset, a Watchdog
reset (if enabled), or an external level interrupt on INT0 or INT1 can wake up the MCU.

Note that when a level-triggered interrupt is used for wake-up from power-down, the low
level must be held for a time longer than the reset delay Time-out period tTOUT. Other-
wise, the MCU will fail to wake up.
31
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AT90S8515
Figure 29.  Timer/Counter0 Block Diagram

Timer/Counter0 Control 
Register – TCCR0

• Bits 7..3 – Res: Reserved Bits

These bits are reserved bits in the AT90S8515 and always read as zero.

• Bits 2, 1, 0 – CS02, CS01, CS00: Clock Select0, Bits 2, 1 and 0

The Clock Select0 bits 2, 1 and 0 define the prescaling source of Timer/Counter0.

Bit 7 6 5 4 3 2 1 0

$33 ($53) – – – – – CS02 CS01 CS00 TCCR0
Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 7.  Clock 0 Prescale Select

CS02 CS01 CS00 Description

0 0 0 Stop, the Timer/Counter0 is stopped.

0 0 1 CK

0 1 0 CK/8

0 1 1 CK/64

1 0 0 CK/256

1 0 1 CK/1024

1 1 0 External Pin T0, falling edge

1 1 1 External Pin T0, rising edge
33
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The Stop condition provides a Timer Enable/Disable function. The CK down divided
modes are scaled directly from the CK oscillator clock. If the external pin modes are
used for Timer/Counter1, transitions on PB1/(T1) will clock the counter even if the pin is
configured as an output. This feature can give the user software control of the counting.

Timer/Counter1 – TCNT1H 
AND TCNT1L

This 16-bit register contains the prescaled value of the 16-bit Timer/Counter1. To
ensure that both the high and low bytes are read and written simultaneously when the
CPU accesses these reg is ters ,  the access is  per fo rmed us ing an 8-b i t
temporary register (TEMP). This temporary register is also used when accessing
OCR1A, OCR1B and ICR1. If the main program and interrupt routines perform access
to registers using TEMP, interrupts must be disabled during access from the main pro-
gram (and from interrupt routines if interrupts are allowed from within interrupt routines).

• TCNT1 Timer/Counter1 Write:
When the CPU writes to the high byte TCNT1H, the written data is placed in the 
TEMP register. Next, when the CPU writes the low byte TCNT1L, this byte of data is 
combined with the byte data in the TEMP register, and all 16 bits are written to the 
TCNT1 Timer/Counter1 register simultaneously. Consequently, the high byte 
TCNT1H must be accessed first for a full 16-bit register write operation.

• TCNT1 Timer/Counter1 Read:
When the CPU reads the low byte TCNT1L, the data of the low byte TCNT1L is sent 
to the CPU and the data of the high byte TCNT1H is placed in the TEMP register. 
When the CPU reads the data in the high byte TCNT1H, the CPU receives the data 
in the TEMP register. Consequently, the low byte TCNT1L must be accessed first for 
a full 16-bit register read operation.

The Timer/Counter1 is realized as an up or up/down (in PWM mode) counter with read
and write access. If Timer/Counter1 is written to and a clock source is selected, the
Timer/Counter1 continues counting in the timer clock cycle after it is preset with the writ-
ten value.

Timer/Counter1 Output 
Compare Register – OCR1AH 
AND OCR1AL

Bit 15 14 13 12 11 10 9 8

$2D ($4D) MSB TCNT1H
$2C ($4C) LSB TCNT1L

7 6 5 4 3 2 1 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8

$2B ($4B) MSB OCR1AH
$2A ($4A) LSB OCR1AL

7 6 5 4 3 2 1 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
38 AT90S8515
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AT90S8515
SPI Data Register – SPDR

The SPI Data Register is a read/write register used for data transfer between the regis-
ter file and the SPI Shift Register. Writing to the register initiates data transmission.
Reading the register causes the Shift Register Receive buffer to be read.

