

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

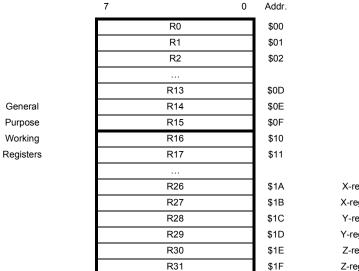
Details

Product Status	Obsolete
Core Processor	AVR
Core Size	8-Bit
Speed	8MHz
Connectivity	SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	32
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at90s8515a-8ai

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not active.
	Port D also serves the functions of various special features of the AT90S8515 as listed on page 73.
RESET	Reset input. A low level on this pin for more than 50 ns will generate a reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a reset.
XTAL1	Input to the inverting oscillator amplifier and input to the internal clock operating circuit.
XTAL2	Output from the inverting oscillator amplifier.
ICP	ICP is the input pin for the Timer/Counter1 Input Capture function.
OC1B	OC1B is the output pin for the Timer/Counter1 Output CompareB function.
ALE	ALE is the Address Latch Enable used when the External Memory is enabled. The ALE strobe is used to latch the low-order address (8 bits) into an address latch during the first access cycle, and the AD0 - 7 pins are used for data during the second access cycle.



General-purpose Register File

Figure 6 shows the structure of the 32 general-purpose working registers in the CPU.

Figure 6. AVR CPU General-purpose Working Registers

X-register low byte X-register high byte Y-register low byte Y-register high byte Z-register low byte Z-register high byte

All the register operating instructions in the instruction set have direct and single-cycle access to all registers. The only exception are the five constant arithmetic and logic instructions SBCI, SUBI, CPI, ANDI and ORI between a constant and a register and the LDI instruction for load immediate constant data. These instructions apply to the second half of the registers in the register file (R16..R31). The general SBC, SUB, CP, AND and OR and all other operations between two registers or on a single register apply to the entire register file.

As shown in Figure 6, each register is also assigned a data memory address, mapping them directly into the first 32 locations of the user Data Space. Although not being physically implemented as SRAM locations, this memory organization provides great flexibility in access of the registers, as the X-, Y- and Z-registers can be set to index any register in the file.

The registers R26..R31 have some added functions to their general-purpose usage. These registers are address pointers for indirect addressing of the Data Space. The three indirect address registers X, Y, and Z are defined as:

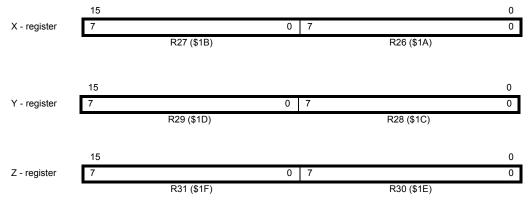
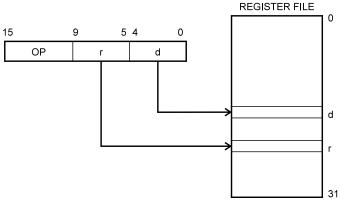


Figure 7. X-, Y-, and Z-registers

AT90S8515


X-register, Y-register and

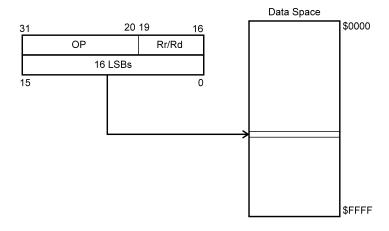
Z-register

10


Register Direct, Two Registers Figure 10. Direct Register Addressing, Two Registers Rd and Rr

Operands are contained in register r (Rr) and d (Rd). The result is stored in register d (Rd).

I/O Direct


Figure 11. I/O Direct Addressing

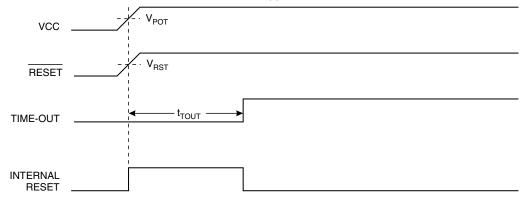
Operand address is contained in six bits of the instruction word. n is the destination or source register address.

Data Direct

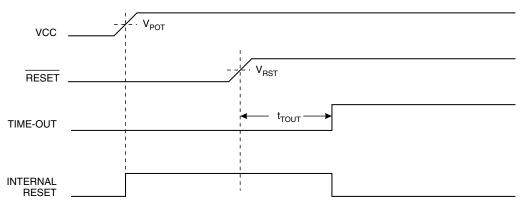
Figure 12. Direct Data Addressing

The user can select the start-up time according to typical oscillator start-up. The number of WDT oscillator cycles used for each time-out is shown in Table 4. The frequency of the Watchdog Oscillator is voltage-dependent as shown in "Typical Characteristics" on page 95.

