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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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AT90S8515
Architectural 
Overview

The fast-access register file concept contains 32 x 8-bit general-purpose working regis-
ters with a single clock cycle access time. This means that during one single clock cycle,
one ALU (Arithmetic Logic Unit) operation is executed. Two operands are output from
the register file, the operation is executed and the result is stored back in the register file
– in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for
Data Space addressing, enabling efficient address calculations. One of the three
address pointers is also used as the address pointer for the constant table look-up func-
tion. These added function registers are the 16-bit X-, Y-, and Z-register.

The ALU supports arithmetic and logic functions between registers or between a con-
stant and a register. Single register operations are also executed in the ALU. Figure 4
shows the AT90S8515 AVR RISC microcontroller architecture.

In addition to the register operation, the conventional memory addressing modes can be
used on the register file as well. This is enabled by the fact that the register file is
assigned the 32 lowermost Data Space addresses ($00 - $1F), allowing them to be
accessed as though they were ordinary memory locations.

The I/O memory space contains 64 addresses for CPU peripheral functions such as
Control Registers, Timer/Counters, A/D converters and other I/O functions. The I/O
memory can be accessed directly or as the Data Space locations following those of the
register file, $20 - $5F.

The AVR uses a Harvard architecture concept – with separate memories and buses for
program and data. The program memory is executed with a two-stage pipeline. While
one instruction is being executed, the next instruction is pre-fetched from the program
memory. This concept enables instructions to be executed in every clock cycle. The pro-
gram memory is In-System Programmable Flash memory.

With the relative jump and call instructions, the whole 4K address space is directly
accessed. Most AVR instructions have a single 16-bit word format. Every program
memory address contains a 16- or 32-bit instruction.

During interrupts and subroutine calls, the return address Program Counter (PC) is
stored on the stack. The stack is effectively allocated in the general data SRAM and
consequently, the stack size is only limited by the total SRAM size and the usage of the
SRAM. All user programs must initialize the SP in the reset routine (before subroutines
or interrupts are executed). The 16-bit Stack Pointer (SP) is read/write-accessible in the
I/O space.

The 512-byte data SRAM can be easily accessed through the five different addressing
modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.
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AT90S8515
In the different addressing modes these address registers have functions as fixed dis-
placement, automatic increment and decrement (see the descriptions for the different
instructions).

ALU – Arithmetic Logic 
Unit

The high-performance AVR ALU operates in direct connection with all the 32 general-
purpose working registers. Within a single clock cycle, ALU operations between regis-
ters in the register file are executed. The ALU operations are divided into three main
categories: arithmetic, logical and bit functions.

In-System Programmable 
Flash Program Memory

The AT90S8515 contains 8K bytes On-chip In-System Programmable Flash memory for
program storage. Since all instructions are 16- or 32-bit words, the Flash is organized as
4K x 16. The Flash memory has an endurance of at least 1000 write/erase cycles. The
AT90S8515 Program Counter (PC) is 12 bits wide, thus addressing the 4096 program
memory addresses.

See page 86 for a detailed description of Flash data downloading.

See page 13 for the different program memory addressing modes.
11
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AT90S8515
• Bit 6 – INTF0: External Interrupt Flag0

When an edge on the INT0 pin triggers an interrupt request, the corresponding interrupt
flag, INTF0, becomes set (one). If the I-bit in SREG and the corresponding interrupt
enable bit, INT0 in GIMSK are set (one), the MCU will jump to the interrupt vector. The
flag is cleared when the interrupt routine is executed. Alternatively, the flag is cleared by
writing a logical “1” to it. This flag is always cleared when INT0 is configured as level
interrupt.

• Bits 5..0 – Res: Reserved Bits

These bits are reserved bits in the AT90S8515 and always read as zero.

Timer/Counter Interrupt Mask 
Register – TIMSK

• Bit 7 – TOIE1: Timer/Counter1 Overflow Interrupt Enable

When the TOIE1 bit is set (one) and the I-bit in the Status Register is set (one), the
Timer/Counter1 Overflow interrupt is enabled. The corresponding interrupt (at vector
$006) is executed if an overflow in Timer/Counter1 occurs, i.e., when the TOV1 bit is set
in the Timer/Counter Interrupt Flag Register (TIFR).

• Bit 6 – OCE1A: Timer/Counter1 Output CompareA Match Interrupt Enable

When the OCIE1A bit is set (one) and the I-bit in the Status Register is set (one), the
Timer/Counter1 CompareA Match interrupt is enabled. The corresponding interrupt (at
vector $004) is executed if a CompareA match in Timer/Counter1 occurs, i.e., when the
OCF1A bit is set in the Timer/Counter Interrupt Flag Register (TIFR).

