

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	AVR
Core Size	8-Bit
Speed	8MHz
Connectivity	SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	32
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.6x16.6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at90s8515a-8jc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Description

Block Diagram

The AT90S8515 is a low-power CMOS 8-bit microcontroller based on the AVR RISC architecture. By executing powerful instructions in a single clock cycle, the AT90S8515 achieves throughputs approaching 1 MIPS per MHz, allowing the system designer to optimize power consumption versus processing speed.

The AVR core combines a rich instruction set with 32 general-purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in

AT90S8515

d

31

	two additional clock cycles is used per byte. This has the following effect: Data transfer instructions take two extra clock cycles, whereas interrupt, subroutine calls and returns will need four clock cycles more than specified in the instruction set manual.							
	The five different addressing modes for the data memory cover: Direct, Indirect with Displacement, Indirect, Indirect with Pre-decrement and Indirect with Post-increment. In the register file, registers R26 to R31 feature the indirect addressing pointer registers.							
	The direct addressing reaches the entire data space.							
	The Indirect with Displacement mode features 63 address locations reached from the base address given by the Y- or Z-register.							
	When using register indirect addressing modes with automatic pre-decrement and post- increment, the address registers X, Y and Z are decremented and incremented.							
	The 32 general-purpose working registers, 64 I/O registers, the 512 bytes of internal data SRAM, and the 64K bytes of optional external data SRAM in the AT90S8515 are all accessible through all these addressing modes.							
	See the next section for a detailed description of the different addressing modes.							
Program and Data Addressing Modes	The AT90S8515 AVR RISC microcontroller supports powerful and efficient addressing modes for access to the program memory (Flash) and data memory (SRAM, Register file and I/O memory). This section describes the different addressing modes supported by the AVR architecture. In the figures, OP means the operation code part of the instruction word. To simplify, not all figures show the exact location of the addressing bits.							
Register Direct, Single Register RD	Figure 9. Direct Single Register Addressing							
	15 4 0 OP d							

The operand is contained in register d (Rd).

The X-, Y-, or the Z-register is decremented before the operation. Operand address is the decremented contents of the X-, Y-, or the Z-register.

Data Indirect with Postincrement

The X-, Y-, or the Z-register is incremented after the operation. Operand address is the content of the X-, Y-, or the Z-register prior to incrementing.

Constant Addressing Using F the LPM Instruction

Figure 17. Code Memory Constant Addressing

Constant byte address is specified by the Z-register contents. The 15 MSBs select word address (0 - 4K), the LSB selects low byte if cleared (LSB = 0) or high byte if set (LSB = 1).

Indirect Program Addressing, Figure 18. Indirect Program Memory Addressing IJMP and ICALL

Program execution continues at address contained by the Z-register (i.e., the PC is loaded with the contents of the Z-register).

Program execution continues at address PC + k + 1. The relative address k is -2048 to 2047.

EEPROM Data Memory The AT90S8515 contains 512 bytes of data EEPROM memory. It is organized as a separate data space, in which single bytes can be read and written. The EEPROM has an endurance of at least 100,000 write/erase cycles. The access between the EEPROM and the CPU is described on page 44, specifying the EEPROM address registers, the EEPROM data register and the EEPROM control register.

For the SPI data downloading, see page 86 for a detailed description.

Memory Access Times This section describes the general access timing concepts for instruction execution and internal memory access.

The AVR CPU is driven by the System Clock \emptyset , directly generated from the external clock crystal for the chip. No internal clock division is used.

Figure 20 shows the parallel instruction fetches and instruction executions enabled by the Harvard architecture and the fast-access register file concept. This is the basic pipelining concept to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost, functions per clocks and functions per power unit.

Execution Timing

Relative Program Addressing,

RJMP and RCALL

Address Hex	Name	Function
\$11 (\$31)	DDRD	Data Direction Register, Port D
\$10 (\$30)	PIND	Input Pins, Port D
\$0F (\$2F)	SPDR	SPI I/O Data Register
\$0E (\$2E)	SPSR	SPI Status Register
\$0D (\$2D)	SPCR	SPI Control Register
\$0C (\$2C)	UDR	UART I/O Data Register
\$0B (\$2B)	USR	UART Status Register
\$0A (\$2A)	UCR	UART Control Register
\$09 (\$29)	UBRR	UART Baud Rate Register
\$08 (\$28)	ACSR	Analog Comparator Control and Status Register

Table 1.	AT90S8515	I/O Space ((Continued)
----------	-----------	-------------	-------------

Note: Reserved and unused locations are not shown in the table.

All AT90S8515 I/Os and peripherals are placed in the I/O space. The I/O locations are accessed by the IN and OUT instructions transferring data between the 32 general-purpose working registers and the I/O space. I/O registers within the address range \$00 - \$1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions. Refer to the instruction set section for more details. When using the I/O-specific commands IN and OUT, the I/O addresses \$00 - \$3F must be used. When addressing I/O registers as SRAM, \$20 must be added to this address. All I/O register addresses throughout this document are shown with the SRAM address in parentheses.

