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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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AT90S8515
Architectural 
Overview

The fast-access register file concept contains 32 x 8-bit general-purpose working regis-
ters with a single clock cycle access time. This means that during one single clock cycle,
one ALU (Arithmetic Logic Unit) operation is executed. Two operands are output from
the register file, the operation is executed and the result is stored back in the register file
– in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for
Data Space addressing, enabling efficient address calculations. One of the three
address pointers is also used as the address pointer for the constant table look-up func-
tion. These added function registers are the 16-bit X-, Y-, and Z-register.

The ALU supports arithmetic and logic functions between registers or between a con-
stant and a register. Single register operations are also executed in the ALU. Figure 4
shows the AT90S8515 AVR RISC microcontroller architecture.

In addition to the register operation, the conventional memory addressing modes can be
used on the register file as well. This is enabled by the fact that the register file is
assigned the 32 lowermost Data Space addresses ($00 - $1F), allowing them to be
accessed as though they were ordinary memory locations.

The I/O memory space contains 64 addresses for CPU peripheral functions such as
Control Registers, Timer/Counters, A/D converters and other I/O functions. The I/O
memory can be accessed directly or as the Data Space locations following those of the
register file, $20 - $5F.

The AVR uses a Harvard architecture concept – with separate memories and buses for
program and data. The program memory is executed with a two-stage pipeline. While
one instruction is being executed, the next instruction is pre-fetched from the program
memory. This concept enables instructions to be executed in every clock cycle. The pro-
gram memory is In-System Programmable Flash memory.

With the relative jump and call instructions, the whole 4K address space is directly
accessed. Most AVR instructions have a single 16-bit word format. Every program
memory address contains a 16- or 32-bit instruction.

During interrupts and subroutine calls, the return address Program Counter (PC) is
stored on the stack. The stack is effectively allocated in the general data SRAM and
consequently, the stack size is only limited by the total SRAM size and the usage of the
SRAM. All user programs must initialize the SP in the reset routine (before subroutines
or interrupts are executed). The 16-bit Stack Pointer (SP) is read/write-accessible in the
I/O space.

The 512-byte data SRAM can be easily accessed through the five different addressing
modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.
7
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The user can select the start-up time according to typical oscillator start-up. The number
of WDT oscillator cycles used for each time-out is shown in Table 4. The frequency of
the Watchdog Oscillator is voltage-dependent as shown in “Typical Characteristics” on
page 95.

Power-on Reset A Power-on Reset (POR) circuit ensures that the device is reset from power-on. As
shown in Figure 23, an internal timer clocked from the Watchdog Timer oscillator pre-
vents the MCU from starting until after a certain period after VCC has reached the Power-
on Threshold Voltage (VPOT), regardless of the VCC rise time (see Figure 24). The
FSTRT Fuse bit in the Flash can be programmed to give a shorter start-up time if a
ceramic resonator or any other fast-start oscillator is used to clock the MCU.

If the built-in start-up delay is sufficient, RESET can be connected to VCC directly or via
an external pull-up resistor. By holding the pin low for a period after VCC has been
applied, the Power-on Reset period can be extended. Refer to Figure 25 for a timing
example of this.

Figure 24.  MCU Start-up, RESET Tied to VCC.

Figure 25.  MCU Start-up, RESET Controlled Externally

Table 4.  Number of Watchdog Oscillator Cycles

FSTRT Time-out at VCC = 5V Number of WDT Cycles

Programmed 0.28 ms 256

Unprogrammed 16.0 ms 16K
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AT90S8515
• Bit 6 – INTF0: External Interrupt Flag0

When an edge on the INT0 pin triggers an interrupt request, the corresponding interrupt
flag, INTF0, becomes set (one). If the I-bit in SREG and the corresponding interrupt
enable bit, INT0 in GIMSK are set (one), the MCU will jump to the interrupt vector. The
flag is cleared when the interrupt routine is executed. Alternatively, the flag is cleared by
writing a logical “1” to it. This flag is always cleared when INT0 is configured as level
interrupt.

• Bits 5..0 – Res: Reserved Bits

These bits are reserved bits in the AT90S8515 and always read as zero.