• Bit 5 – OCIE1B: Timer/Counter1 Output CompareB Match Interrupt Enable

When the OCIE1B bit is set (one) and the I-bit in the Status Register is set (one), the
Timer/Counter1 CompareB Match interrupt is enabled. The corresponding interrupt (at
vector $005) is executed if a CompareB match in Timer/Counter1 occurs, i.e., when the
OCF1B bit is set in the Timer/Counter Interrupt Flag Register (TIFR).

• Bit 4 – Res: Reserved Bit

This bit is a reserved bit in the AT90S8515 and always reads zero.

• Bit 3 – TICIE1: Timer/Counter1 Input Capture Interrupt Enable

When the TICIE1 bit is set (one) and the I-bit in the Status Register is set (one), the
Timer/Counter1 Input Capture Event interrupt is enabled. The corresponding interrupt
(at vector $003) is executed if a capture-triggering event occurs on pin 31, ICP, i.e.,
when the ICF1 bit is set in the Timer/Counter Interrupt Flag Register (TIFR).

• Bit 2 – Res: Reserved Bit

This bit is a reserved bit in the AT90S8515 and always reads zero.

• Bit 1 – TOIE0: Timer/Counter0 Overflow Interrupt Enable

When the TOIE0 bit is set (one) and the I-bit in the Status Register is set (one), the
Timer/Counter0 Overflow interrupt is enabled. The corresponding interrupt (at vector
$007) is executed if an overflow in Timer/Counter0 occurs, i.e., when the TOV0 bit is set
in the Timer/Counter Interrupt Flag Register (TIFR).

• Bit 0 – Res: Reserved Bit

This bit is a reserved bit in the AT90S8515 and always reads zero.

Bit 7 6 5 4 3 2 1 0

$39 ($59) TOIE1 OCIE1A OCIE1B – TICIE1 – TOIE0 – TIMSK
Read/Write R/W R/W R/W R R/W R R/W R

Initial Value 0 0 0 0 0 0 0 0
27
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Timer/Counter Interrupt Flag 
Register – TIFR

• Bit 7 – TOV1: Timer/Counter1 Overflow Flag

The TOV1 is set (one) when an overflow occurs in Timer/Counter1. TOV1 is cleared by
hardware when executing the corresponding interrupt handling vector. Alternatively,
TOV1 is cleared by writing a logical “1” to the flag. When the I-bit in SREG, TOIE1
(Timer/Counter1 Overf low Interrupt Enable) and TOV1 are set (one),  the
Timer/Counter1 Overflow interrupt is executed. In PWM mode, this bit is set when
Timer/Counter1 changes counting direction at $0000.

• Bit 6 – OCF1A: Output Compare Flag 1A

The OCF1A bit is set (one) when compare match occurs between the Timer/Counter1
and the data in OCR1A (Output Compare Register 1A). OCF1A is cleared by hardware
when executing the corresponding interrupt handling vector. Alternatively, OCF1A is
cleared by writing a logical “1” to the flag. When the I-bit in SREG, OCIE1A
(Timer/Counter1 Compare Match InterruptA Enable) and the OCF1A are set (one), the
Timer/Counter1 CompareA Match interrupt is executed.

• Bit 5 – OCF1B: Output Compare Flag 1B

The OCF1B bit is set (one) when compare match occurs between the Timer/Counter1
and the data in OCR1B (Output Compare Register 1B). OCF1B is cleared by hardware
when executing the corresponding interrupt handling vector. Alternatively, OCF1B is
cleared by writing a logical “1” to the flag. When the I-bit in SREG, OCIE1B
(Timer/Counter1 Compare Match InterruptB Enable) and the OCF1B are set (one), the
Timer/Counter1 CompareB Match interrupt is executed.

• Bit 4 – Res: Reserved Bit

This bit is a reserved bit in the AT90S8515 and always reads zero.

• Bit 3 – ICF1: Input Capture Flag 1

The ICF1 bit is set (one) to f lag an input capture event, indicating that the
Timer/Counter1 value has been transferred to the input capture register (ICR1). ICF1 is
cleared by hardware when executing the corresponding interrupt handling vector. Alter-
natively, ICF1 is cleared by writing a logical “1” to the flag. When the SREG I-bit, TICIE1
(Timer/Counter1 Input Capture Interrupt Enable) and ICF1 are set (one), the
Timer/Counter1 Capture interrupt is executed.

• Bit 2 – Res: Reserved Bit

This bit is a reserved bit in the AT90S8515 and always reads zero.