For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.

Some of the status flags are cleared by writing a logical "1" to them. Note that the CBI and SBI instructions will operate on all bits in the I/O register, writing a "1" back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers \$00 to \$1F only.

The I/O and peripherals control registers are explained in the following sections.

Status Register – SREG

The AVR status register (SREG) at I/O space location \$3F (\$5F) is defined as:

• Bit 7 – I: Global Interrupt Enable

The global interrupt enable bit must be set (one) for the interrupts to be enabled. The individual interrupt enable control is then performed in separate control registers. If the global interrupt enable bit is cleared (zero), none of the interrupts are enabled independent of the individual interrupt enable settings. The I-bit is cleared by hardware after an interrupt has occurred and is set by the RETI instruction to enable subsequent interrupts.

• Bit 6 – T: Bit Copy Storage

The bit copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source and destination for the operated bit. A bit from a register in the register file can be copied

AT90S8515

External Interrupts The external interrupts are triggered by the INT1 and INT0 pins. Observe that, if enabled, the interrupts will trigger even if the INT0/INT1 pins are configured as outputs. This feature provides a way of generating a software interrupt. The external interrupts can be triggered by a falling or rising edge or a low level. This is set up as indicated in the specification for the MCU Control Register (MCUCR). When the external interrupt is enabled and is configured as level-triggered, the interrupt will trigger as long as the pin is held low.

The external interrupts are set up as described in the specification for the MCU Control Register (MCUCR).

Interrupt Response Time The interrupt execution response for all the enabled AVR interrupts is four clock cycles minimum. Four clock cycles after the interrupt flag has been set, the program vector address for the actual interrupt handling routine is executed. During this 4-clock-cycle period, the Program Counter (2 bytes) is pushed onto the stack and the Stack Pointer is decremented by 2. The vector is normally a relative jump to the interrupt routine, and this jump takes two clock cycles. If an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed before the interrupt is served.

A return from an interrupt handling routine (same as for a subroutine call routine) takes four clock cycles. During these four clock cycles, the Program Counter (2 bytes) is popped back from the stack, the Stack Pointer is incremented by 2 and the I-flag in SREG is set. When the AVR exits from an interrupt, it will always return to the main program and execute one more instruction before any pending interrupt is served.

Note that the Status Register (SREG) is not handled by the AVR hardware, for neither interrupts nor subroutines. For the interrupt handling routines requiring a storage of the SREG, this must be performed by user software.

For interrupts triggered by events that can remain static (e.g., the Output Compare Register1 A matching the value of Timer/Counter1), the interrupt flag is set when the event occurs. If the interrupt flag is cleared and the interrupt condition persists, the flag will not be set until the event occurs the next time. Note that an external level interrupt will only be remembered for as long as the interrupt condition is active.

MCU Control Register – T MCUCR

The MCU Control Register contains control bits for general MCU functions.

Bit	7	6	5	4	3	2	1	0	
\$35 (\$55)	SRE	SRW	SE	SM	ISC11	ISC10	ISC01	ISC00	MCUCR
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-
Initial Value	0	0	0	0	0	0	0	0	

• Bit 7 – SRE: External SRAM Enable

When the SRE bit is set (one), the external data SRAM is enabled and the pin functions AD0 - 7 (Port A), A8 - 15 (Port C), $\overline{\text{WR}}$ and $\overline{\text{RD}}$ (Port D) are activated as the alternate pin functions. Then the SRE bit overrides any pin direction settings in the respective data direction registers. See "SRAM Data Memory – Internal and External" on page 12 for a description of the external SRAM pin functions. When the SRE bit is cleared (zero), the external data SRAM is disabled and the normal pin and data direction settings are used.

• Bit 6 – SRW: External SRAM Wait State

When the SRW bit is set (one), a one-cycle wait state is inserted in the external data SRAM access cycle. When the SRW bit is cleared (zero), the external data SRAM access is executed with the normal three-cycle scheme. See Figure 43 and Figure 44.

Timer/Counter0 Control Register – TCCR0

Bit	7	6	5	4	3	2	1	0	_
\$33 (\$53)	-	-	-	-	-	CS02	CS01	CS00	TCCR0
Read/Write	R	R	R	R	R	R/W	R/W	R/W	-
Initial Value	0	0	0	0	0	0	0	0	

• Bits 7..3 - Res: Reserved Bits

These bits are reserved bits in the AT90S8515 and always read as zero.

• Bits 2, 1, 0 - CS02, CS01, CS00: Clock Select0, Bits 2, 1 and 0

The Clock Select0 bits 2, 1 and 0 define the prescaling source of Timer/Counter0.

able 1. Clock of Flescale Selec	able 7.	Clock 0 Prescale Select
--	---------	-------------------------

Т

CS02	CS01	CS00	Description
0	0	0	Stop, the Timer/Counter0 is stopped.
0	0	1	СК
0	1	0	CK/8
0	1	1	CK/64
1	0	0	CK/256
1	0	1	CK/1024
1	1	0	External Pin T0, falling edge
1	1	1	External Pin T0, rising edge

• Bit 5 – DORD: Data Order

When the DORD bit is set (one), the LSB of the data word is transmitted first.