Bit 7 6 5 4 3 2 1 0

$0F ($2F) MSB LSB SPDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value x x x x x x x x Undefined
51
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The receiver front-end logic samples the signal on the RXD pin at a frequency 16 times
the baud rate. While the line is idle, one single sample of logical “0” will be interpreted as
the falling edge of a start bit and the start bit detection sequence is initiated. Let sample
1 denote the first zero-sample. Following the 1-to-0 transition, the receiver samples the
RXD pin at samples 8, 9 and 10. If two or more of these three samples are found to be
logical “1”s, the start bit is rejected as a noise spike and the receiver starts looking for
the next 1-to-0 transition.

If, however, a valid start bit is detected, sampling of the data bits following the start bit is
performed. These bits are also sampled at samples 8, 9 and 10. The logical value found
in at least two of the three samples is taken as the bit value. All bits are shifted into the
Transmitter Shift register as they are sampled. Sampling of an incoming character is
shown in Figure 40.

Figure 40.  Sampling Received Data

When the stop bit enters the receiver, the majority of the three samples must be “1” to
accept the stop bit. If two or more samples are logical “0”s, the Framing Error (FE) flag in
the UART Status Register (USR) is set. Before reading the UDR register, the user
should always check the FE bit to detect framing errors.

Whether or not a valid stop bit is detected at the end of a character reception cycle, the
data is transferred to UDR and the RXC flag in USR is set. UDR is in fact two physically
separate registers, one for transmitted data and one for received data. When UDR is
read, the Receive Data register is accessed, and when UDR is written, the Transmit
Data register is accessed. If 9-bit data word is selected (the CHR9 bit in the UART Con-
trol Register, UCR is set), the RXB8 bit in UCR is loaded with bit 9 in the Transmit Shift
register when data is transferred to UDR.

If, after having received a character, the UDR register has not been read since the last
receive, the OverRun (OR) flag in USR is set. This means that the last data byte shifted
into the shift register could not be transferred to UDR and has been lost. The OR bit is
buffered and is updated when the valid data byte in UDR is read. Thus, the user should
always check the OR bit after reading the UDR register in order to detect any overruns if
the baud rate is high or CPU load is high.

When the RXEN bit in the UCR register is cleared (zero), the receiver is disabled. This
means that the PD0 pin can be used as a general I/O pin. When RXEN is set, the UART
Receiver will be connected to PD0, which is forced to be an input pin regardless of the
setting of the DDD0 bit in DDRD. When PD0 is forced to input by the UART, the
PORTD0 bit can still be used to control the pull-up resistor on the pin.

When the CHR9 bit in the UCR register is set, transmitted and received characters are
9 bits long, plus start and stop bits. The ninth data bit to be transmitted is the TXB8 bit in
UCR register. This bit must be set to the wanted value before a transmission is initiated
by writing to the UDR register. The ninth data bit received is the RXB8 bit in the UCR
register.
54 AT90S8515
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The FE bit is cleared when the stop bit of received data is one.

• Bit 3 – OR: Overrun

This bit is set if an Overrun condition is detected, i.e., when a character already present
in the UDR register is not read before the next character has been shifted into the
Receiver Shift register. The OR bit is buffered, which means that it will be set once the
valid data still in UDRE is read.

The OR bit is cleared (zero) when data is received and transferred to UDR.

• Bits 2..0 – Res: Reserved Bits

These bits are reserved bits in the AT90S8515 and will always read as zero.

UART Control Register – UCR

• Bit 7 – RXCIE: RX Complete Interrupt Enable

When this bit is set (one), a setting of the RXC bit in USR will cause the Receive Com-
plete Interrupt routine to be executed provided that global interrupts are enabled.

• Bit 6 – TXCIE: TX Complete Interrupt Enable

When this bit is set (one), a setting of the TXC bit in USR will cause the Transmit Com-
plete Interrupt routine to be executed provided that global interrupts are enabled.