Table 4.	Number of Watchdog Oscillator Cycles	
----------	--------------------------------------	--

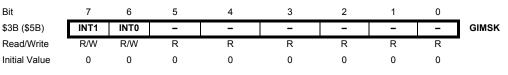

FSTRT	Time-out at V _{CC} = 5V	Number of WDT Cycles
Programmed	0.28 ms	256
Unprogrammed	16.0 ms	16K

Power-on Reset


A Power-on Reset (POR) circuit ensures that the device is reset from power-on. As shown in Figure 23, an internal timer clocked from the Watchdog Timer oscillator prevents the MCU from starting until after a certain period after V_{CC} has reached the Power-on Threshold Voltage (V_{POT}), regardless of the V_{CC} rise time (see Figure 24). The FSTRT Fuse bit in the Flash can be programmed to give a shorter start-up time if a certamic resonator or any other fast-start oscillator is used to clock the MCU.

If the built-in start-up delay is sufficient, $\overline{\text{RESET}}$ can be connected to V_{CC} directly or via an external pull-up resistor. By holding the pin low for a period after V_{CC} has been applied, the Power-on Reset period can be extended. Refer to Figure 25 for a timing example of this.

Figure 25. MCU Start-up, RESET Controlled Externally


interrupt. Some of the interrupt flags can also be cleared by writing a logical "1" to the flag bit position(s) to be cleared.

If an interrupt condition occurs when the corresponding interrupt enable bit is cleared (zero), the interrupt flag will be set and remembered until the interrupt is enabled or the flag is cleared by software.

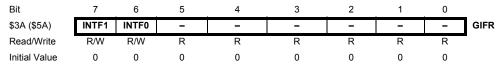
If one or more interrupt conditions occur when the global interrupt enable bit is cleared (zero), the corresponding interrupt flag(s) will be set and remembered until the global interrupt enable bit is set (one) and will be executed by order of priority.

Note that external level interrupt does not have a flag and will only be remembered for as long as the interrupt condition is active.

General Interrupt Mask Register – GIMSK

Bit 7 – INT1: External Interrupt Request 1 Enable

When the INT1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the external pin interrupt is enabled. The Interrupt Sense Control1 bits 1/0 (ISC11 and ISC10) in the MCU general Control Register (MCUCR) define whether the external interrupt is activated on rising or falling edge of the INT1 pin or is level-sensed. Activity on the pin will cause an interrupt request even if INT1 is configured as an output. The corresponding interrupt of External Interrupt Request 1 is executed from program memory address \$002. See also "External Interrupts".


• Bit 6 – INT0: External Interrupt Request 0 Enable

When the INT0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the external pin interrupt is enabled. The Interrupt Sense Control0 bits 1/0 (ISC01 and ISC00) in the MCU general Control Register (MCUCR) define whether the external interrupt is activated on rising or falling edge of the INT0 pin or is level-sensed. Activity on the pin will cause an interrupt request even if INT0 is configured as an output. The corresponding interrupt of External Interrupt Request 0 is executed from program memory address \$001. See also "External Interrupts".

• Bits 5..0 - Res: Reserved Bits

These bits are reserved bits in the AT90S8515 and always read as zero.

General Interrupt Flag Register – GIFR

• Bit 7 – INTF1: External Interrupt Flag1

When an edge on the INT1 pin triggers an interrupt request, the corresponding interrupt flag, INTF1 becomes set (one). If the I-bit in SREG and the corresponding interrupt enable bit, INT1 in GIMSK is set (one), the MCU will jump to the interrupt vector. The flag is cleared when the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical "1" to it. This flag is always cleared when INT1 is configured as level interrupt.

Timer/Counter Interrupt Flag Register – TIFR

Bit	7	6	5	4	3	2	1	0	_
\$38 (\$58)	TOV1	OCF1A	OCIFB	-	ICF1	-	TOV0	-	TIFR
Read/Write	R/W	R/W	R/W	R	R/W	R	R/W	R	-
Initial Value	0	0	0	0	0	0	0	0	

• Bit 7 – TOV1: Timer/Counter1 Overflow Flag

The TOV1 is set (one) when an overflow occurs in Timer/Counter1. TOV1 is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, TOV1 is cleared by writing a logical "1" to the flag. When the I-bit in SREG, TOIE1 (Timer/Counter1 Overflow Interrupt Enable) and TOV1 are set (one), the Timer/Counter1 Overflow interrupt is executed. In PWM mode, this bit is set when Timer/Counter1 changes counting direction at \$0000.

• Bit 6 – OCF1A: Output Compare Flag 1A

The OCF1A bit is set (one) when compare match occurs between the Timer/Counter1 and the data in OCR1A (Output Compare Register 1A). OCF1A is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, OCF1A is cleared by writing a logical "1" to the flag. When the I-bit in SREG, OCIE1A (Timer/Counter1 Compare Match InterruptA Enable) and the OCF1A are set (one), the Timer/Counter1 CompareA Match interrupt is executed.

• Bit 5 – OCF1B: Output Compare Flag 1B

The OCF1B bit is set (one) when compare match occurs between the Timer/Counter1 and the data in OCR1B (Output Compare Register 1B). OCF1B is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, OCF1B is cleared by writing a logical "1" to the flag. When the I-bit in SREG, OCIE1B (Timer/Counter1 Compare Match InterruptB Enable) and the OCF1B are set (one), the Timer/Counter1 CompareB Match interrupt is executed.

• Bit 4 - Res: Reserved Bit

This bit is a reserved bit in the AT90S8515 and always reads zero.