When the DORD bit is cleared (zero), the MSB of the data word is transmitted first.

• Bit 4 – MSTR: Master/Slave Select

This bit selects Master SPI Mode when set (one), and Slave SPI Mode when cleared (zero). If \overline{SS} is configured as an input and is driven low while MSTR is set, MSTR will be cleared and SPIF in SPSR will become set. The user will then have to set MSTR to reenable SPI Master Mode.

Bit 3 – CPOL: Clock Polarity

When this bit is set (one), SCK is high when idle. When CPOL is cleared (zero), SCK is low when idle. Refer to Figure 36 and Figure 37 for additional information.

• Bit 2 – CPHA: Clock Phase

Refer to Figure 36 or Figure 37 for the functionality of this bit.

• Bits 1, 0 – SPR1, SPR0: SPI Clock Rate Select 1 and 0

These two bits control the SCK rate of the device configured as a master. SPR1 and SPR0 have no effect on the slave. The relationship between SCK and the oscillator clock frequency f_{cl} is shown in Table 16.

Table 16.	Relationship	between	SCK and	the C	Dscillator	Frequency
-----------	--------------	---------	---------	-------	------------	-----------

SPR1	SPR0	SCK Frequency
0	0	f _{cl} /4
0	1	f _c /16
1	0	f _{cl} /64
1	1	f _c /128

SPI Status Register – SPSR

Bit	7	6	5	4	3	2	1	0	_
\$0E (\$2E)	SPIF	WCOL	-	-	-	-	-	-	SPSR
Read/Write	R	R	R	R	R	R	R	R	-
nitial Value	0	0	0	0	0	0	0	0	

Bit 7 – SPIF: SPI Interrupt Flag

When a serial transfer is complete, the SPIF bit is set (one) and an interrupt is generated if SPIE in SPCR is set (one) and global interrupts are enabled. If SS is an input and is driven low when the SPI is in Master Mode, this will also set the SPIF flag. SPIF is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, the SPIF bit is cleared by first reading the SPI Status Register when SPIF is set (one), then by accessing the SPI Data Register (SPDR).

Bit 6 – WCOL: Write Collision Flag

The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer. The WCOL bit (and the SPIF bit) are cleared (zero) by first reading the SPI Status Register when WCOL is set (one), and then by accessing the SPI Data Register.

Bits 5..0 – Res: Reserved Bits

These bits are reserved bits in the AT90S8515 and will always read as zero.

The SPI interface on the AT90S8515 is also used for program memory and EEPROM downloading or uploading. See page 86 for serial programming and verification.

The FE bit is cleared when the stop bit of received data is one.

Bit 3 – OR: Overrun

This bit is set if an Overrun condition is detected, i.e., when a character already present in the UDR register is not read before the next character has been shifted into the Receiver Shift register. The OR bit is buffered, which means that it will be set once the valid data still in UDRE is read.

The OR bit is cleared (zero) when data is received and transferred to UDR.

• Bits 2..0 – Res: Reserved Bits

These bits are reserved bits in the AT90S8515 and will always read as zero.

UART Control Register – UCR

Bit	7	6	5	4	3	2	1	0	
\$0A (\$2A)	RXCIE	TXCIE	UDRIE	RXEN	TXEN	CHR9	RXB8	TXB8	UCR
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R	W	•
Initial Value	0	0	0	0	0	0	1	0	

Bit 7 – RXCIE: RX Complete Interrupt Enable

When this bit is set (one), a setting of the RXC bit in USR will cause the Receive Complete Interrupt routine to be executed provided that global interrupts are enabled.

• Bit 6 – TXCIE: TX Complete Interrupt Enable

When this bit is set (one), a setting of the TXC bit in USR will cause the Transmit Complete Interrupt routine to be executed provided that global interrupts are enabled.

• Bit 5 – UDRIE: UART Data Register Empty Interrupt Enable

When this bit is set (one), a setting of the UDRE bit in USR will cause the UART Data Register Empty Interrupt routine to be executed provided that global interrupts are enabled.

Bit 4 – RXEN: Receiver Enable

This bit enables the UART receiver when set (one). When the receiver is disabled, the RXC, OR and FE status flags cannot become set. If these flags are set, turning off RXEN does not cause them to be cleared.

• Bit 3 – TXEN: Transmitter Enable

This bit enables the UART transmitter when set (one). When disabling the transmitter while transmitting a character, the transmitter is not disabled before the character in the shift register plus any following character in UDR has been completely transmitted.

• Bit 2 – CHR9: 9-bit Characters

When this bit is set (one) transmitted and received characters are 9 bits long plus start and stop bits. The ninth bit is read and written by using the RXB8 and TXB8 bits in UCR, respectively. The ninth data bit can be used as an extra stop bit or a parity bit.

• Bit 1 – RXB8: Receive Data Bit 8

When CHR9 is set (one), RXB8 is the ninth data bit of the received character.