Timer/Counter Interrupt Mask 
Register – TIMSK

• Bit 7 – TOIE1: Timer/Counter1 Overflow Interrupt Enable

When the TOIE1 bit is set (one) and the I-bit in the Status Register is set (one), the
Timer/Counter1 Overflow interrupt is enabled. The corresponding interrupt (at vector
$006) is executed if an overflow in Timer/Counter1 occurs, i.e., when the TOV1 bit is set
in the Timer/Counter Interrupt Flag Register (TIFR).

• Bit 6 – OCE1A: Timer/Counter1 Output CompareA Match Interrupt Enable

When the OCIE1A bit is set (one) and the I-bit in the Status Register is set (one), the
Timer/Counter1 CompareA Match interrupt is enabled. The corresponding interrupt (at
vector $004) is executed if a CompareA match in Timer/Counter1 occurs, i.e., when the
OCF1A bit is set in the Timer/Counter Interrupt Flag Register (TIFR).

• Bit 5 – OCIE1B: Timer/Counter1 Output CompareB Match Interrupt Enable

When the OCIE1B bit is set (one) and the I-bit in the Status Register is set (one), the
Timer/Counter1 CompareB Match interrupt is enabled. The corresponding interrupt (at
vector $005) is executed if a CompareB match in Timer/Counter1 occurs, i.e., when the
OCF1B bit is set in the Timer/Counter Interrupt Flag Register (TIFR).

• Bit 4 – Res: Reserved Bit

This bit is a reserved bit in the AT90S8515 and always reads zero.

• Bit 3 – TICIE1: Timer/Counter1 Input Capture Interrupt Enable

When the TICIE1 bit is set (one) and the I-bit in the Status Register is set (one), the
Timer/Counter1 Input Capture Event interrupt is enabled. The corresponding interrupt
(at vector $003) is executed if a capture-triggering event occurs on pin 31, ICP, i.e.,
when the ICF1 bit is set in the Timer/Counter Interrupt Flag Register (TIFR).

• Bit 2 – Res: Reserved Bit

This bit is a reserved bit in the AT90S8515 and always reads zero.

• Bit 1 – TOIE0: Timer/Counter0 Overflow Interrupt Enable

When the TOIE0 bit is set (one) and the I-bit in the Status Register is set (one), the
Timer/Counter0 Overflow interrupt is enabled. The corresponding interrupt (at vector
$007) is executed if an overflow in Timer/Counter0 occurs, i.e., when the TOV0 bit is set
in the Timer/Counter Interrupt Flag Register (TIFR).

• Bit 0 – Res: Reserved Bit

This bit is a reserved bit in the AT90S8515 and always reads zero.

Bit 7 6 5 4 3 2 1 0

$39 ($59) TOIE1 OCIE1A OCIE1B – TICIE1 – TOIE0 – TIMSK
Read/Write R/W R/W R/W R R/W R R/W R

Initial Value 0 0 0 0 0 0 0 0
27
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The TEMP register is also used when accessing TCNT1, OCR1A and OCR1B. If the
main program and interrupt routines perform access to registers using TEMP, interrupts
must be disabled during access from the main program (and from interrupt routines if
interrupts are allowed from within interrupt routines).

Timer/Counter1 in PWM Mode When the PWM mode is selected, Timer/Counter1, the Output Compare Register1A
(OCR1A) and the Output Compare Register1B (OCR1B) form a dual 8-, 9- or 10-bit,
free-running, glitch-free and phase-correct PWM with outputs on the PD5(OC1A) and
OC1B pins. Timer/Counter1 acts as an up/down counter, counting up from $0000 to
TOP (see Table 11), where it turns and counts down again to zero before the cycle is
repeated. When the counter value matches the contents of the 10 least significant bits of
OCR1A or OCR1B, the PD5(OC1A)/OC1B pins are set or cleared according to the set-
tings of the COM1A1/COM1A0 or COM1B1/COM1B0 bits in the Timer/Counter1 Control
Register (TCCR1A). Refer to Table 12 for details.

Note: X = A or B

Note that in the PWM mode, the 10 least significant OCR1A/OCR1B bits, when written,
are transferred to a temporary location. They are latched when Timer/Counter1 reaches
the value TOP. This prevents the occurrence of odd-length PWM pulses (glitches) in the
event of an unsynchronized OCR1A/OCR1B write. See Figure 32 for an example.