• Bit 3 – ICF1: Input Capture Flag 1

The ICF1 bit is set (one) to flag an input capture event, indicating that the Timer/Counter1 value has been transferred to the input capture register (ICR1). ICF1 is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, ICF1 is cleared by writing a logical "1" to the flag. When the SREG I-bit, TICIE1 (Timer/Counter1 Input Capture Interrupt Enable) and ICF1 are set (one), the Timer/Counter1 Capture interrupt is executed.

• Bit 2 - Res: Reserved Bit

This bit is a reserved bit in the AT90S8515 and always reads zero.

• Bit 1 – TOV: Timer/Counter0 Overflow Flag

The bit TOV0 is set (one) when an overflow occurs in Timer/Counter0. TOV0 is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, TOV0 is cleared by writing a logical "1" to the flag. When the SREG I-bit, TOIE0 (Timer/Counter0 Overflow Interrupt Enable) and TOV0 are set (one), the Timer/Counter0 Overflow interrupt is executed.

• Bit 0 – Res: Reserved Bit

This bit is a reserved bit in the AT90S8515 and always reads zero.

AT90S8515

External Interrupts The external interrupts are triggered by the INT1 and INT0 pins. Observe that, if enabled, the interrupts will trigger even if the INT0/INT1 pins are configured as outputs. This feature provides a way of generating a software interrupt. The external interrupts can be triggered by a falling or rising edge or a low level. This is set up as indicated in the specification for the MCU Control Register (MCUCR). When the external interrupt is enabled and is configured as level-triggered, the interrupt will trigger as long as the pin is held low.

The external interrupts are set up as described in the specification for the MCU Control Register (MCUCR).

Interrupt Response Time The interrupt execution response for all the enabled AVR interrupts is four clock cycles minimum. Four clock cycles after the interrupt flag has been set, the program vector address for the actual interrupt handling routine is executed. During this 4-clock-cycle period, the Program Counter (2 bytes) is pushed onto the stack and the Stack Pointer is decremented by 2. The vector is normally a relative jump to the interrupt routine, and this jump takes two clock cycles. If an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed before the interrupt is served.

A return from an interrupt handling routine (same as for a subroutine call routine) takes four clock cycles. During these four clock cycles, the Program Counter (2 bytes) is popped back from the stack, the Stack Pointer is incremented by 2 and the I-flag in SREG is set. When the AVR exits from an interrupt, it will always return to the main program and execute one more instruction before any pending interrupt is served.

Note that the Status Register (SREG) is not handled by the AVR hardware, for neither interrupts nor subroutines. For the interrupt handling routines requiring a storage of the SREG, this must be performed by user software.

For interrupts triggered by events that can remain static (e.g., the Output Compare Register1 A matching the value of Timer/Counter1), the interrupt flag is set when the event occurs. If the interrupt flag is cleared and the interrupt condition persists, the flag will not be set until the event occurs the next time. Note that an external level interrupt will only be remembered for as long as the interrupt condition is active.

MCU Control Register – MCUCR

The MCU Control Register contains control bits for general MCU functions.

Bit	7	6	5	4	3	2	1	0	
\$35 (\$55)	SRE	SRW	SE	SM	ISC11	ISC10	ISC01	ISC00	MCUCR
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

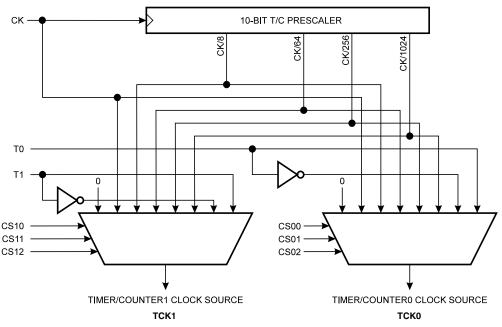
• Bit 7 – SRE: External SRAM Enable

When the SRE bit is set (one), the external data SRAM is enabled and the pin functions AD0 - 7 (Port A), A8 - 15 (Port C), $\overline{\text{WR}}$ and $\overline{\text{RD}}$ (Port D) are activated as the alternate pin functions. Then the SRE bit overrides any pin direction settings in the respective data direction registers. See "SRAM Data Memory – Internal and External" on page 12 for a description of the external SRAM pin functions. When the SRE bit is cleared (zero), the external data SRAM is disabled and the normal pin and data direction settings are used.

• Bit 6 – SRW: External SRAM Wait State

When the SRW bit is set (one), a one-cycle wait state is inserted in the external data SRAM access cycle. When the SRW bit is cleared (zero), the external data SRAM access is executed with the normal three-cycle scheme. See Figure 43 and Figure 44.

<u>AIMEL</u>


Timer/Counters

The AT90S8515 provides two general-purpose Timer/Counters – one 8-bit T/C and one 16-bit T/C. The Timer/Counters have individual prescaling selection from the same 10-bit prescaling timer. Both Timer/Counters can either be used as a timer with an internal clock time base or as a counter with an external pin connection that triggers the counting.

Timer/Counter Prescaler

Figure 28 shows the general Timer/Counter prescaler.