• Bit 5 – UDRIE: UART Data Register Empty Interrupt Enable

When this bit is set (one), a setting of the UDRE bit in USR will cause the UART Data
Register Empty Interrupt routine to be executed provided that global interrupts are
enabled.

• Bit 4 – RXEN: Receiver Enable

This bit enables the UART receiver when set (one). When the receiver is disabled, the
RXC, OR and FE status flags cannot become set. If these flags are set, turning off
RXEN does not cause them to be cleared.

• Bit 3 – TXEN: Transmitter Enable

This bit enables the UART transmitter when set (one). When disabling the transmitter
while transmitting a character, the transmitter is not disabled before the character in the
shift register plus any following character in UDR has been completely transmitted.

• Bit 2 – CHR9: 9-bit Characters

When this bit is set (one) transmitted and received characters are 9 bits long plus start
and stop bits. The ninth bit is read and written by using the RXB8 and TXB8 bits in UCR,
respectively. The ninth data bit can be used as an extra stop bit or a parity bit.

• Bit 1 – RXB8: Receive Data Bit 8

When CHR9 is set (one), RXB8 is the ninth data bit of the received character.

• Bit 0 – TXB8: Transmit Data Bit 8

When CHR9 is set (one), TXB8 is the ninth data bit in the character to be transmitted.

Bit 7 6 5 4 3 2 1 0

$0A ($2A) RXCIE TXCIE UDRIE RXEN TXEN CHR9 RXB8 TXB8 UCR
Read/Write R/W R/W R/W R/W R/W R/W R W

Initial Value 0 0 0 0 0 0 1 0
56 AT90S8515
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using the SBI or CBI instruction, ACI will be cleared if it has become set before the
operation.

• Bit 3 – ACIE: Analog Comparator Interrupt Enable

When the ACIE bit is set (one) and the I-bit in the Status Register is set (one), the Ana-
log Comparator interrupt is activated. When cleared (zero), the interrupt is disabled.

• Bit 2 – ACIC: Analog Comparator Input Capture Enable

When set (one), this bit enables the Input Capture function in Timer/Counter1 to be trig-
gered by the Analog Comparator. The comparator output is, in this case, directly
connected to the Input Capture front-end logic, making the comparator utilize the noise
canceler and edge select features of the Timer/Counter1 Input Capture interrupt. When
cleared (zero), no connection between the Analog Comparator and the Input Capture
function is given. To make the comparator trigger the Timer/Counter1 Input Capture
interrupt, the TICIE1 bit in the Timer Interrupt Mask Register (TIMSK) must be set (one).

• Bits 1, 0 – ACIS1, ACIS0: Analog Comparator Interrupt Mode Select

These bits determine which comparator events trigger the Analog Comparator interrupt.
The different settings are shown in Table 18.

Note: When changing the ACIS1/ACIS0 bits, the Analog Comparator interrupt must be dis-
abled by clearing its interrupt enable bit in the ACSR register. Otherwise an interrupt can
occur when the bits are changed.

Interface to External 
SRAM

The interface to the SRAM consists of:

Port A: Multiplexed low-order address bus and data bus

Port C: High-order address bus

The ALE pin: Address latch enable

The RD and WR pins: Read and write strobes

The external data SRAM is enabled by setting the SRE (external SRAM enable) bit of
the MCUCR (MCU Control Register) and will override the setting of the Data Direction
Register (DDRA). When the SRE bit is cleared (zero), the external data SRAM is dis-
abled and the normal pin and data direction settings are used. When SRE is cleared
(zero), the address space above the internal SRAM boundary is not mapped into the
internal SRAM, as AVR parts do not have an interface to the external SRAM.

When ALE goes from high to low, there is a valid address on Port A. ALE is low during a
data transfer. RD and WR are active when accessing the external SRAM only.

When the external SRAM is enabled, the ALE signal may have short pulses when
accessing the internal RAM, but the ALE signal is stable when accessing the external
SRAM.

Figure 42 sketches how to connect an external SRAM to the AVR using eight latches
that are transparent when G is high.