• Bit 1 – TOV: Timer/Counter0 Overflow Flag

The bit TOV0 is set (one) when an overflow occurs in Timer/Counter0. TOV0 is cleared
by hardware when executing the corresponding interrupt handling vector. Alternatively,
TOV0 is cleared by writing a logical “1” to the flag. When the SREG I-bit, TOIE0
(Timer/Counter0 Overf low Interrupt Enable) and TOV0 are set (one),  the
Timer/Counter0 Overflow interrupt is executed.

• Bit 0 – Res: Reserved Bit

This bit is a reserved bit in the AT90S8515 and always reads zero.

Bit 7 6 5 4 3 2 1 0

$38 ($58) TOV1 OCF1A OCIFB – ICF1 – TOV0 – TIFR
Read/Write R/W R/W R/W R R/W R R/W R

Initial Value 0 0 0 0 0 0 0 0
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AT90S8515
Sleep Modes To enter the sleep modes, the SE bit in MCUCR must be set (one) and a SLEEP instruc-
tion must be executed. If an enabled interrupt occurs while the MCU is in a sleep mode,
the MCU awakes, executes the interrupt routine and resumes execution from the
instruction following SLEEP. The contents of the register file, SRAM and I/O memory
are unaltered. If a reset occurs during Sleep Mode, the MCU wakes up and executes
from the Reset vector.

Idle Mode When the SM bit is cleared (zero), the SLEEP instruction forces the MCU into the Idle
Mode, stopping the CPU but allowing Timer/Counters, Watchdog and the interrupt sys-
tem to continue operating. This enables the MCU to wake up from external triggered
interrupts as well as internal ones like Timer Overflow interrupt and Watchdog reset. If
wake-up from the Analog Comparator interrupt is not required, the Analog Comparator
can be powered down by setting the ACD-bit in the Analog Comparator Control and Sta-
tus Register (ACSR). This will reduce power consumption in Idle Mode. When the MCU
wakes up from Idle Mode, the CPU starts program execution immediately.

Power-down Mode When the SM bit is set (one), the SLEEP instruction forces the MCU into the Power-
down mode. In this mode, the external oscillator is stopped, while the external interrupts
and the Watchdog (if enabled) continue operating. Only an external reset, a Watchdog
reset (if enabled), or an external level interrupt on INT0 or INT1 can wake up the MCU.

Note that when a level-triggered interrupt is used for wake-up from power-down, the low
level must be held for a time longer than the reset delay Time-out period tTOUT. Other-
wise, the MCU will fail to wake up.
31
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AT90S8515
1. In the same operation, write a logical “1” to WDTOE and WDE. A logical “1” must 
be written to WDE even though it is set to one before the disable operation starts.

2. Within the next four clock cycles, write a logical “0” to WDE. This disables the 
Watchdog.

• Bits 2..0 – WDP2, WDP1, WDP0: Watchdog Timer Prescaler 2, 1 and 0

The WDP2, WDP1 and WDP0 bits determine the Watchdog Timer prescaling when the
Watchdog Timer is enabled. The different prescaling values and their corresponding
Time-out periods are shown in Table 14.

Note: The frequency of the Watchdog oscillator is voltage-dependent as shown in the Electrical
Characteristics section.
The WDR (Watchdog Reset) instruction should always be executed before the Watchdog
Timer is enabled. This ensures that the reset period will be in accordance with the
Watchdog Timer prescale settings. If the Watchdog Timer is enabled without reset, the
Watchdog Timer may not start to count from zero.
To avoid unintentional MCU reset, the Watchdog Timer should be disabled or reset
before changing the Watchdog Timer Prescale Select.

Table 14.  Watchdog Timer Prescale Select

WDP2 WDP1 WDP0
Number of WDT
Oscillator Cycles

Typical Time-out 
at VCC = 3.0V

Typical Time-out 
at VCC = 5.0V

0 0 0 16K cycles 47.0 ms 15.0 ms

0 0 1 32K cycles 94.0 ms 30.0 ms

0 1 0 64K cycles 0.19 s 60.0 ms

0 1 1 128K cycles 0.38 s 0.12 s

1 0 0 256K cycles 0.75 s 0.24 s

1 0 1 512K cycles 1.5 s 0.49 s

1 1 0 1,024K cycles 3.0 s 0.97 s

1 1 1 2,048K cycles 6.0 s 1.9 s
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Prevent EEPROM 
Corruption

During periods of low VCC, the EEPROM data can be corrupted because the supply volt-
age is too low for the CPU and the EEPROM to operate properly. These issues are the
same as for board level systems using the EEPROM and the same design solutions
should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too
low. First, a regular write sequence to the EEPROM requires a minimum voltage to
operate correctly. Second, the CPU itself can execute instructions incorrectly if the sup-
ply voltage for executing instructions is too low.