• Bit 0 – TXB8: Transmit Data Bit 8

When CHR9 is set (one), TXB8 is the ninth data bit in the character to be transmitted.

Figure 44. External Data SRAM Memory Cycles with Wait State

I/O Ports	All AVR ports have true read-modify-write functionality when used as general digital I/O ports. This means that the direction of one port pin can be changed without unintention- ally changing the direction of any other pin with the SBI and CBI instructions. The same applies for changing drive value (if configured as output) or the enabling/disabling of pull-up resistors (if configured as input).
	ally changing the direction of any other pin with the SBI and CBI instructions. The same applies for changing drive value (if configured as output) or the enabling/disabling of pull-up resistors (if configured as input).

Port A

Port A is an 8-bit bi-directional I/O port.

Three I/O memory address locations are allocated for the Port A, one each for the Data Register – PORTA, \$1B(\$3B), Data Direction Register – DDRA, \$1A(\$3A) and the Port A Input Pins – PINA, \$19(\$39). The Port A Input Pins address is read-only, while the Data Register and the Data Direction Register are read/write.

All port pins have individually selectable pull-up resistors. The Port A output buffers can sink 20 mA and thus drive LED displays directly. When pins PA0 to PA7 are used as inputs and are externally pulled low, they will source current if the internal pull-up resistors are activated.

The Port A pins have alternate functions related to the optional external data SRAM. Port A can be configured to be the multiplexed low-order address/data bus during accesses to the external data memory. In this mode, Port A has internal pull-up resistors.

When Port A is set to the alternate function by the SRE (external SRAM enable) bit in the MCUCR (MCU Control Register), the alternate settings override the Data Direction Register.

Port A Data Register – PORTA

-	Bit	7	6	5	4	3	2	1	0	
	\$1B (\$3B)	PORTA7	PORTA6	PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0	PORTA
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	1
	Initial Value	0	0	0	0	0	0	0	0	
Port A Data Direction Register										
– DDRA	Bit	7	6	5	4	3	2	1	0	
	\$1A (\$3A)	DDA7	DDA6	DDA5	DDA4	DDA3	DDA2	DDA1	DDA0	DDRA
	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	1
	Initial Value	0	0	0	0	0	0	0	0	
Port A Input Pins Address –										
PINA	Bit	7	6	5	4	3	2	1	0	_
	\$19 (\$39)	PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINA0	PINA
	Read/Write	R	R	R	R	R	R	R	R	•
	Initial Value	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
	The Port A the physica read and w	Input Pi al value o hen read	ins addre on each ding PIN	ess (PIN Port A pi A. the loo	A) is not in. When pical valu	a registe reading	er; this a PORTA ent on the	ddress e ., the Por e pins ar	nables a rt A Data e read.	Latch is
			5	,	,					
Port A as General Digital I/O	All eight pir	ns in Por	t A have	equal fu	nctionalit	y when	used as	digital I/C) pins.	
	PAn, gener	al I/O pir	n: The Di	DAn bit i	n the DD	RA regis	ter selec	ts the di	rection of	f this pin.

If DDAn is set (one), PAn is configured as an output pin. If DDAn is cleared (zero), PAn is configured as an input pin. If PORTAn is set (one) when the pin is configured as an input pin. If PORTAn is activated. To switch the pull-up resistor off, the

• AIN0 – Port B, Bit 2

AINO: Analog Comparator Positive Input. When configured as an input (DDB2 is cleared [zero]) and with the internal MOS pull-up resistor switched off (PB2 is cleared [zero]), this pin also serves as the positive input of the On-chip Analog Comparator.

• T1 - Port B, Bit 1

T1: Timer/Counter1 counter source. See the timer description for further details

• T0 - Port B, Bit 0

T0: Timer/Counter0 counter source. See the timer description for further details.

Port B Schematics Note that all port pins are synchronized. The synchronization latches are, however, not shown in the figures.

Port C

Port C is an 8-bit bi-directional I/O port. Three I/O memory address locations are allocated for the Port C, one each for the Data Register – PORTC, \$15(\$35), Data Direction Register – DDRC, \$14(\$34) and the Port C Input Pins – PINC, \$13(\$33). The Port C Input Pins address is read-only, while the Data Register and the Data Direction Register are read/write.

All port pins have individually selectable pull-up resistors. The Port C output buffers can sink 20 mA and thus drive LED displays directly. When pins PC0 to PC7 are used as inputs and are externally pulled low, they will source current if the internal pull-up resistors are activated.

The Port C pins have alternate functions related to the optional external data SRAM. Port C can be configured to be the high-order address byte during accesses to external data memory. When Port C is set to the alternate function by the SRE (external SRAM enable) bit in the MCUCR (MCU Control Register), the alternate settings override the Data Direction Register.