Table 18.  ACIS1/ACIS0 Settings

ACIS1 ACIS0 Interrupt Mode

0 0 Comparator Interrupt on Output Toggle

0 1 Reserved

1 0 Comparator Interrupt on Falling Output Edge

1 1 Comparator Interrupt on Rising Output Edge
60 AT90S8515
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AT90S8515
Port B Port B is an 8-bit bi-directional I/O port.

Three I/O memory address locations are allocated for the Port B, one each for the Data
Register – PORTB, $18($38), Data Direction Register – DDRB, $17($37) and the Port B
Input Pins – PINB, $16($36). The Port B Input Pins address is read-only, while the Data
Register and the Data Direction Register are read/write.

All port pins have individually selectable pull-up resistors. The Port B output buffers can
sink 20 mA and thus drive LED displays directly. When pins PB0 to PB7 are used as
inputs and are externally pulled low, they will source current if the internal pull-up resis-
tors are activated.

The Port B pins with alternate functions are shown in Table 20.

When the pins are used for the alternate function, the DDRB and PORTB registers have
to be set according to the alternate function description.

Port B Data Register – PORTB

Port B Data Direction Register 
– DDRB

Port B Input Pins Address – 
PINB

The Port B Input Pins address (PINB) is not a register; this address enables access to
the physical value on each Port B pin. When reading PORTB, the Port B Data Latch is
read and when reading PINB, the logical values present on the pins are read.

Table 20.  Port B Pin Alternate Functions

Port Pin Alternate Functions

PB0 T0 (Timer/Counter 0 External Counter Input)

PB1 T1 (Timer/Counter 1 External Counter Input)

PB2 AIN0 (Analog Comparator positive input)

PB3 AIN1 (Analog Comparator negative input)

PB4 SS (SPI Slave Select Input)

PB5 MOSI (SPI Bus Master Output/Slave Input)

PB6 MISO (SPI Bus Master Input/Slave Output)

PB7 SCK (SPI Bus Serial Clock)

Bit 7 6 5 4 3 2 1 0

$18 ($38) PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 PORTB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

$17 ($37) DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 DDRB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

$16 ($36) PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 PINB
Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
65
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AT90S8515
Figure 49.  Port B Schematic Diagram (Pin PB5)

Figure 50.  Port B Schematic Diagram (Pin PB6)
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AT90S8515
Figure 58.  Port D Schematic Diagram (Pin PD6)

Figure 59.  Port D Schematic Diagram (Pin PD7)
77
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Memory 
Programming

Program and Data 
Memory Lock Bits

The AT90S8515 MCU provides two Lock bits that can be left unprogrammed (“1”) or can
be programmed (“0”) to obtain the additional features listed in Table 25. The Lock bits
can only be erased with the Chip Erase command.

Note: 1. In Parallel Mode, further programming of the Fuse bits is also disabled. Program the
Fuse bits before programming the Lock bits.

Fuse Bits The AT90S8515 has two Fuse bits, SPIEN and FSTRT.

• When the SPIEN Fuse is programmed (“0”), Serial Program and Data Downloading 
is enabled. Default value is programmed (“0”).

• When the FSTRT Fuse is programmed (“0”), the short start-up time is selected. 
Default value is unprogrammed (“1”). Parts with this bit pre-programmed (“0”) can 
be delivered on demand.

The Fuse bits are not accessible in Serial Programming Mode. The status of the Fuse
bits is not affected by Chip Erase.

Signature Bytes All Atmel microcontrollers have a three-byte signature code that identifies the device.
This code can be read in both Serial and Parallel mode. The three bytes reside in a sep-
arate address space.

For the AT90S8515(1) they are:

1. $000: $1E (indicates manufactured by Atmel)

2. $001: $93 (indicates 8 KB Flash memory)

3. $002: $01 (indicates AT90S8515 device when signature byte $001 is $93)
Note: 1. When both Lock bits are programmed (lock mode 3), the signature bytes cannot be

read in Serial Mode. Reading the signature bytes will return: $00, $01 and $02.