EEPROM data corruption can easily be avoided by following these design recommen-
dations (one is sufficient):

1. Keep the AVR RESET active (low) during periods of insufficient power supply 
voltage. This is best done by an external low VCC Reset Protection circuit, often 
referred to as a Brown-out Detector (BOD). Please refer to application note AVR 
180 for design considerations regarding power-on reset and low-voltage 
detection.

2. Keep the AVR core in Power-down Sleep mode during periods of low VCC. This 
will prevent the CPU from attempting to decode and execute instructions, effec-
tively protecting the EEPROM registers from unintentional writes.

3. Store constants in Flash memory if the ability to change memory contents from 
software is not required. Flash memory cannot be updated by the CPU and will 
not be subject to corruption.
46 AT90S8515
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AT90S8515
UART Control

UART I/O Data Register – UDR

The UDR register is actually two physically separate registers sharing the same I/O
address. When writing to the register, the UART Transmit Data register is written. When
reading from UDR, the UART Receive Data register is read.

UART Status Register – USR

The USR register is a read-only register providing information on the UART status.

• Bit 7 – RXC: UART Receive Complete

This bit is set (one) when a received character is transferred from the Receiver Shift reg-
ister to UDR. The bit is set regardless of any detected framing errors. When the RXCIE
bit in UCR is set, the UART Receive Complete interrupt will be executed when RXC is
set (one). RXC is cleared by reading UDR. When interrupt-driven data reception is used,
the UART Receive Complete Interrupt routine must read UDR in order to clear RXC,
otherwise a new interrupt will occur once the interrupt routine terminates.

• Bit 6 – TXC: UART Transmit Complete

This bit is set (one) when the entire character (including the stop bit) in the Transmit
Shift register has been shifted out and no new data has been written to UDR. This flag is
especially useful in half-duplex communications interfaces, where a transmitting appli-
cation must enter receive mode and free the communications bus immediately after
completing the transmission.

When the TXCIE bit in UCR is set, setting of TXC causes the UART Transmit Complete
interrupt to be executed. TXC is cleared by hardware when executing the corresponding
interrupt handling vector. Alternatively, the TXC bit is cleared (zero) by writing a logical
“1” to the bit.

• Bit 5 – UDRE: UART Data Register Empty

This bit is set (one) when a character written to UDR is transferred to the Transmit Shift
register. Setting of this bit indicates that the transmitter is ready to receive a new charac-
ter for transmission.

When the UDRIE bit in UCR is set, the UART Transmit Complete interrupt to be exe-
cuted as long as UDRE is set. UDRE is cleared by writing UDR. When interrupt-driven
data transmittal is used, the UART Data Register Empty Interrupt routine must write
UDR in order to clear UDRE, otherwise a new interrupt will occur once the interrupt rou-
tine terminates.

UDRE is set (one) during reset to indicate that the transmitter is ready.

• Bit 4 – FE: Framing Error

This bit is set if a Framing Error condition is detected, i.e., when the stop bit of an incom-
ing character is zero.

Bit 7 6 5 4 3 2 1 0

$0C ($2C) MSB LSB UDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

$0B ($2B) RXC TXC UDRE FE OR – – – USR
Read/Write R R/W R R R R R R

Initial Value 0 0 1 0 0 0 0 0
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PORTAn has to be cleared (zero) or the pin has to be configured as an output pin. The
Port A pins are tri-stated when a reset condition becomes active, even if the clock is not
active..

Note: n: 7,6…0, pin number.

Port A Schematics Note that all port pins are synchronized. The synchronization latch is, however, not
shown in the figure.

Figure 45.  Port A Schematic Diagrams (Pins PA0 - PA7)

Table 19.  DDAn Effects on Port A Pins

DDAn PORTAn I/O Pull-up Comment

0 0 Input No Tri-state (high-Z)

0 1 Input Yes PAn will source current if ext. pulled low.

1 0 Output No Push-pull Zero Output

1 1 Output No Push-pull One Output
64 AT90S8515
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AT90S8515
Port B Port B is an 8-bit bi-directional I/O port.

Three I/O memory address locations are allocated for the Port B, one each for the Data
Register – PORTB, $18($38), Data Direction Register – DDRB, $17($37) and the Port B
Input Pins – PINB, $16($36). The Port B Input Pins address is read-only, while the Data
Register and the Data Direction Register are read/write.