Port C Data Register – PORTC

Bit	7	6	5	4	3	2	1	0	
\$15 (\$35)	PORTC7	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	PORTC
Read/Write	R/W								
Initial Value	0	0	0	0	0	0	0	0	

	4.	ing the third byte of the Programming Ena correct or not, all four bytes of the instruc- not echo back, give SCK a positive pulse instruction. If the \$53 is not seen within 32 connected. If a Chip Erase is performed (must be dor	able instruction. Whe tion must be transmit and issue a new Pro attempts, there is no ne to erase the Flash	ther the echo is ted. If the \$53 did gramming Enable o functional device), wait t _{WD_ERASE}				
		after the instruction, give RESET a positiv Table 34 on page 89 for t _{WD EBASE} value.	e pulse and start ove	r from step 2. See				
	5.	The Flash or EEPROM array is programm address and data together with the appro- memory location is first automatically era: Data Polling to detect when the next byte ten. If polling is not used, wait t_{WD_PROG} be See Table 35 on page 89 for t_{WD_PROG} validata file(s) need to be programmed.	ned one byte at a time priate Write instructions sed before new data in the Flash or EEPF efore transmitting the ue. In an erased devi	e by supplying the on. An EEPROM is written. Use ROM can be writ- e next instruction. ce, no \$FFs in the				
	6.	Any memory location can be verified by using the Read instruction that returns the content at the selected address at the serial output MISO (PB6) pin.						
	7.	 At the end of the programming session, RESET can be set high to commence normal operation. 						
	8. Power-off sequence (if needed):							
		Set XTAL1 to "0" (if a crystal is not used).						
		Set RESET to "1".						
		Turn V _{CC} power off.						
Data Polling EEPROM	W be va	hen a byte is being programmed into the ing programmed will give the value P1 un lue P2. See Table 31 for P1 and P2 values	EEPROM, reading til the auto-erase is	the address location finished and then the				
	At co for 34 mi the	ROM byte, the progra next byte can be writ ing these values, the ore programming the ce contains \$FF in a \$FF can be skipped. hip-erasing the devic	ammed value will read ten. This will not work user will have to wait next byte. See Table Il locations, program- This does not apply if e.					
		DIE 51. Read Back value during EEPROM	Polling					
			P1	P2				
	A	Т90S8515	\$80	\$7F				

Data Polling Flash

When a byte is being programmed into the Flash, reading the address location being programmed will give the value \$7F. At the time the device is ready for a new byte, the programmed value will read correctly. This is used to determine when the next byte can be written. This will not work for the value \$7F, so when programming this value, the user will have to wait for at least t_{WD_PROG} before programming the next byte. As a chiperased device contains \$FF in all locations, programming of addresses that are meant to contain \$FF can be skipped.

Serial Programming Characteristics

Table 33. Serial Programming Characteristics, $T_A = -40^{\circ}C$ to $85^{\circ}C$, $V_{CC} = 2.7V - 6.0V$ (unless otherwise noted)

Symbol	Parameter	Min	Тур	Max	Units
1/t _{CLCL}	Oscillator Frequency ($V_{CC} = 2.7 - 4.0V$)	0		4.0	MHz
t _{CLCL}	Oscillator Period ($V_{CC} = 2.7 - 4.0V$)	250.0			ns
1/t _{CLCL}	Oscillator Frequency ($V_{CC} = 4.0 - 6.0V$)	0		8.0	MHz
t _{CLCL}	Oscillator Period ($V_{CC} = 4.0 - 6.0V$)	125.0			ns
t _{SHSL}	SCK Pulse Width High	2.0 t _{CLCL}			ns
t _{SLSH}	SCK Pulse Width Low	2.0 t _{CLCL}			ns
t _{ovsH}	MOSI Setup to SCK High	t _{CLCL}			ns
t _{SHOX}	MOSI Hold after SCK High	2.0 t _{CLCL}			ns
t _{SLIV}	SCK Low to MISO Valid	10.0	16.0	32.0	ns

Table 34. Minimum Wait Delay after the Chip Erase Instruction

Symbol	3.2V	3.6V	4.0V	5.0V
t _{wd_erase}	18 ms	14 ms	12 ms	8 ms

Table 35. Minimum Wait Delay after Writing a Flash or EEPROM Location

Symbol	3.2V	3.6V	4.0V	5.0V
t _{wD_PROG}	9 ms	7 ms	6 ms	4 ms

Electrical Characteristics

Absolute Maximum Ratings*

Operating Temperature55°C to +125°C	;
Storage Temperature65°C to +150°C	;
Voltage on Any Pin except $\overrightarrow{\text{RESET}}$ with Respect to Ground1.0V to V_{CC} + 0.5V	/
Voltage on RESET with Respect to Ground1.0V to +13.0V	1
Maximum Operating Voltage 6.6V	1
DC Current per I/O Pin 40.0 mA	•
DC Current V_{CC} and GND Pins 200.0 mA	•

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics

$T_{A} = -40^{\circ}C$ to $85^{\circ}C$. $V_{OO} = 2.7V$ to $6.0V$	(unless otherwise noted)
$T_A = +0.0100000, v_{CC} = 2.7 \times 1000000$	(unicos ourier wise noted)