Programming the Flash 
and EEPROM

Atmel’s AT90S8515 offers 8K bytes of In-System Reprogrammable Flash program
memory and 512 bytes of EEPROM data memory.

The AT90S8515 is shipped with the On-chip Flash program and EEPROM data memory
arrays in the erased state (i.e., contents = $FF) and ready to be programmed. This
device supports a high-voltage (12V) Parallel Programming Mode and a low-voltage
Serial Programming Mode. The +12V is used for programming enable only, and no cur-
rent of significance is drawn by this pin. The Serial Programming Mode provides a
convenient way to download program and data into the AT90S8515 inside the user’s
system.

The program and data memory arrays on the AT90S8515 are programmed byte-by-byte
in either programming mode. For the EEPROM, an auto-erase cycle is provided within

Table 25.  Lock Bit Protection Modes

Memory Lock Bits

Protection TypeMode LB1 LB2

1 1 1 No memory lock features enabled.

2 0 1 Further programming of the Flash and EEPROM is disabled.(1)

3 0 0 Same as mode 2, and verify is also disabled.
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Enter Programming Mode The following algorithm puts the device in Parallel Programming Mode:

1. Apply supply voltage according to Table 26, between VCC and GND.

2. Set the RESET and BS pin to “0” and wait at least 100 ns.

3. Apply 11.5 - 12.5V to RESET. Any activity on BS within 100 ns after +12V has 
been applied to RESET will cause the device to fail entering programming mode.

Table 27.  Pin Name Mapping

Signal Name in 
Programming Mode Pin Name I/O Function

RDY/BSY PD1 O
0: Device is busy programming, 1: Device is ready 
for new command

OE PD2 I Output Enable (Active low)

WR PD3 I Write Pulse (Active low)

BS PD4 I
Byte Select (“0” selects low byte, “1” selects high 
byte)

XA0 PD5 I XTAL Action Bit 0

XA1 PD6 I XTAL Action Bit 1

DATA PB7-0 I/O Bi-directional Data Bus (Output when OE is low)

Table 28.  XA1 and XA0 Coding

XA1 XA0 Action when XTAL1 is Pulsed

0 0 Load Flash or EEPROM Address (High or low address byte determined by BS)

0 1 Load Data (High or low data byte for Flash determined by BS)

1 0 Load Command

1 1 No Action, Idle

Table 29.  Command Byte Bit Coding

Command Byte Command Executed

1000 0000 Chip Erase

0100 0000 Write Fuse Bits

0010 0000 Write Lock Bits

0001 0000 Write Flash

0001 0001 Write EEPROM

0000 1000 Read Signature Bytes

0000 0100 Read Lock and Fuse Bits

0000 0010 Read Flash

0000 0011 Read EEPROM
80 AT90S8515
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AT90S8515
Chip Erase The Chip Erase command will erase the Flash and EEPROM memories and the Lock
bits. The Lock bits are not reset until the Flash and EEPROM have been completely
erased. The Fuse bits are not changed. Chip Erase must be performed before the Flash
or EEPROM is reprogrammed.

Load Command “Chip Erase”

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS to “0”.

3. Set DATA to “1000 0000”. This is the command for Chip Erase.

4. Give XTAL1 a positive pulse. This loads the command.

5. Give WR a tWLWH_CE-wide negative pulse to execute Chip Erase. See Table 30 
on page 85 for tWLWH_CE value. Chip Erase does not generate any activity on the 
RDY/BSY pin.

Programming the Flash A: Load Command “Write Flash”

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS to “0”.

3. Set DATA to “0001 0000”. This is the command for Write Flash.

4. Give XTAL1 a positive pulse. This loads the command.

B: Load Address High Byte

1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS to “1”. This selects high byte.

3. Set DATA = Address high byte ($00 - $0F).

4. Give XTAL1 a positive pulse. This loads the address high byte.

C: Load Address Low Byte

1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS to “0”. This selects low byte.