All port pins have individually selectable pull-up resistors. The Port B output buffers can
sink 20 mA and thus drive LED displays directly. When pins PB0 to PB7 are used as
inputs and are externally pulled low, they will source current if the internal pull-up resis-
tors are activated.

The Port B pins with alternate functions are shown in Table 20.

When the pins are used for the alternate function, the DDRB and PORTB registers have
to be set according to the alternate function description.

Port B Data Register – PORTB

Port B Data Direction Register 
– DDRB

Port B Input Pins Address – 
PINB

The Port B Input Pins address (PINB) is not a register; this address enables access to
the physical value on each Port B pin. When reading PORTB, the Port B Data Latch is
read and when reading PINB, the logical values present on the pins are read.

Table 20.  Port B Pin Alternate Functions

Port Pin Alternate Functions

PB0 T0 (Timer/Counter 0 External Counter Input)

PB1 T1 (Timer/Counter 1 External Counter Input)

PB2 AIN0 (Analog Comparator positive input)

PB3 AIN1 (Analog Comparator negative input)

PB4 SS (SPI Slave Select Input)

PB5 MOSI (SPI Bus Master Output/Slave Input)

PB6 MISO (SPI Bus Master Input/Slave Output)

PB7 SCK (SPI Bus Serial Clock)

Bit 7 6 5 4 3 2 1 0

$18 ($38) PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 PORTB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

$17 ($37) DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 DDRB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

$16 ($36) PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 PINB
Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
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AT90S8515
Port C Data Direction Register 
– DDRC

Port C Input Pins Address – 
PINC

The Port C Input Pins address (PINC) is not a register; this address enables access to
the physical value on each Port C pin. When reading PORTC, the Port C Data Latch is
read and when reading PINC, the logical values present on the pins are read.

Port C as General Digital I/O All eight pins in Port C have equal functionality when used as digital I/O pins.

PCn, general I/O pin: The DDCn bit in the DDRC register selects the direction of this pin.
If DDCn is set (one), PCn is configured as an output pin. If DDCn is cleared (zero), PCn
is configured as an input pin. If PORTCn is set (one) when the pin is configured as an
input pin, the MOS pull-up resistor is activated. To switch the pull-up resistor off,
PORTCn has to be cleared (zero) or the pin has to be configured as an output pin. The
Port C pins are tri-stated when a reset condition becomes active, even if the clock is not
active.

Note: n: 7…0, pin number

Bit 7 6 5 4 3 2 1 0

$14 ($34) DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 DDRC
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

$13 ($33) PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 PINC
Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Table 22.  DDCn Effects on Port C Pins

DDCn PORTCn I/O Pull-up Comment

0 0 Input No Tri-state (high-Z)

0 1 Input Yes PCn will source current if ext. pulled low.

1 0 Output No Push-pull Zero Output

1 1 Output No Push-pull One Output
71
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Enter Programming Mode The following algorithm puts the device in Parallel Programming Mode:

1. Apply supply voltage according to Table 26, between VCC and GND.

2. Set the RESET and BS pin to “0” and wait at least 100 ns.

3. Apply 11.5 - 12.5V to RESET. Any activity on BS within 100 ns after +12V has 
been applied to RESET will cause the device to fail entering programming mode.

Table 27.  Pin Name Mapping

Signal Name in 
Programming Mode Pin Name I/O Function

RDY/BSY PD1 O
0: Device is busy programming, 1: Device is ready 
for new command

OE PD2 I Output Enable (Active low)

WR PD3 I Write Pulse (Active low)

BS PD4 I
Byte Select (“0” selects low byte, “1” selects high 
byte)

XA0 PD5 I XTAL Action Bit 0

XA1 PD6 I XTAL Action Bit 1

DATA PB7-0 I/O Bi-directional Data Bus (Output when OE is low)

Table 28.  XA1 and XA0 Coding

XA1 XA0 Action when XTAL1 is Pulsed

0 0 Load Flash or EEPROM Address (High or low address byte determined by BS)

0 1 Load Data (High or low data byte for Flash determined by BS)

1 0 Load Command

1 1 No Action, Idle

Table 29.  Command Byte Bit Coding

Command Byte Command Executed

1000 0000 Chip Erase

0100 0000 Write Fuse Bits

0010 0000 Write Lock Bits

0001 0000 Write Flash

0001 0001 Write EEPROM

0000 1000 Read Signature Bytes

0000 0100 Read Lock and Fuse Bits

0000 0010 Read Flash

0000 0011 Read EEPROM
80 AT90S8515
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AT90S8515
Figure 62.  Programming the Flash Waveforms (Continued)