Table 11.  Timer TOP Values and PWM Frequency

PWM Resolution Timer TOP Value Frequency

8-bit $00FF (255) fTCK1/510

9-bit $01FF (511) fTCK1/1022

10-bit $03FF(1023) fTCK1/2046

Table 12.  Compare1 Mode Select in PWM Mode

COM1X1 COM1X0 Effect on OCX1

0 0 Not connected

0 1 Not connected

1 0
Cleared on compare match, up-counting. Set on compare match, 
down-counting (non-inverted PWM).

1 1
Cleared on compare match, down-counting. Set on compare match, 
up-counting (inverted PWM).
40 AT90S8515
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AT90S8515
1. In the same operation, write a logical “1” to WDTOE and WDE. A logical “1” must 
be written to WDE even though it is set to one before the disable operation starts.

2. Within the next four clock cycles, write a logical “0” to WDE. This disables the 
Watchdog.

• Bits 2..0 – WDP2, WDP1, WDP0: Watchdog Timer Prescaler 2, 1 and 0

The WDP2, WDP1 and WDP0 bits determine the Watchdog Timer prescaling when the
Watchdog Timer is enabled. The different prescaling values and their corresponding
Time-out periods are shown in Table 14.

Note: The frequency of the Watchdog oscillator is voltage-dependent as shown in the Electrical
Characteristics section.
The WDR (Watchdog Reset) instruction should always be executed before the Watchdog
Timer is enabled. This ensures that the reset period will be in accordance with the
Watchdog Timer prescale settings. If the Watchdog Timer is enabled without reset, the
Watchdog Timer may not start to count from zero.
To avoid unintentional MCU reset, the Watchdog Timer should be disabled or reset
before changing the Watchdog Timer Prescale Select.

Table 14.  Watchdog Timer Prescale Select

WDP2 WDP1 WDP0
Number of WDT
Oscillator Cycles

Typical Time-out 
at VCC = 3.0V

Typical Time-out 
at VCC = 5.0V

0 0 0 16K cycles 47.0 ms 15.0 ms

0 0 1 32K cycles 94.0 ms 30.0 ms

0 1 0 64K cycles 0.19 s 60.0 ms

0 1 1 128K cycles 0.38 s 0.12 s

1 0 0 256K cycles 0.75 s 0.24 s

1 0 1 512K cycles 1.5 s 0.49 s

1 1 0 1,024K cycles 3.0 s 0.97 s

1 1 1 2,048K cycles 6.0 s 1.9 s
43
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AT90S8515
• Bit 2 – EEMWE: EEPROM Master Write Enable

The EEMWE bit determines whether setting EEWE to one causes the EEPROM to be
written. When EEMWE is set (one), setting EEWE will write data to the EEPROM at the
selected address. If EEMWE is zero, setting EEWE will have no effect. When EEMWE
has been set (one) by software, hardware clears the bit to zero after four clock cycles.
See the description of the EEWE bit for a EEPROM write procedure.

• Bit 1 – EEWE: EEPROM Write Enable

The EEPROM Write Enable signal (EEWE) is the write strobe to the EEPROM. When
address and data are correctly set up, the EEWE bit must be set to write the value into
the EEPROM. The EEMWE bit must be set when the logical “1” is written to EEWE, oth-
erwise no EEPROM write takes place. The following procedure should be followed
when writing the EEPROM (the order of steps 2 and 3 is unessential):

1. Wait until EEWE becomes zero.

2. Write new EEPROM address to EEARL and EEARH (optional).

3. Write new EEPROM data to EEDR (optional).

4. Write a logical “1” to the EEMWE bit in EECR (to be able to write a logical “1” to 
the EEMWE bit, the EEWE bit must be written to zero in the same cycle).

5. Within four clock cycles after setting EEMWE, write a logical “1” to EEWE.

When the write access time (typically 2.5 ms at VCC = 5V or 4 ms at VCC = 2.7V) has
elapsed, the EEWE bit is cleared (zero) by hardware. The user software can poll this bit
and wait for a zero before writing the next byte. When EEWE has been set, the CPU is
halted for two cycles before the next instruction is executed.