3. Set DATA = Address low byte ($00 - $FF).

4. Give XTAL1 a positive pulse. This loads the address low byte.

D: Load Data Low Byte

1. Set XA1, XA0 to “01”. This enables data loading.

2. Set DATA = Data low byte ($00 - $FF).

3. Give XTAL1 a positive pulse. This loads the data low byte.

E: Write Data Low Byte

1. Set BS to “0”. This selects low data.

2. Give WR a negative pulse. This starts programming of the data byte. RDY/BSY 
goes low.

3. Wait until RDY/BSY goes high to program the next byte.

(See Figure 61 for signal waveforms.)

F: Load Data High Byte

1. Set XA1, XA0 to “01”. This enables data loading.

2. Set DATA = Data high byte ($00 - $FF).

3. Give XTAL1 a positive pulse. This loads the data high byte.

G: Write Data High Byte
81
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Bit 5 = SPIEN Fuse bit

Bit 0 = FSTRT Fuse bit

Bit 7 - 6, 4 - 1 = “1”. These bits are reserved and should be left unprogrammed (“1”).

3. Give WR a tWLWH_PFB-wide negative pulse to execute the programming, 
tWLWH_PFB is found in Table 30. Programming the Fuse bits does not generate 
any activity on the RDY/BSY pin.

Programming the Lock Bits The algorithm for programming the Lock bits is as follows (refer to “Programming the
Flash” on page 81 for details on command and data loading):

1. A: Load Command “0010 0000”.

2. D: Load Data Low Byte. Bit n = “0” programs the Lock bit.

Bit 2 = Lock Bit2

Bit 1 = Lock Bit1

Bit 7 - 3, 0 = “1”. These bits are reserved and should be left unprogrammed (“1”).

3. E: Write Data Low Byte.

The Lock bits can only be cleared by executing Chip Erase.

Reading the Fuse and Lock 
Bits

The algorithm for reading the Fuse and Lock bits is as follows (refer to “Programming
the Flash” on page 81 for details on Command loading):

1. A: Load Command “0000 0100”.

2. Set OE to “0”, and BS to “1”. The status of the Fuse and Lock bits can now be 
read at DATA (“0” means programmed).

Bit 7 = Lock Bit1

Bit 6 = Lock Bit2

Bit 5 = SPIEN Fuse bit

Bit 0 = FSTRT Fuse bit

3. Set OE to “1”.

Observe that BS needs to be set to “1”.

Reading the Signature Bytes The algorithm for reading the signature bytes is as follows (refer to “Programming the
Flash” on page 81 for details on command and address loading):

1. A: Load Command “0000 1000”.

2. C: Load Address Low Byte ($00 - $02).

Set OE to “0”, and BS to “0”. The selected signature byte can now be read at DATA.

3. Set OE to “1”.
84 AT90S8515
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AT90S8515
Analog Comparator offset voltage is measured as absolute offset.

Figure 76.  Analog Comparator Offset Voltage vs. Common Mode Voltage

Figure 77.  Analog Comparator Offset Voltage vs. Common Mode Voltage
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Figure 82.  I/O Pin Sink Current vs. Output Voltage

Figure 83.  I/O Pin Source Current vs. Output Voltage
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AT90S8515
Packaging Information

44A

1.20(0.047) MAX

10.10(0.394)
  9.90(0.386)

SQ

12.25(0.482)
11.75(0.462)

SQ

0.75(0.030)
0.45(0.018)

0.15(0.006)
0.05(0.002)

0.20(0.008)
0.09(0.004)

0˚~7˚ 

0.80(0.0315) BSC

PIN 1 ID

0.45(0.018)
0.30(0.012)

    PIN 1

*Controlling dimension: millimetter

44-lead, Thin (1.0mm) Plastic Quad Flat Package 
(TQFP), 10x10mm body, 2.0mm footprint, 0.8mm pitch.
Dimension in Millimeters and  (Inches)*
JEDEC STANDARD MS-026 ACB

REV. A     04/11/2001
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