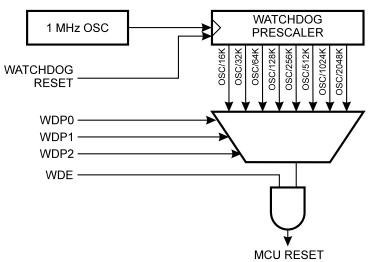
The four different prescaled selections are: CK/8, CK/64, CK/256 and CK/1024, where CK is the oscillator clock. For the two Timer/Counters, added selections such as CK, external source and stop can be selected as clock sources.

8-bit Timer/Counter0 Figure 29 shows the block diagram for Timer/Counter0.

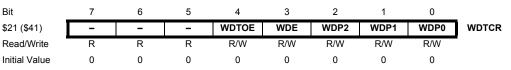
The 8-bit Timer/Counter0 can select clock source from CK, prescaled CK or an external pin. In addition, it can be stopped as described in the specification for the Timer/Counter0 Control Register (TCCR0). The overflow status flag is found in the Timer/Counter Insterrupt Flag Register (TIFR). Control signals are found in the Timer/Counter0 Control Register (TCCR0). The interrupt enable/disable settings for Timer/Counter0 are found in the Timer/Counter Insterrupt Kask Register (TIMSK).

When Timer/Counter0 is externally clocked, the external signal is synchronized with the oscillator frequency of the CPU. To assure proper sampling of the external clock, the minimum time between two external clock transitions must be at least one internal CPU clock period. The external clock signal is sampled on the rising edge of the internal CPU clock.

The 8-bit Timer/Counter0 features both a high-resolution and a high-accuracy usage with the lower prescaling opportunities. Similarly, the high prescaling opportunities make the Timer/Counter0 useful for lower speed functions or exact timing functions with infrequent actions.



Watchdog Timer


The Watchdog Timer is clocked from a separate On-chip oscillator that runs at 1 MHz. This is the typical value at $V_{CC} = 5V$. See characterization data for typical values at other V_{CC} levels. By controlling the Watchdog Timer prescaler, the Watchdog reset interval can be adjusted (see Table 14 for a detailed description). The WDR (Watchdog Reset) instruction resets the Watchdog Timer. Eight different clock cycle periods can be selected to determine the reset period. If the reset period expires without another Watchdog reset, the AT90S8515 resets and executes from the reset vector. For timing details on the Watchdog reset, refer to page 25.

To prevent unintentional disabling of the Watchdog, a special turn-off sequence must be followed when the Watchdog is disabled. Refer to the description of the Watchdog Timer Control Register for details.

Figure 33. Watchdog Timer

Watchdog Timer Control Register – WDTCR

• Bits 7..5 - Res: Reserved Bits

These bits are reserved bits in the AT90S8515 and will always read as zero.

• Bit 4 – WDTOE: Watchdog Turn-off Enable

This bit must be set (one) when the WDE bit is cleared. Otherwise, the Watchdog will not be disabled. Once set, hardware will clear this bit to zero after four clock cycles. Refer to the description of the WDE bit for a Watchdog disable procedure.

• Bit 3 – WDE: Watchdog Enable

When the WDE is set (one) the Watchdog Timer is enabled, and if the WDE is cleared (zero) the Watchdog Timer function is disabled. WDE can only be cleared if the WDTOE bit is set (one). To disable an enabled Watchdog Timer, the following procedure must be followed:

- 1. In the same operation, write a logical "1" to WDTOE and WDE. A logical "1" must be written to WDE even though it is set to one before the disable operation starts.
- 2. Within the next four clock cycles, write a logical "0" to WDE. This disables the Watchdog.
- Bits 2..0 WDP2, WDP1, WDP0: Watchdog Timer Prescaler 2, 1 and 0

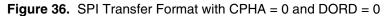
The WDP2, WDP1 and WDP0 bits determine the Watchdog Timer prescaling when the Watchdog Timer is enabled. The different prescaling values and their corresponding Time-out periods are shown in Table 14.

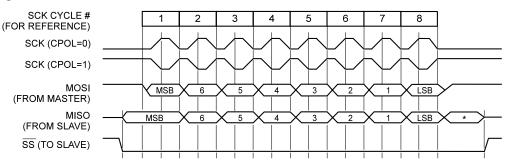
WDP2	WDP1	WDP0	Number of WDT Oscillator Cycles	Typical Time-out at V _{CC} = 3.0V	Typical Time-out at V _{CC} = 5.0V
0	0	0	16K cycles	47.0 ms	15.0 ms
0	0	1	32K cycles	94.0 ms	30.0 ms
0	1	0	64K cycles	0.19 s	60.0 ms
0	1	1	128K cycles	0.38 s	0.12 s
1	0	0	256K cycles	0.75 s	0.24 s
1	0	1	512K cycles	1.5 s	0.49 s
1	1	0	1,024K cycles	3.0 s	0.97 s
1	1	1	2,048K cycles	6.0 s	1.9 s

Table 14.	Watchdog	Timer Pre	scale Select
-----------	----------	-----------	--------------

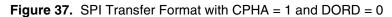
Note: The frequency of the Watchdog oscillator is voltage-dependent as shown in the Electrical Characteristics section.

The WDR (Watchdog Reset) instruction should always be executed before the Watchdog Timer is enabled. This ensures that the reset period will be in accordance with the Watchdog Timer prescale settings. If the Watchdog Timer is enabled without reset, the Watchdog Timer may not start to count from zero.