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{IL}	Input Low Voltage	(Except XTAL1)	-0.5		$0.3 V_{\rm CC}{}^{(1)}$	V
V _{IL1}	Input Low Voltage	(XTAL1)	-0.5		$0.2 V_{\rm CC}{}^{(1)}$	V
V _{IH}	Input High Voltage	(Except XTAL1, RESET)	0.6 V _{CC} ⁽²⁾		V _{CC} + 0.5	V
V _{IH1}	Input High Voltage	(XTAL1)	0.8 V _{CC} ⁽²⁾		V _{CC} + 0.5	V
V _{IH2}	Input High Voltage	(RESET)	0.9 V _{CC} ⁽²⁾		V _{CC} + 0.5	V
V _{OL}	Output Low Voltage ⁽³⁾ (Ports A, B, C, D)	$I_{OL} = 20 \text{ mA}, V_{CC} = 5V$ $I_{OL} = 10 \text{ mA}, V_{CC} = 3V$			0.6 0.5	V V
V _{OH}	Output High Voltage ⁽⁴⁾ (Ports A, B, C, D)	$I_{OH} = -3 \text{ mA}, V_{CC} = 5V$ $I_{OH} = -1.5 \text{ mA}, V_{CC} = 3V$	4.2 2.3			V V
IIL	Input Leakage Current I/O Pin	V _{CC} = 6V, pin low (absolute value)			8.0	μA
I _{IH}	Input Leakage Current I/O Pin	V _{CC} = 6V, pin high (absolute value)			980.0	nA
RRST	Reset Pull-up Resistor		100.0		500.0	kΩ
R _{I/O}	I/O Pin Pull-up Resistor		35.0		120.0	kΩ
	Power Supply Current	Active Mode, $V_{CC} = 3V$, 4 MHz			3.0	mA
1	Fower Supply Current	Idle Mode V_{CC} = 3V, 4 MHz			1.2	mA
CC	Power down mode ⁽⁵⁾	WDT enabled, $V_{CC} = 3V$		9.0	15.0	μA
	Fower-down mode.	WDT disabled, $V_{CC} = 3V$		<1.0	2.0	μA
V _{ACIO}	Analog Comparator Input Offset Voltage	$V_{CC} = 5V$ $V_{in} = V_{CC}/2$			40.0	mV
I _{ACLK}	Analog Comparator Input Leakage Current	$V_{CC} = 5V$ $V_{in} = V_{CC}/2$	-50.0		50.0	nA
t _{ACPD}	Analog Comparator Propagation Delay	$V_{CC} = 2.7V$ $V_{CC} = 4.0V$		750.0 500.0		ns

90 AT90S8515

External Data Memory Timing

		8 MHz Oscillator		scillator	Variable Oscillator			
	Symbol	Parameter	Min	Max	Min	Max	Unit	
0	1/t _{CLCL}	Oscillator Frequency			0.0	8.0	MHz	
1	t _{LHLL}	ALE Pulse Width	32.5		0.5 t _{CLCL} - 30.0 ⁽¹⁾		ns	
2	t _{AVLL}	Address Valid A to ALE Low	22.5		0.5 t _{CLCL} - 40.0 ⁽¹⁾		ns	
3a	t _{LLAX_ST}	Address Hold after ALE Low, ST/STD/STS Instructions	67.5		0.5 t _{CLCL} + 5.0 ⁽²⁾		ns	
Зb	t _{LLAX_LD}	Address Hold after ALE Low, LD/LDD/LDS Instructions	15.0		15.0		ns	
4	t _{AVLLC}	Address Valid C to ALE Low	22.5		0.5 t _{CLCL} - 40.0 ⁽¹⁾		ns	
5	t _{AVRL}	Address Valid to RD Low	95.0		1.0 t _{CLCL} - 30.0		ns	
6	t _{AVWL}	Address Valid to WR Low	157.5		1.5 t _{CLCL} - 30.0 ⁽¹⁾		ns	
7	t _{LLWL}	ALE Low to WR Low	105.0	145.0	1.0 t _{CLCL} - 20.0	1.0 t _{CLCL} + 20.0	ns	
8	t _{LLRL}	ALE Low to RD Low	42.5	82.5	0.5 t _{CLCL} - 20.0 ⁽²⁾	$0.5 t_{CLCL} + 20.0^{(2)}$	ns	
9	t _{DVRH}	Data Setup to RD High	60.0		60.0		ns	
10	t _{RLDV}	Read Low to Data Valid		70.0		1.0 t _{CLCL} - 55.0	ns	
11	t _{RHDX}	Data Hold after RD High	0.0		0.0		ns	
12	t _{RLRH}	RD Pulse Width	105.0		1.0 t _{CLCL} - 20.0		ns	
13	t _{DVWL}	Data Setup to WR Low	27.5		0.5 t _{CLCL} - 35.0 ⁽²⁾		ns	
14	t _{WHDX}	Data Hold after WR High	0.0		0.0		ns	
15	t _{DVWH}	Data Valid to WR High	95.0		1.0 t _{CLCL} - 30.0		ns	
16	t _{wLWH}	WR Pulse Width	42.5		0.5 t _{CLCL} - 20.0 ⁽¹⁾		ns	