Reading the Flash The algorithm for reading the Flash memory is as follows (refer to “Programming the
Flash” for details on command and address loading):

1. A: Load Command “0000 0010”.

2. B: Load Address High Byte ($00 - $0F).

3. C: Load Address Low Byte ($00 - $FF).

4. Set OE to “0”, and BS to “0”. The Flash word low byte can now be read at DATA.

5. Set BS to “1”. The Flash word high byte can now be read from DATA.

6. Set OE to “1”.

Programming the EEPROM The programming algorithm for the EEPROM data memory is as follows (refer to “Pro-
gramming the Flash” for details on command, address and data loading):

1. A: Load Command “0001 0001”.

2. (AT90S8515 only) B: Load Address High Byte ($00 - $01).

3. C: Load Address Low Byte ($00 - $FF).

4. D: Load Data Low Byte ($00 - $FF).

5. E: Write Data Low Byte.

Reading the EEPROM The algorithm for reading the EEPROM memory is as follows (refer to “Programming the
Flash” for details on command and address loading):

1. A: Load Command “0000 0011”.

2. (AT90S8515 only) B: Load Address High Byte ($00 - $01).

3. C: Load Address Low Byte ($00 - $FF).

4. Set OE to “0”, and BS to “0”. The EEPROM data byte can now be read at DATA.

5. Set OE to “1”.

Programming the Fuse Bits The algorithm for programming the Fuse bits is as follows (refer to “Programming the
Flash” for details on command and data loading):

1. A: Load Command “0100 0000”.

2. D: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

DATA HIGHDATA

XA1

XA0

BS

XTAL1

WR

RDY/BSY

RESET +12V

OE
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AT90S8515
Parallel Programming 
Characteristics

Figure 63.  Parallel Programming Timing

Notes: 1. Use tWLWH_CE for Chip Erase and tWLWH_PFB for programming the Fuse bits.
2. If tWLWH is held longer than tWLRH, no RDY/BSY pulse will be seen.

Table 30.  Parallel Programming Characteristics, TA = 25°C ± 10%, VCC = 5V ± 10% 

Symbol Parameter Min Typ Max Units

VPP Programming Enable Voltage 11.5 12.5 V

IPP Programming Enable Current 250.0 µA

tDVXH Data and Control Setup before XTAL1 High 67.0 ns

tXHXL XTAL1 Pulse Width High 67.0 ns

tXLDX Data and Control Hold after XTAL1 Low 67.0 ns

tXLWL XTAL1 Low to WR Low 67.0 ns

tBVWL BS Valid to WR Low 67.0 ns

tRHBX BS Hold after RDY/BSY High 67.0 ns

tWLWH WR Pulse Width Low(1) 67.0 ns

tWHRL WR High to RDY/BSY Low(2) 20.0 ns

tWLRH WR Low to RDY/BSY High(2) 0.5 0.7 0.9 ms

tXLOL XTAL1 Low to OE Low 67.0 ns

tOLDV OE Low to DATA Valid 20.0 ns

tOHDZ OE High to DATA Tri-stated 20.0 ns

tWLWH_CE WR Pulse Width Low for Chip Erase 5.0 10.0 15.0 ms

tWLWH_PFB

WR Pulse Width Low for Programming the Fuse 
Bits 1.0 1.5 1.8 ms

Data & Control
(DATA, XA0/1, BS)

DATA

W
rit

e
R

ea
d

XTAL1 tXHXL

tWLWH

tDVXH

tXLOL tOLDV

tWHRL

tWLRH

WR

RDY/BSY

OE

tXLDX

tXLWL

tRHBX

tOHDZ

tBVWL
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Serial Downloading Both the program and data memory arrays can be programmed using the SPI bus while
RESET is pulled to GND. The serial interface consists of pins SCK, MOSI (input) and
MISO (output). See Figure 64. After RESET is set low, the Programming Enable instruc-
tion needs to be executed first before program/erase instructions can be executed.

Figure 64.  Serial Programming and Verify

For the EEPROM, an auto-erase cycle is provided within the self-timed Write instruction
and there is no need to first execute the Chip Erase instruction. The Chip Erase instruc-
tion turns the content of every memory location in both the program and EEPROM
arrays into $FF.

The program and EEPROM memory arrays have separate address spaces: $0000 to
$0FFF (AT90S8515) for program memory and $0000 to $01FF (AT90S8515) for
EEPROM memory.