Caution: An interrupt between step 4 and step 5 will make the write cycle fail, since the
EEPROM Master Write Enable will time-out. If an interrupt routine accessing the
EEPROM is interrupting another EEPROM access, the EEAR or EEDR registers will be
modified, causing the interrupted EEPROM access to fail. It is recommended to have
the global interrupt flag cleared during the four last steps to avoid these problems.

• Bit 0 – EERE: EEPROM Read Enable

The EEPROM Read Enable signal EERE is the read strobe to the EEPROM. When the
correct address is set up in the EEAR register, the EERE bit must be set. When the
EERE bit is cleared (zero) by hardware, requested data is found in the EEDR register.
The EEPROM read access takes one instruction and there is no need to poll the EERE
bit. When EERE has been set, the CPU is halted for four cycles before the next instruc-
tion is executed.

The user should poll the EEWE bit before starting the read operation. If a write operation
is in progress when new data or address is written to the EEPROM I/O registers, the
write operation will be interrupted and the result is undefined.
45
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Figure 35.  SPI Master-slave Interconnection

The system is single-buffered in the transmit direction and double-buffered in the
receive direction. This means that bytes to be transmitted cannot be written to the SPI
Data Register before the entire shift cycle is completed. When receiving data, however,
a received byte must be read from the SPI Data Register before the next byte has been
completely shifted in. Otherwise, the first byte is lost.

When the SPI is enabled, the data direction of the MOSI, MISO, SCK and SS pins is
overridden according to Table 15.

Note: See “Alternate Functions of Port B” on page 66 for a detailed description of how to define
the direction of the user-defined SPI pins.

SS Pin Functionality When the SPI is configured as a master (MSTR in SPCR is set), the user can determine
the direction of the SS pin. If SS is configured as an output, the pin is a general output
pin, which does not affect the SPI system. If SS is configured as an input, it must be held
high to ensure master SPI operation. If the SS pin is driven low by peripheral circuitry
when the SPI is configured as master with the SS pin defined as an input, the SPI sys-
tem interprets this as another master selecting the SPI as a slave and starts to send
data to it. To avoid bus contention, the SPI system takes the following actions:

1. The MSTR bit in SPCR is cleared and the SPI system becomes a slave. As a 
result of the SPI becoming a slave, the MOSI and SCK pins become inputs.

2. The SPIF flag in SPSR is set, and if the SPI interrupt is enabled and the I-bit in 
SREG is set, the interrupt routine will be executed.

Thus, when interrupt-driven SPI transmittal is used in Master Mode and there exists a
possibility that SS is driven low, the interrupt should always check that the MSTR bit is
still set. Once the MSTR bit has been cleared by a slave select, it must be set by the
user to re-enable SPI Master Mode.

When the SPI is configured as a slave, the SS pin is always input. When SS is held low,
the SPI is activated and MISO becomes an output if configured so by the user. All other

Table 15.  SPI Pin Overrides

Pin Direction, Master SPI Direction, Slave SPI

MOSI User Defined Input

MISO Input User Defined

SCK User Defined Input

SS User Defined Input

MSB MSBMASTER LSB LSBSLAVE

SPI
CLOCK GENERATOR

8-BIT SHIFT REGISTER 8-BIT SHIFT REGISTER

MISO MISO

MOSI MOSI

SCK SCK

SSSS

VCC
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UART The AT90S8515 features a full duplex (separate receive and transmit registers) Univer-
sal Asynchronous Receiver and Transmitter (UART). The main features are:
• Baud Rate Generator that can Generate a large Number of Baud Rates (bps)
• High Baud Rates at Low XTAL Frequencies
• 8 or 9 Bits Data
• Noise Filtering
• Overrun Detection
• Framing Error Detection
• False Start Bit Detection
• Three separate Interrupts on TX Complete, TX Data Register Empty and RX Complete

Data Transmission A block schematic of the UART transmitter is shown in Figure 38.

Figure 38.  UART Transmitter

Data transmission is initiated by writing the data to be transmitted to the UART I/O Data
Register, UDR. Data is transferred from UDR to the Transmit shift register when:

• A new character has been written to UDR after the stop bit from the previous 
character has been shifted out. The shift register is loaded immediately.

• A new character has been written to UDR before the stop bit from the previous 
character has been shifted out. The shift register is loaded when the stop bit of the 
character currently being transmitted has been shifted out.
52 AT90S8515
0841G–09/01



The FE bit is cleared when the stop bit of received data is one.