	Table 37.	External	Data Memor	v Characteristics.	4.0V -	6.0V. N	lo Wait 🗄	State
--	-----------	----------	------------	--------------------	--------	---------	-----------	-------

Table 38. External Data Memory Characteristics, 4.0V - 6.0V, One Cycle Wait State

			8 MHz Os	scillator	Variable Oscillator		
	Symbol	Parameter	Min	Max	Min	Max	Unit
0	1/t _{CLCL}	Oscillator Frequency			0.0	8.0	MHz
10	t _{RLDV}	Read Low to Data Valid		195.0		2.0 t _{CLCL} - 55.0	ns
12	t _{RLRH}	RD Pulse Width	230.0		2.0 t _{CLCL} - 20.0		ns
15	t _{DVWH}	Data Valid to WR High	220.0		2.0 t _{CLCL} - 30.0		ns
16	t _{wLWH}	WR Pulse Width	167.5		1.5 t _{CLCL} - 20.0 ⁽²⁾		ns

Notes: 1. This assumes 50% clock duty cycle. The half-period is actually the high time of the external clock, XTAL1.

2. This assumes 50% clock duty cycle. The half-period is actually the low time of the external clock, XTAL1.

Typical Characteristics

The following charts show typical behavior. These figures are not tested during manufacturing. All current consumption measurements are performed with all I/O pins configured as inputs and with internal pull-ups enabled. ICP is pulled high externally. A sine wave generator with rail-to-rail output is used as clock source.

The power consumption in Power-down mode is independent of clock selection.

The current consumption is a function of several factors such as: operating voltage, operating frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient temperature. The dominating factors are operating voltage and frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as $C_L \bullet V_{CC} \bullet f$ where C_L = load capacitance, V_{CC} = operating voltage and f = average switching frequency of I/O pin.

The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to function properly at frequencies higher than the ordering code indicates.

The difference between current consumption in Power-down mode with Watchdog Timer enabled and Power-down mode with Watchdog Timer disabled represents the differential current drawn by the Watchdog Timer.