Either an external clock is supplied at pin XTAL1 or a crystal needs to be connected
across pins XTAL1 and XTAL2. The minimum low and high periods for the serial clock
(SCK) input are defined as follows:

Low: > 2 XTAL1 clock cycles

High: > 2 XTAL1 clock cycles

Serial Programming 
Algorithm

When writing serial data to the AT90S8515, data is clocked on the rising edge of SCK.

When reading data from the AT90S8515, data is clocked on the falling edge of SCK.
See Figure 65, Figure 66 and Table 33 on page 89 for timing details.

To program and verify the AT90S8515 in the Serial Programming Mode, the following
sequence is recommended (see 4-byte instruction formats in Table 32):
1. Power-up sequence:

Apply power between VCC and GND while RESET and SCK are set to “0”. If a crys-
tal is not connected across pins XTAL1 and XTAL2, apply a clock signal to the
XTAL1 pin. In some systems, the programmer cannot guarantee that SCK is held
low during power-up. In this case, RESET must be given a positive pulse of at least
two XTAL1 cycles duration after SCK has been set to “0”.

2. Wait for at least 20 ms and enable serial programming by sending the Program-
ming Enable serial instruction to the MOSI (PB5) pin.

3. The serial programming instructions will not work if the communication is out of 
synchronization. When in sync, the second byte ($53) will echo back when issu-

VCC

2.7 - 6.0V

PB7
PB6
PB5

RESET

GND

XTAL1

SCK
MISO
MOSI

GND

CLOCK INPUT

AT90S8515
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AT90S8515
Notes: 1. “Max” means the highest value where the pin is guaranteed to be read as low.
2. “Min” means the lowest value where the pin is guaranteed to be read as high.
3. Although each I/O port can sink more than the test conditions (20 mA at VCC = 5V, 10 mA at VCC = 3V) under steady state

conditions (non-transient), the following must be observed:
1] The sum of all IOL, for all ports, should not exceed 200 mA.
2] The sum of all IOL, for ports B0 - B7, D0 - D7 and XTAL2, should not exceed 100 mA.
3] The sum of all IOL, for ports A0 - A7, ALE, OC1B and C0 - C7 should not exceed 100 mA.
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater
than the listed test condition.

4. Although each I/O port can source more than the test conditions (3 mA at VCC = 5V, 1.5 mA at VCC = 3V) under steady state
conditions (non-transient), the following must be observed:
1] The sum of all IOH, for all ports, should not exceed 200 mA.
2] The sum of all IOH, for ports B0 - B7, D0 - D7 and XTAL2, should not exceed 100 mA.
3] The sum of all IOH, for ports A0 - A7, ALE, OC1B and C0 - C7 should not exceed 100 mA.
If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current
greater than the listed test condition.

5. Minimum VCC for power-down is 2V.
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External Clock Drive 
Waveforms

Figure 67.  External Clock

Note: See “External Data Memory Timing” for a description of how the duty cycle influences the
timing for the external data memory.

Figure 68.  External RAM Timing

Table 36.  External Clock Drive

Symbol Parameter

VCC = 2.7V to 4.0V VCC = 4.0V to 6.0V

UnitsMin Max Min Max

1/tCLCL Oscillator Frequency 0 4.0 0 8.0 MHz

tCLCL Clock Period 250.0 125.0 ns

tCHCX High Time 100.0 50.0 ns

tCLCX Low Time 100.0 50.0 ns

tCLCH Rise Time 1.6 0.5 µs

tCHCL Fall Time 1.6 0.5 µs

VIL1

VIH1

System Clock Ø

ALE

WR

RD

Data/Address [7..0]

Data/Address [7..0]

Address [15..8]

Address

Address

Address

T1 T2 T3 T4

Prev. Address

Prev. Address

Prev. Address

1

0

4

2 13

3a

5

Note: Clock cycle T3 is only present when external SRAM wait state is enabled.

10

12

14

15

11

8
9

16

7

6
3b

Data

Data

W
rit

e
R

ea
d

Addr.

Addr.
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Figure 82.  I/O Pin Sink Current vs. Output Voltage