• Bit 3 – OR: Overrun

This bit is set if an Overrun condition is detected, i.e., when a character already present
in the UDR register is not read before the next character has been shifted into the
Receiver Shift register. The OR bit is buffered, which means that it will be set once the
valid data still in UDRE is read.

The OR bit is cleared (zero) when data is received and transferred to UDR.

• Bits 2..0 – Res: Reserved Bits

These bits are reserved bits in the AT90S8515 and will always read as zero.

UART Control Register – UCR

• Bit 7 – RXCIE: RX Complete Interrupt Enable

When this bit is set (one), a setting of the RXC bit in USR will cause the Receive Com-
plete Interrupt routine to be executed provided that global interrupts are enabled.

• Bit 6 – TXCIE: TX Complete Interrupt Enable

When this bit is set (one), a setting of the TXC bit in USR will cause the Transmit Com-
plete Interrupt routine to be executed provided that global interrupts are enabled.

• Bit 5 – UDRIE: UART Data Register Empty Interrupt Enable

When this bit is set (one), a setting of the UDRE bit in USR will cause the UART Data
Register Empty Interrupt routine to be executed provided that global interrupts are
enabled.

• Bit 4 – RXEN: Receiver Enable

This bit enables the UART receiver when set (one). When the receiver is disabled, the
RXC, OR and FE status flags cannot become set. If these flags are set, turning off
RXEN does not cause them to be cleared.

• Bit 3 – TXEN: Transmitter Enable

This bit enables the UART transmitter when set (one). When disabling the transmitter
while transmitting a character, the transmitter is not disabled before the character in the
shift register plus any following character in UDR has been completely transmitted.

• Bit 2 – CHR9: 9-bit Characters

When this bit is set (one) transmitted and received characters are 9 bits long plus start
and stop bits. The ninth bit is read and written by using the RXB8 and TXB8 bits in UCR,
respectively. The ninth data bit can be used as an extra stop bit or a parity bit.

• Bit 1 – RXB8: Receive Data Bit 8

When CHR9 is set (one), RXB8 is the ninth data bit of the received character.

• Bit 0 – TXB8: Transmit Data Bit 8

When CHR9 is set (one), TXB8 is the ninth data bit in the character to be transmitted.

Bit 7 6 5 4 3 2 1 0

$0A ($2A) RXCIE TXCIE UDRIE RXEN TXEN CHR9 RXB8 TXB8 UCR
Read/Write R/W R/W R/W R/W R/W R/W R W

Initial Value 0 0 0 0 0 0 1 0
56 AT90S8515
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Table 17.  UBRR Settings at Various Crystal Frequencies

UART BAUD Rate Register – 
UBRR

The UBRR register is an 8-bit read/write register that specifies the UART Baud Rate
according to the equation on the previous page.

Baud Rate 1 MHz %Error 1.8432 MHz %Error 2 MHz %Error 2.4576 MHz %Error
2400 UBRR= 25 0.2 UBRR= 47 0.0 UBRR= 51 0.2 UBRR= 63 0.0
4800 UBRR= 12 0.2 UBRR= 23 0.0 UBRR= 25 0.2 UBRR= 31 0.0
9600 UBRR= 6 7.5 UBRR= 11 0.0 UBRR= 12 0.2 UBRR= 15 0.0

14400 UBRR= 3 7.8 UBRR= 7 0.0 UBRR= 8 3.7 UBRR= 10 3.1
19200 UBRR= 2 7.8 UBRR= 5 0.0 UBRR= 6 7.5 UBRR= 7 0.0
28800 UBRR= 1 7.8 UBRR= 3 0.0 UBRR= 3 7.8 UBRR= 4 6.3
38400 UBRR= 1 22.9 UBRR= 2 0.0 UBRR= 2 7.8 UBRR= 3 0.0
57600 UBRR= 0 7.8 UBRR= 1 0.0 UBRR= 1 7.8 UBRR= 2 12.5
76800 UBRR= 0 22.9 UBRR= 1 33.3 UBRR= 1 22.9 UBRR= 1 0.0