To avoid unintentional MCU reset, the Watchdog Timer should be disabled or reset before changing the Watchdog Timer Prescale Select.



pins are inputs. When \overline{SS} is driven high, all pins are inputs and the SPI is passive, which means that it will not receive incoming data. Note that the SPI logic will be reset once the \overline{SS} pin is brought high. If the \overline{SS} pin is brought high during a transmission, the SPI will stop sending and receiving immediately and both data received and data sent must be considered as lost.


Data Modes


There are four combinations of SCK phase and polarity with respect to serial data, which are determined by control bits CPHA and CPOL. The SPI data transfer formats are shown in Figure 36 and Figure 37.

* Not defined but normally MSB of character just received

* Not defined but normally LSB of previously transmitted character

SPI Control Register – SPCR

Bit	7	6	5	4	3	2	1	0	_
\$0D (\$2D)	SPIE	SPE	DORD	MSTR	CPOL	CPHA	SPR1	SPR0	SPCR
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-
Initial Value	0	0	0	0	0	0	0	0	

• Bit 7 – SPIE: SPI Interrupt Enable

This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR register is set and the global interrupts are enabled.

Bit 6 – SPE: SPI Enable

When the SPE bit is set (one), the SPI is enabled. This bit must be set to enable any SPI operations.

Figure 47. Port B Schematic Diagram (Pins PB2 and PB3)

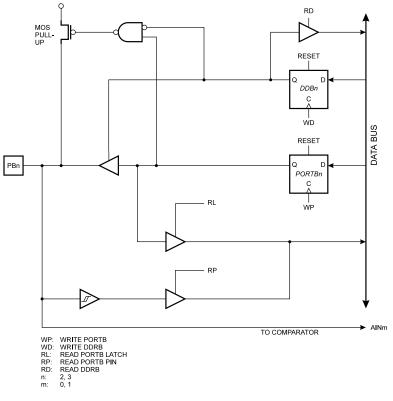
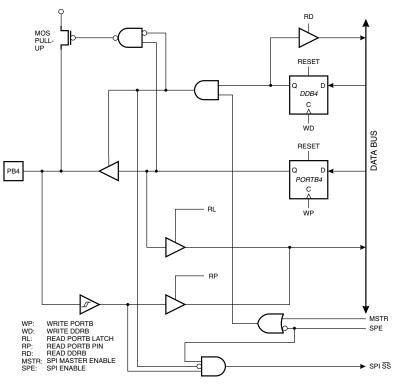



Figure 48. Port B Schematic Diagram (Pin PB4)

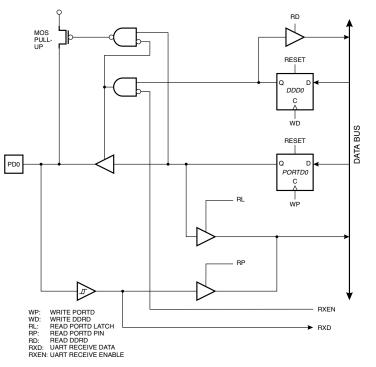
• INT1 - Port D, Bit 3

INT1: External Interrupt source 1. The PD3 pin can serve as an external interrupt source to the MCU. See the interrupt description for further details and how to enable the source.

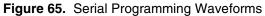
• INT0 - Port D, Bit 2

INT0: External Interrupt source 0. The PD2 pin can serve as an external interrupt source to the MCU. See the interrupt description for further details and how to enable the source.

• TXD – Port D, Bit 1


Transmit Data (data output pin for the UART). When the UART transmitter is enabled, this pin is configured as an output, regardless of the value of DDRD1.

• RXD - Port D, Bit 0


Receive Data (data input pin for the UART). When the UART receiver is enabled, this pin is configured as an input, regardless of the value of DDRD0. When the UART forces this pin to be an input, a logical "1" in PORTD0 will turn on the internal pull-up.

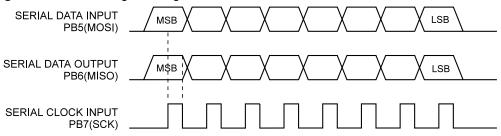

Port D Schematics Note that all port pins are synchronized. The synchronization latches are, however, not shown in the figures.

Figure 53. Port D Schematic Diagram (Pin PD0)

Table 32. Serial Programming Instruction Set

		Instructio	on Format		
Instruction	Byte 1	Byte 2	Byte 3	Byte4	Operation
Programming Enable	1010 1100	0101 0011	XXXX XXXX	XXXX XXXX	Enable serial programming while RESET is low.
Chip Erase	1010 1100	100x xxxx	xxxx xxxx	xxxx xxxx	Chip Erase Flash and EEPROM memory arrays.
Read Program Memory	0010 H 000	xxxx aaaa	bbbb bbbb	0000 0000	Read H (high or low) data o from program memory at word address a:b .
Write Program Memory	0100 H 000	xxxx aaaa	bbbb bbbb	iiii iiii	Write H (high or low) data i to program memory at word address a : b .
Read EEPROM Memory	1010 0000	xxxx xxx a	bbbb bbbb	0000 0000	Read data o from EEPROM memory at address a:b.
Write EEPROM Memory	1100 0000	XXXX XXX a	bbbb bbbb	1111 1111	Write data i to EEPROM memory at address a:b.
Write Lock Bits	1010 1100	111x x 21 x	xxxx xxxx	xxxx xxxx	Write Lock bits. Set bits 1,2 = "0" to program Lock bits.
Read Signature Bytes	0011 0000	xxxx xxxx	xxxx xx bb	0000 0000	Read signature byte o at address b . ⁽¹⁾

a = address high bits

b = address low bits

 $\mathbf{H} = 0 - \text{Low byte}, 1 - \text{High Byte}$

- $\mathbf{o} = data out$
- i = data in
- x = don't care
- 1 = Lock bit 1
- **2** = Lock bit 2