Figure 83.  I/O Pin Source Current vs. Output Voltage
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AT90S8515
DATA TRANSFER INSTRUCTIONS
MOV Rd, Rr Move between Registers Rd ← Rr None 1
LDI Rd, K Load Immediate Rd ← K None 1
LD Rd, X Load Indirect Rd ← (X) None 2
LD Rd, X+ Load Indirect and Post-inc. Rd ← (X), X ← X + 1 None 2
LD Rd, -X Load Indirect and Pre-dec. X ← X - 1, Rd ← (X) None 2
LD Rd, Y Load Indirect Rd ← (Y) None 2
LD Rd, Y+ Load Indirect and Post-inc. Rd ← (Y), Y ← Y + 1 None 2
LD Rd, -Y Load Indirect and Pre-dec. Y ← Y - 1, Rd ← (Y) None 2
LDD Rd, Y+q Load Indirect with Displacement Rd ← (Y + q) None 2
LD Rd, Z Load Indirect Rd ← (Z) None 2
LD Rd, Z+ Load Indirect and Post-inc. Rd ← (Z), Z ← Z + 1 None 2
LD Rd, -Z Load Indirect and Pre-dec. Z ← Z - 1, Rd ← (Z) None 2
LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2
LDS Rd, k Load Direct from SRAM Rd ← (k) None 2
ST X, Rr Store Indirect (X)=← Rr None 2
ST X+, Rr Store Indirect and Post-inc. (X)=← Rr, X ← X + 1 None 2
ST -X, Rr Store Indirect and Pre-dec. X ← X - 1, (X) ← Rr None 2
ST Y, Rr Store Indirect (Y) ← Rr None 2
ST Y+, Rr Store Indirect and Post-inc. (Y) ← Rr, Y ← Y + 1 None 2
ST -Y, Rr Store Indirect and Pre-dec. Y ← Y - 1, (Y) ← Rr None 2
STD Y+q, Rr Store Indirect with Displacement (Y + q) ← Rr None 2
ST Z, Rr Store Indirect (Z) ← Rr None 2
ST Z+, Rr Store Indirect and Post-inc. (Z) ← Rr, Z ← Z + 1 None 2
ST -Z, Rr Store Indirect and Pre-dec. Z ← Z - 1, (Z) ← Rr None 2
STD Z+q, Rr Store Indirect with Displacement (Z + q) ← Rr None 2
STS k, Rr Store Direct to SRAM (k) ← Rr None 2
LPM Load Program Memory R0 ← (Z) None 3
IN Rd, P In Port Rd ← P None 1
OUT P, Rr Out Port P ← Rr None 1
PUSH Rr Push Register on Stack STACK ← Rr None 2
POP Rd Pop Register from Stack Rd ← STACK None 2
BIT AND BIT-TEST INSTRUCTIONS
SBI P, b Set Bit in I/O Register I/O(P,b) ← 1 None 2
CBI P, b Clear Bit in I/O Register I/O(P,b) ← 0 None 2
LSL Rd Logical Shift Left Rd(n+1) ← Rd(n), Rd(0) ← 0 Z,C,N,V 1
LSR Rd Logical Shift Right Rd(n) ← Rd(n+1), Rd(7) ← 0 Z,C,N,V 1
ROL Rd Rotate Left through Carry Rd(0) ←=C, Rd(n+1) ← Rd(n), C ←=Rd(7) Z,C,N,V 1
ROR Rd Rotate Right through Carry Rd(7) ←=C, Rd(n) ← Rd(n+1), C ←=Rd(0) Z,C,N,V 1
ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n = 0..6 Z,C,N,V 1
SWAP Rd Swap Nibbles Rd(3..0) ←=Rd(7..4), Rd(7..4) ←=Rd(3..0) None 1
BSET s Flag Set SREG(s) ← 1 SREG(s) 1
BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1
BST Rr, b Bit Store from Register to T T ← Rr(b) T 1
BLD Rd, b Bit Load from T to Register Rd(b) ← T None 1
SEC Set Carry C ← 1 C 1
CLC Clear Carry C ← 0 C 1
SEN Set Negative Flag N ← 1 N 1
CLN Clear Negative Flag N ← 0 N 1
SEZ Set Zero Flag Z ← 1 Z 1
CLZ Clear Zero Flag Z ← 0 Z 1
SEI Global Interrupt Enable I ← 1 I 1
CLI Global Interrupt Disable I=← 0 I 1
SES Set Signed Test Flag S ← 1 S 1
CLS Clear Signed Test Flag S ← 0 S 1
SEV Set Two’s Complement Overflow V ← 1 V 1
CLV Clear Two’s Complement Overflow V ← 0 V 1
SET Set T in SREG T ← 1 T 1
CLT Clear T in SREG T ← 0 T 1
SEH Set Half-carry Flag in SREG H ← 1 H 1
CLH Clear Half-carry Flag in SREG H ← 0 H 1
NOP No Operation None 1
SLEEP Sleep (see specific descr. for Sleep function) None 1
WDR Watchdog Reset (see specific descr. for WDR/timer) None 1

Instruction Set Summary (Continued)
Mnemonic Operands Description Operation Flags # Clocks
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