115200 UBRR= 0 84.3 UBRR= 0 0.0 UBRR= 0 7.8 UBRR= 0 25.0

Baud Rate 3.2768 MHz %Error 3.6864 MHz %Error 4 MHz %Error 4.608 MHz %Error
2400 UBRR= 84 0.4 UBRR= 95 0.0 UBRR= 103 0.2 UBRR= 119 0.0
4800 UBRR= 42 0.8 UBRR= 47 0.0 UBRR= 51 0.2 UBRR= 59 0.0
9600 UBRR= 20 1.6 UBRR= 23 0.0 UBRR= 25 0.2 UBRR= 29 0.0

14400 UBRR= 13 1.6 UBRR= 15 0.0 UBRR= 16 2.1 UBRR= 19 0.0
19200 UBRR= 10 3.1 UBRR= 11 0.0 UBRR= 12 0.2 UBRR= 14 0.0
28800 UBRR= 6 1.6 UBRR= 7 0.0 UBRR= 8 3.7 UBRR= 9 0.0
38400 UBRR= 4 6.3 UBRR= 5 0.0 UBRR= 6 7.5 UBRR= 7 6.7
57600 UBRR= 3 12.5 UBRR= 3 0.0 UBRR= 3 7.8 UBRR= 4 0.0
76800 UBRR= 2 12.5 UBRR= 2 0.0 UBRR= 2 7.8 UBRR= 3 6.7

115200 UBRR= 1 12.5 UBRR= 1 0.0 UBRR= 1 7.8 UBRR= 2 20.0

Baud Rate 7.3728 MHz %Error 8 MHz %Error 9.216 MHz %Error 11.059 MHz %Error
2400 UBRR= 191 0.0 UBRR= 207 0.2 UBRR= 239 0.0 UBRR= 287 -
4800 UBRR= 95 0.0 UBRR= 103 0.2 UBRR= 119 0.0 UBRR= 143 0.0
9600 UBRR= 47 0.0 UBRR= 51 0.2 UBRR= 59 0.0 UBRR= 71 0.0

14400 UBRR= 31 0.0 UBRR= 34 0.8 UBRR= 39 0.0 UBRR= 47 0.0
19200 UBRR= 23 0.0 UBRR= 25 0.2 UBRR= 29 0.0 UBRR= 35 0.0
28800 UBRR= 15 0.0 UBRR= 16 2.1 UBRR= 19 0.0 UBRR= 23 0.0
38400 UBRR= 11 0.0 UBRR= 12 0.2 UBRR= 14 0.0 UBRR= 17 0.0
57600 UBRR= 7 0.0 UBRR= 8 3.7 UBRR= 9 0.0 UBRR= 11 0.0
76800 UBRR= 5 0.0 UBRR= 6 7.5 UBRR= 7 6.7 UBRR= 8 0.0

115200 UBRR= 3 0.0 UBRR= 3 7.8 UBRR= 4 0.0 UBRR= 5 0.0

Bit 7 6 5 4 3 2 1 0

$09 ($29) MSB LSB UBRR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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AT90S8515
• AIN0 – Port B, Bit 2

AIN0: Analog Comparator Positive Input. When configured as an input (DDB2 is cleared
[zero]) and with the internal MOS pull-up resistor switched off (PB2 is cleared [zero]),
this pin also serves as the positive input of the On-chip Analog Comparator.

• T1 – Port B, Bit 1

T1: Timer/Counter1 counter source. See the timer description for further details

• T0 – Port B, Bit 0

T0: Timer/Counter0 counter source. See the timer description for further details.

Port B Schematics Note that all port pins are synchronized. The synchronization latches are, however, not
shown in the figures.

Figure 46.  Port B Schematic Diagram (Pins PB0 and PB1)
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• INT1 – Port D, Bit 3

INT1: External Interrupt source 1. The PD3 pin can serve as an external interrupt source
to the MCU. See the interrupt description for further details and how to enable the
source.

• INT0 – Port D, Bit 2

INT0: External Interrupt source 0. The PD2 pin can serve as an external interrupt source
to the MCU. See the interrupt description for further details and how to enable the
source.

• TXD – Port D, Bit 1

Transmit Data (data output pin for the UART). When the UART transmitter is enabled,
this pin is configured as an output, regardless of the value of DDRD1.