AT90S8515

- Notes: 1. "Max" means the highest value where the pin is guaranteed to be read as low.
 - 2. "Min" means the lowest value where the pin is guaranteed to be read as high.
 - Although each I/O port can sink more than the test conditions (20 mA at V_{CC} = 5V, 10 mA at V_{CC} = 3V) under steady state conditions (non-transient), the following must be observed:
 - 1] The sum of all $\mathrm{I}_{\mathrm{OL}},$ for all ports, should not exceed 200 mA.
 - 2] The sum of all $\rm I_{OL},$ for ports B0 B7, D0 D7 and XTAL2, should not exceed 100 mA.
 - 3] The sum of all I_{OL}, for ports A0 A7, ALE, OC1B and C0 C7 should not exceed 100 mA.

If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test condition.

- Although each I/O port can source more than the test conditions (3 mA at V_{CC} = 5V, 1.5 mA at V_{CC} = 3V) under steady state conditions (non-transient), the following must be observed:
 - 1] The sum of all I_{OH} , for all ports, should not exceed 200 mA.
 - 2] The sum of all $\rm I_{OH},$ for ports B0 B7, D0 D7 and XTAL2, should not exceed 100 mA.

3] The sum of all I_{OH} , for ports A0 - A7, ALE, OC1B and C0 - C7 should not exceed 100 mA.

If I_{OH} exceeds the test condition, V_{OH} may exceed the related specification. Pins are not guaranteed to source current greater than the listed test condition.

5. Minimum V_{CC} for power-down is 2V.

			4 MHz O	scillator	Variable	Oscillator	
	Symbol	Parameter	Min	Мах	Min	Max	Unit
0	1/t _{CLCL}	Oscillator Frequency			0.0	4.0	MHz
1	t _{LHLL}	ALE Pulse Width	70.0		0.5 t _{CLCL} - 55.0 ⁽¹⁾		ns
2	t _{AVLL}	Address Valid A to ALE Low	60.0		0.5 t _{CLCL} - 65.0 ⁽¹⁾		ns
За	t _{LLAX_ST}	Address Hold after ALE Low, ST/STD/STS Instructions	130.0		0.5 t _{CLCL} + 5.0 ⁽²⁾		ns
3b	t _{LLAX_LD}	Address Hold after ALE Low, LD/LDD/LDS Instructions	15.0		15.0		ns
4	t _{AVLLC}	Address Valid C to ALE Low	60.0		0.5 t _{CLCL} - 65.0 ⁽¹⁾		ns
5	t _{AVRL}	Address Valid to RD Low	200.0		1.0 t _{CLCL} - 50.0		ns
6	t _{AVWL}	Address Valid to WR Low	325.0		1.5 t _{CLCL} - 50.0 ⁽¹⁾		ns
7	t _{LLWL}	ALE Low to WR Low	230.0	270.0	1.0 t _{CLCL} - 20.0	1.0 t _{CLCL} + 20.0	ns
8	t _{LLRL}	ALE Low to RD Low	105.0	145.0	0.5 t _{CLCL} - 20.0 ⁽²⁾	$0.5 t_{CLCL} + 20.0^{(2)}$	ns
9	t _{DVRH}	Data Setup to RD High	95.0		95.0		ns
10	t _{RLDV}	Read Low to Data Valid		170.0		1.0 t _{CLCL} - 80.0	ns
11	t _{RHDX}	Data Hold after RD High	0.0		0.0		ns
12	t _{RLRH}	RD Pulse Width	230.0		1.0 t _{CLCL} - 20.0		ns
13	t _{DVWL}	Data Setup to WR Low	70.0		0.5 t _{CLCL} - 55.0 ⁽¹⁾		ns
14	t _{WHDX}	Data Hold after WR High	0.0		0.0		ns
15	t _{DVWH}	Data Valid to WR High	210.0		1.0 t _{CLCL} - 40.0		ns
16	t _{wLWH}	WR Pulse Width	105.0		0.5 t _{CLCL} - 20.0 ⁽²⁾		ns