Figure 69. Active Supply Current vs. Frequency

Instruction Set Summary

Mnemonic	Operands	Description	Operation	Flags	# Clocks						
ARITHMETIC AND LOGIC INSTRUCTIONS											
ADD	Rd, Rr	Add Two Registers	$Rd \leftarrow Rd + Rr$	Z,C,N,V,H	1						
ADC	Rd, Rr	Add with Carry Two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1						
ADIW	Rdl, K	Add Immediate to Word	$Rdh:Rdl \leftarrow Rdh:Rdl + K$	Z,C,N,V,S	2						
SUB	Rd, Rr	Subtract Two Registers	$Rd \leftarrow Rd - Rr$	Z,C,N,V,H	1						
SUBI	Rd, K	Subtract Constant from Register	$Rd \leftarrow Rd - K$	Z,C,N,V,H	1						
SBC	Rd, Rr	Subtract with Carry Two Registers	$Rd \leftarrow Rd - Rr - C$	Z,C,N,V,H	1						
SBCI	Rd, K	Subtract with Carry Constant from Reg.	$Rd \leftarrow Rd - K - C$	Z,C,N,V,H	1						
SBIW	Rdl, K	Subtract Immediate from Word	$Rdh:Rdl \leftarrow Rdh:Rdl - K$	Z,C,N,V,S	2						
AND	Rd, Rr	Logical AND Registers	$Rd \leftarrow Rd \bullet Rr$	Z,N,V	1						
ANDI	Rd, K	Logical AND Register and Constant	$Rd \gets Rd \bullet K$	Z,N,V	1						
OR	Rd, Rr	Logical OR Registers	$Rd \leftarrow Rd \lor Rr$	Z,N,V	1						
ORI	Rd, K	Logical OR Register and Constant	$Rd \leftarrow Rd \lor K$	Z,N,V	1						
EOR	Rd, Rr	Exclusive OR Registers	$Rd \leftarrow Rd \oplus Rr$	Z,N,V	1						
COM	Rd	One's Complement	$Rd \leftarrow \$FF - Rd$	Z,C,N,V	1						
NEG	Rd	Two's Complement	Rd ← \$00 - Rd	Z,C,N,V,H	1						
SBR	Rd, K	Set Bit(s) in Register	$Rd \leftarrow Rd \lor K$	Z,N,V	1						
CBR	Rd, K	Clear Bit(s) in Register	$Rd \leftarrow Rd \bullet (\$FF - K)$	Z,N,V	1						
INC	Rd	Increment	$Rd \leftarrow Rd + 1$	Z,N,V	1						
DEC	Rd	Decrement	$Rd \leftarrow Rd - 1$	Z,N,V	1						
TST	Rd	Test for Zero or Minus	$Rd \leftarrow Rd \bullet Rd$	Z,N,V	1						
CLR	Rd	Clear Register	$Rd \leftarrow Rd \oplus Rd$	Z,N,V	1						
SER	Rd	Set Register	$Rd \leftarrow \$FF$	None	1						
BRANCH INSTRU	JCTIONS	·	·								
RJMP	k	Relative Jump	$PC \leftarrow PC + k + 1$	None	2						
IJMP		Indirect Jump to (Z)	$PC \leftarrow Z$	None	2						
RCALL	k	Relative Subroutine Call	$PC \leftarrow PC + k + 1$	None	3						
ICALL		Indirect Call to (Z)	$PC \leftarrow Z$	None	3						
RET		Subroutine Return	$PC \leftarrow STACK$	None	4						
RETI		Interrupt Return	$PC \leftarrow STACK$	1	4						
CPSE	Rd, Rr	Compare, Skip if Equal	if (Rd = Rr) PC \leftarrow PC + 2 or 3	None	1/2/3						
CP	Rd, Rr	Compare	Rd - Rr	Z,N,V,C,H	1						
CPC	Rd, Rr	Compare with Carry	Rd - Rr - C	Z,N,V,C,H	1						
CPI	Rd, K	Compare Register with Immediate	Rd - K	Z,N,V,C,H	1						
SBRC	Rr, b	Skip if Bit in Register Cleared	if (Rr(b) = 0) PC \leftarrow PC + 2 or 3	None	1/2/3						
SBRS	Rr, b	Skip if Bit in Register is Set	if $(Rr(b) = 1) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3						
SBIC	P, b	Skip if Bit in I/O Register Cleared	if $(P(b) = 0) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3						
SBIS	P, b	Skip if Bit in I/O Register is Set	if (P(b) = 1) PC \leftarrow PC + 2 or 3	None	1/2/3						
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) = 1) then PC \leftarrow PC + k + 1	None	1/2						
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) = 0) then PC \leftarrow PC + k + 1	None	1/2						
BREQ	k	Branch if Equal	if (Z = 1) then PC \leftarrow PC + k + 1	None	1/2						
BRNE	k	Branch if Not Equal	if (Z = 0) then PC \leftarrow PC + k + 1	None	1/2						
BRCS	k	Branch if Carry Set	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2						
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2						
BRSH	k	Branch if Same or Higher	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2						
BRLO	k	Branch if Lower	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2						
BRMI	k	Branch if Minus	if (N = 1) then PC \leftarrow PC + k + 1	None	1/2						
BRPL	k	Branch if Plus	if (N = 0) then PC \leftarrow PC + k + 1	None	1/2						
BRGE	k	Branch if Greater or Equal, Signed	if (N \oplus V = 0) then PC \leftarrow PC + k + 1	None	1/2						
BRLT	k	Branch if Less Than Zero, Signed	if (N \oplus V = 1) then PC \leftarrow PC + k + 1	None	1/2						
BRHS	k	Branch if Half-carry Flag Set	if (H = 1) then PC \leftarrow PC + k + 1	None	1/2						
BRHC	k	Branch if Half-carry Flag Cleared	if (H = 0) then PC \leftarrow PC + k + 1	None	1/2						
BRTS	k	Branch if T-flag Set	if (T = 1) then PC \leftarrow PC + k + 1	None	1/2						
BRTC	k	Branch if T-flag Cleared	if (T = 0) then PC \leftarrow PC + k + 1	None	1/2						
BRVS	k	Branch if Overflow Flag is Set	if (V = 1) then PC \leftarrow PC + k + 1	None	1/2						
BRVC	k	Branch if Overflow Flag is Cleared	if (V = 0) then PC \leftarrow PC + k + 1	None	1/2						
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC \leftarrow PC + k + 1	None	1/2						
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC \leftarrow PC + k + 1	None	1/2						

Atmel Headquarters

Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131 TEL (408) 441-0311 FAX (408) 487-2600

Europe

Atmel SarL Route des Arsenaux 41 Casa Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500

Asia

Atmel Asia, Ltd. Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

Japan

Atmel Japan K.K. 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Product Operations

Atmel Colorado Springs 1150 E. Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL (719) 576-3300 FAX (719) 540-1759

Atmel Grenoble

Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France TEL (33) 4-7658-3000 FAX (33) 4-7658-3480

Atmel Heilbronn

Theresienstrasse 2 POB 3535 D-74025 Heilbronn, Germany TEL (49) 71 31 67 25 94 FAX (49) 71 31 67 24 23

Atmel Nantes

La Chantrerie BP 70602 44306 Nantes Cedex 3, France TEL (33) 0 2 40 18 18 18 FAX (33) 0 2 40 18 19 60

Atmel Rousset

Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4-4253-6000 FAX (33) 4-4253-6001

Atmel Smart Card ICs

Scottish Enterprise Technology Park East Kilbride, Scotland G75 0QR TEL (44) 1355-357-000 FAX (44) 1355-242-743

> *e-mail* literature@atmel.com

> Web Site http://www.atmel.com

BBS 1-(408) 436-4309

© Atmel Corporation 2001.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

ATMEL® and AVR® are the registered trademarks of Atmel.

Other terms and product names may be the trademarks of others.