• RXD – Port D, Bit 0

Receive Data (data input pin for the UART). When the UART receiver is enabled, this
pin is configured as an input, regardless of the value of DDRD0. When the UART forces
this pin to be an input, a logical “1” in PORTD0 will turn on the internal pull-up.

Port D Schematics Note that all port pins are synchronized. The synchronization latches are, however, not
shown in the figures.

Figure 53.  Port D Schematic Diagram (Pin PD0)
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Bit 5 = SPIEN Fuse bit

Bit 0 = FSTRT Fuse bit

Bit 7 - 6, 4 - 1 = “1”. These bits are reserved and should be left unprogrammed (“1”).

3. Give WR a tWLWH_PFB-wide negative pulse to execute the programming, 
tWLWH_PFB is found in Table 30. Programming the Fuse bits does not generate 
any activity on the RDY/BSY pin.

Programming the Lock Bits The algorithm for programming the Lock bits is as follows (refer to “Programming the
Flash” on page 81 for details on command and data loading):

1. A: Load Command “0010 0000”.

2. D: Load Data Low Byte. Bit n = “0” programs the Lock bit.

Bit 2 = Lock Bit2

Bit 1 = Lock Bit1

Bit 7 - 3, 0 = “1”. These bits are reserved and should be left unprogrammed (“1”).

3. E: Write Data Low Byte.

The Lock bits can only be cleared by executing Chip Erase.

Reading the Fuse and Lock 
Bits

The algorithm for reading the Fuse and Lock bits is as follows (refer to “Programming
the Flash” on page 81 for details on Command loading):

1. A: Load Command “0000 0100”.

2. Set OE to “0”, and BS to “1”. The status of the Fuse and Lock bits can now be 
read at DATA (“0” means programmed).

Bit 7 = Lock Bit1

Bit 6 = Lock Bit2

Bit 5 = SPIEN Fuse bit

Bit 0 = FSTRT Fuse bit

3. Set OE to “1”.

Observe that BS needs to be set to “1”.

Reading the Signature Bytes The algorithm for reading the signature bytes is as follows (refer to “Programming the
Flash” on page 81 for details on command and address loading):

1. A: Load Command “0000 1000”.

2. C: Load Address Low Byte ($00 - $02).

Set OE to “0”, and BS to “0”. The selected signature byte can now be read at DATA.

3. Set OE to “1”.
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Serial Downloading Both the program and data memory arrays can be programmed using the SPI bus while
RESET is pulled to GND. The serial interface consists of pins SCK, MOSI (input) and
MISO (output). See Figure 64. After RESET is set low, the Programming Enable instruc-
tion needs to be executed first before program/erase instructions can be executed.

Figure 64.  Serial Programming and Verify

For the EEPROM, an auto-erase cycle is provided within the self-timed Write instruction
and there is no need to first execute the Chip Erase instruction. The Chip Erase instruc-
tion turns the content of every memory location in both the program and EEPROM
arrays into $FF.

The program and EEPROM memory arrays have separate address spaces: $0000 to
$0FFF (AT90S8515) for program memory and $0000 to $01FF (AT90S8515) for
EEPROM memory.

Either an external clock is supplied at pin XTAL1 or a crystal needs to be connected
across pins XTAL1 and XTAL2. The minimum low and high periods for the serial clock
(SCK) input are defined as follows:

Low: > 2 XTAL1 clock cycles

High: > 2 XTAL1 clock cycles

Serial Programming 
Algorithm

When writing serial data to the AT90S8515, data is clocked on the rising edge of SCK.

When reading data from the AT90S8515, data is clocked on the falling edge of SCK.
See Figure 65, Figure 66 and Table 33 on page 89 for timing details.

To program and verify the AT90S8515 in the Serial Programming Mode, the following
sequence is recommended (see 4-byte instruction formats in Table 32):
1. Power-up sequence:

Apply power between VCC and GND while RESET and SCK are set to “0”. If a crys-
tal is not connected across pins XTAL1 and XTAL2, apply a clock signal to the
XTAL1 pin. In some systems, the programmer cannot guarantee that SCK is held
low during power-up. In this case, RESET must be given a positive pulse of at least
two XTAL1 cycles duration after SCK has been set to “0”.

2. Wait for at least 20 ms and enable serial programming by sending the Program-
ming Enable serial instruction to the MOSI (PB5) pin.