Table 39. External Data Memory Characteristics, 2.7V - 4.0V, No Wait State

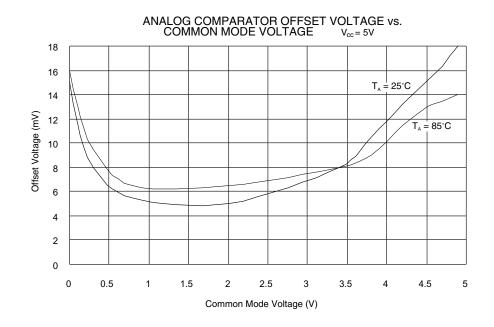
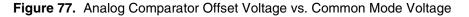
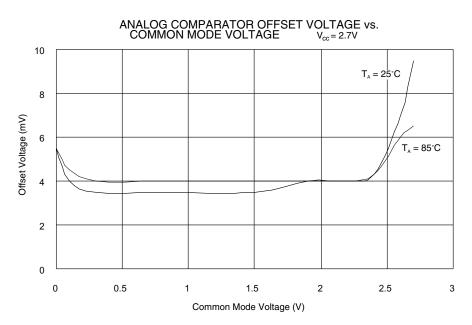
Table 40. External Data Memory Characteristics, 2.7V - 4.0V, One Cycle Wait State

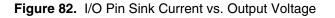
		4 MHz O	scillator	Variable (
Symbol	Parameter	Min	Max	Min	Max	Unit
1/t _{CLCL}	Oscillator Frequency			0.0	4.0	MHz
t _{RLDV}	Read Low to Data Valid		420.00		2.0 t _{CLCL} - 80.0	ns
t _{RLRH}	RD Pulse Width	480.0		2.0 t _{CLCL} - 20.0		ns
t _{DVWH}	Data Valid to WR High	460.0		2.0 t _{CLCL} - 40.0		ns
t _{wLWH}	WR Pulse Width	355.0		1.5 t _{CLCL} - 20.0 ⁽²⁾		ns
	1/t _{CLCL} t _{RLDV} t _{RLRH} t _{DVWH}	1/t _{CLCL} Oscillator Frequency t _{RLDV} Read Low to Data Valid t _{RLRH} RD Pulse Width t _{DVWH} Data Valid to WR High	Symbol Parameter Min 1/t _{CLCL} Oscillator Frequency t _{RLDV} Read Low to Data Valid t _{RLRH} RD Pulse Width 480.0 t _{DVWH} Data Valid to WR High 460.0	1/t _{CLCL} Oscillator Frequency t _{RLDV} Read Low to Data Valid t _{RLRH} RD Pulse Width t _{DVWH} Data Valid to WR High 460.0	Symbol Parameter Min Max Min 1/t _{CLCL} Oscillator Frequency 0.0 0.0 t _{RLDV} Read Low to Data Valid 420.00 2.0 t _{CLCL} - 20.0 t _{RLRH} RD Pulse Width 480.0 2.0 t _{CLCL} - 20.0 t _{DVWH} Data Valid to WR High 460.0 2.0 t _{CLCL} - 40.0	Symbol Parameter Min Max Min Max 1/t _{CLCL} Oscillator Frequency 0.0 4.0 1/t _{CLCL} Read Low to Data Valid 420.00 2.0 t _{CLCL} - 80.0 t _{RLDP} RD Pulse Width 480.0 2.0 t _{CLCL} - 20.0 t _{DVWH} Data Valid to WR High 460.0 2.0 t _{CLCL} - 40.0

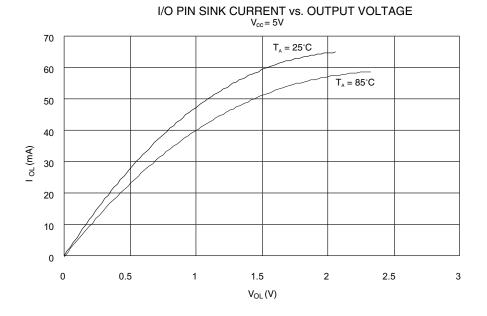
1. This assumes 50% clock duty cycle. The half-period is actually the high time of the external clock, XTAL1.

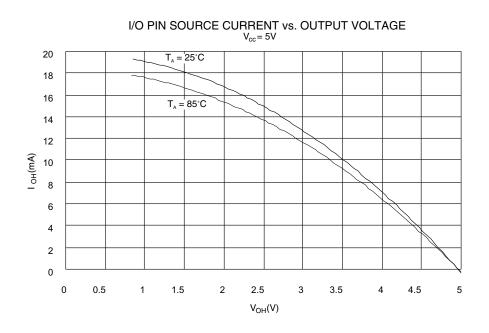
2. This assumes 50% clock duty cycle. The half-period is actually the low time of the external clock, XTAL1.

Analog Comparator offset voltage is measured as absolute offset.


Figure 76. Analog Comparator Offset Voltage vs. Common Mode Voltage





Instruction Set Summary

Mnemonic	Operands	Description	Operation	Flags	# Clocks
ARITHMETIC A	ND LOGIC INSTRU	ICTIONS		•	_ -
ADD	Rd, Rr	Add Two Registers	$Rd \leftarrow Rd + Rr$	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry Two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
ADIW	Rdl, K	Add Immediate to Word	Rdh:RdI ← Rdh:RdI + K	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract Two Registers	$Rd \leftarrow Rd - Rr$	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	$Rd \leftarrow Rd - K$	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry Two Registers	$Rd \leftarrow Rd - Rr - C$	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	$Rd \leftarrow Rd - K - C$	Z,C,N,V,H	1
SBIW	Rdl, K	Subtract Immediate from Word	Rdh:RdI ← Rdh:RdI - K	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND Registers	$Rd \leftarrow Rd \bullet Rr$	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$Rd \leftarrow Rd ullet K$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	$Rd \leftarrow Rd \lor Rr$	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$Rd \leftarrow Rd \lor K$	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$Rd \leftarrow Rd \oplus Rr$	Z,N,V	1
COM	Rd	One's Complement	$Rd \leftarrow \$FF - Rd$	Z,C,N,V	1
NEG	Rd	Two's Complement	Rd ← \$00 - Rd	Z,C,N,V,H	1
SBR	Rd, K	Set Bit(s) in Register	$Rd \leftarrow Rd \lor K$	Z,N,V	1
CBR	Rd, K	Clear Bit(s) in Register	$Rd \leftarrow Rd \bullet (\$FF - K)$	Z,N,V	1
INC	Rd	Increment	$Rd \leftarrow Rd + 1$	Z,N,V	1
DEC	Rd	Decrement	$Rd \leftarrow Rd$ - 1	Z,N,V	1
TST	Rd	Test for Zero or Minus	$Rd \leftarrow Rd \bullet Rd$	Z,N,V	1
CLR	Rd	Clear Register	$Rd \leftarrow Rd \oplus Rd$	Z,N,V	1
SER	Rd	Set Register	$Rd \leftarrow FF$	None	1
BRANCH INSTR					
RJMP	k	Relative Jump	$PC \leftarrow PC + k + 1$	None	2
IJMP		Indirect Jump to (Z)	$PC \leftarrow Z$	None	2
RCALL	k	Relative Subroutine Call	$PC \leftarrow PC + k + 1$	None	3
ICALL		Indirect Call to (Z)	$PC \leftarrow Z$	None	3
RET		Subroutine Return	$PC \leftarrow STACK$	None	4
RETI		Interrupt Return	PC ← STACK	1	4
CPSE	Rd, Rr	Compare, Skip if Equal	if (Rd = Rr) PC \leftarrow PC + 2 or 3	None	1/2/3
CP	Rd, Rr	Compare	Rd - Rr	Z,N,V,C,H	1
CPC	Rd, Rr	Compare with Carry	Rd - Rr - C	Z,N,V,C,H	1
CPI	Rd, K	Compare Register with Immediate	Rd - K	Z,N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if (Rr(b) = 0) PC \leftarrow PC + 2 or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if $(Rr(b) = 1) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3
SBIC	P, b	Skip if Bit in I/O Register Cleared	if $(P(b) = 0) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3
SBIS	P, b	Skip if Bit in I/O Register is Set	if (P(b) = 1) PC \leftarrow PC + 2 or 3	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) = 1) then PC \leftarrow PC + k + 1	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) = 0) then PC \leftarrow PC + k + 1	None	1/2
BREQ	k	Branch if Equal	if (Z = 1) then PC \leftarrow PC + k + 1	None	1/2
BRNE	k	Branch if Not Equal	if (Z = 0) then PC \leftarrow PC + k + 1	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRSH	k	Branch if Same or Higher	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRLO	k	Branch if Lower	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRMI	k	Branch if Minus	if (N = 1) then PC \leftarrow PC + k + 1	None	1/2
BRPL	k	Branch if Plus	if (N = 0) then PC \leftarrow PC + k + 1	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if $(N \oplus V = 0)$ then PC \leftarrow PC + k + 1	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if $(N \oplus V = 1)$ then PC \leftarrow PC + k + 1	None	1/2
BRHS	k	Branch if Half-carry Flag Set	if (H = 1) then PC \leftarrow PC + k + 1	None	1/2
BRHC	k	Branch if Half-carry Flag Cleared	if (H = 0) then PC \leftarrow PC + k + 1	None	1/2
BRTS	k	Branch if T-flag Set	if (T = 1) then PC \leftarrow PC + k + 1	None	1/2
BRTC	k	Branch if T-flag Cleared	if (T = 0) then PC \leftarrow PC + k + 1	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if $(V = 1)$ then PC \leftarrow PC + k + 1	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if $(V = 0)$ then PC \leftarrow PC + k + 1	None	1/2
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC \leftarrow PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC \leftarrow PC + k + 1	None	1/2

AT90S8515 Ordering Information

Speed (MHz)	Power Supply	Ordering Code	Package	Operation Range
4	2.7V - 6.0V	AT90S8515-4AC	44A	Commercial
		AT90S8515-4JC	44J	(0°C to 70°C)
		AT90S8515-4PC	40P6	
		AT90S8515-4AI	44A	Industrial
		AT90S8515-4JI	44J	(-40°C to 85°C)
		AT90S8515-4PI	40P6	
8	4.0V - 6.0V	AT90S8515-8AC	44A	Commercial
		AT90S8515-8JC	44J	(0°C to 70°C)
		AT90S8515-8PC	40P6	
		AT90S8515-8AI	44A	Industrial
		AT90S8515-8JI	44J	(-40°C to 85°C)
		AT90S8515-8PI	40P6	

Note: Order AT90S8515A-XXX for devices with the FSTRT Fuse programmed.

Package Type				
44 A	44-lead, Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (TQFP)			
44J	44-lead, Plastic J-leaded Chip Carrier (PLCC)			
40P6	40-lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)			

108 AT90S8515