3. The serial programming instructions will not work if the communication is out of 
synchronization. When in sync, the second byte ($53) will echo back when issu-

VCC

2.7 - 6.0V

PB7
PB6
PB5

RESET

GND

XTAL1

SCK
MISO
MOSI

GND

CLOCK INPUT

AT90S8515
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AT90S8515
Serial Programming 
Characteristics

Figure 66.  Serial Programming Timing

Table 33.  Serial Programming Characteristics, TA = -40°C to 85°C, VCC = 2.7V - 6.0V
(unless otherwise noted)

Symbol Parameter Min Typ Max Units

1/tCLCL Oscillator Frequency (VCC = 2.7 - 4.0V) 0 4.0 MHz

tCLCL Oscillator Period (VCC = 2.7 - 4.0V) 250.0 ns

1/tCLCL Oscillator Frequency (VCC = 4.0 - 6.0V) 0 8.0 MHz

tCLCL Oscillator Period (VCC = 4.0 - 6.0V) 125.0 ns

tSHSL SCK Pulse Width High 2.0 tCLCL ns

tSLSH SCK Pulse Width Low 2.0 tCLCL ns

tOVSH MOSI Setup to SCK High tCLCL ns

tSHOX MOSI Hold after SCK High 2.0 tCLCL ns

tSLIV SCK Low to MISO Valid 10.0 16.0 32.0 ns

Table 34.  Minimum Wait Delay after the Chip Erase Instruction

Symbol 3.2V 3.6V 4.0V 5.0V

tWD_ERASE 18 ms 14 ms 12 ms 8 ms

Table 35.  Minimum Wait Delay after Writing a Flash or EEPROM Location

Symbol 3.2V 3.6V 4.0V 5.0V

tWD_PROG 9 ms 7 ms 6 ms 4 ms

MOSI

MISO

SCK

tOVSH

tSHSL

tSLSHtSHOX

tSLIV
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AT90S8515
Typical 
Characteristics

The following charts show typical behavior. These figures are not tested during manu-
facturing. All current consumption measurements are performed with all I/O pins
configured as inputs and with internal pull-ups enabled. ICP is pulled high externally. A
sine wave generator with rail-to-rail output is used as clock source.

The power consumption in Power-down mode is independent of clock selection.

The current consumption is a function of several factors such as: operating voltage,
operating frequency, loading of I/O pins, switching rate of I/O pins, code executed and
ambient temperature. The dominating factors are operating voltage and frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as
CL • VCC • f where CL = load capacitance, VCC = operating voltage and f = average
switching frequency of I/O pin.

The parts are characterized at frequencies higher than test limits. Parts are not guaran-
teed to function properly at frequencies higher than the ordering code indicates.

The difference between current consumption in Power-down mode with Watchdog
Timer enabled and Power-down mode with Watchdog Timer disabled represents the dif-
ferential current drawn by the Watchdog Timer.

Figure 69.  Active Supply Current vs. Frequency
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Figure 78.  Analog Comparator Input Leakage Current

Figure 79.  Watchdog Oscillator Frequency vs. VCC
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AT90S8515
Figure 84.  I/O Pin Source Current vs. Output Voltage

Figure 85.  I/O Pin Input Threshold Voltage vs. VCC
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44J

1.14(0.045) X 45˚ PIN NO. 1
IDENTIFY

0.813(0.032)
0.660(0.026)

1.27(0.050) TYP
12.70(0.500) REF SQ

1.14(0.045) X 45˚

0.51(0.020)MAX 45˚ MAX (3X)

0.318(0.0125)
0.191(0.0075)

0.533(0.021)

0.330(0.013)

0.50(0.020)MIN

3.05(0.120)
2.29(0.090)

4.57(0.180)
4.19(0.165)

16.70(0.656)
16.50(0.650)

17.70(0.695)
17.40(0.685)

SQ

SQ

2.11(0.083)
1.57(0.062)

16.00(0.630)
 15.00(0.590)

SQ

44J, 44-lead, Plastic J-leaded Chip Carrier (PLCC)
Dimensions in Milimeters and (Inches)*
JEDEC STANDARD MS-018 AC

*Controlling dimensions: Inches

REV. A     04/11/2001
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