

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	30/20MHz
Connectivity	UART/USART
Peripherals	POR
Number of I/O	32
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.6x16.6)
Purchase URL	https://www.e-xfl.com/product-detail/atmel/at80c32x2-slsul

Email: info@E-XFL.COM

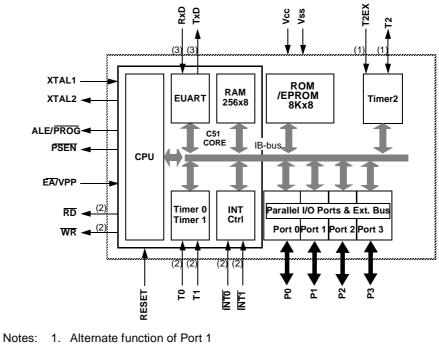
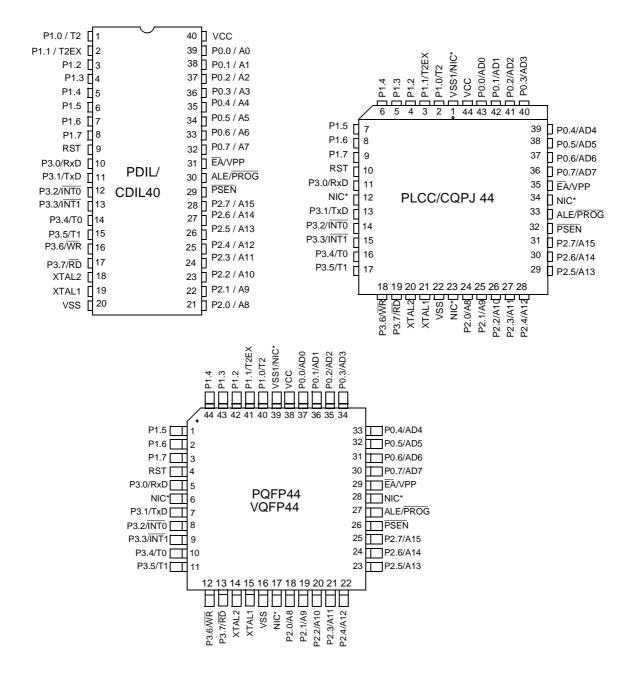

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1. Memory Size

	ROM (bytes)	EPROM (bytes)	TOTAL RAM (bytes)
TS80C32X2	0	0	256
TS80C52X2	8k	0	256
TS87C52X2	0	8k	256


Block Diagram

2. Alternate function of Port 3

2

Pin Configuration

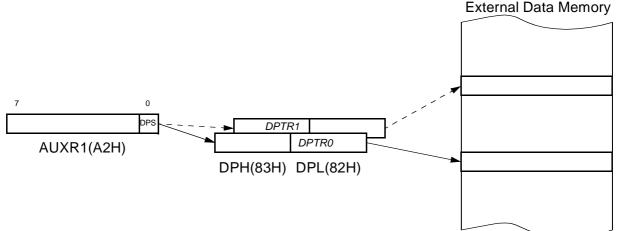
*NIC: No Internal Connection

Mnemonic	I	Pin Nu	mber	Туре	Name and Function	
	DIL	LCC	VQFP 1.4			
V _{SS}	20	22	16	I	Ground: 0V reference	
Vss1		1	39	I	Optional Ground: Contact the Sales Office for ground connection.	
V _{CC}	40	44	38	I	Power Supply: This is the power supply voltage for normal, idle and power-down operation	
P0.0-P0.7	39- 32	43- 36	37-30	I/O	Port 0 : Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as high impedance inputs.Port 0 pins must be polarized to Vcc	
					or Vss in order to prevent any parasitic current consumption. Port 0 is also the multiplexed low-order address and data bus during access to external program and data memory. In this application, it uses strong internal pull-up when emitting 1s. Port 0 also inputs the code bytes during EPROM programming. External pull-ups are required during program verification during which P0 outputs the code bytes.	
P1.0-P1.7	1-8	2-9	40-44 1-3	I/O	Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As	
					inputs, Port 1 pins that are externally pulled low will source current because of the internal pull-ups. Port 1 also receives the low-order address byte during memory programming and verification.	
					Alternate functions for Port 1 include:	
	1	2	40	I/O	T2 (P1.0): Timer/Counter 2 external count input/Clockout	
	2	3	41	I	T2EX (P1.1): Timer/Counter 2 Reload/Capture/Direction Control	
P2.0-P2.7	21- 28	24- 31	18-25	I/O	Port 2 : Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As	
					inputs, Port 2 pins that are externally pulled low will source current because of the internal pull-ups. Port 2 emits the high- order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX atDPTR). In this application, it uses strong internal pull-ups emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX atRi), port 2 emits the contents of the P2 SFR. Some Port 2 pins receive the high order address bits during EPROM programming and verification: P2.0 to P2.4	
P3.0-P3.7	10- 17	11, 13- 19	5, 7-13	I/O	Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulle high by the internal pull-ups and can be used as inputs. A inputs, Port 3 pins that are externally pulled low will source	
					current because of the internal pull-ups. Port 3 also serves the special features of the 80C51 family, as listed below.	
	10	11	5	I	RXD (P3.0): Serial input port	
	11	13	7	0	TXD (P3.1): Serial output port	
	12	14	8	Ι	INT0 (P3.2): External interrupt 0	

TS8xCx2X2

6

Mnemonic	I	Pin Nu	mber	Туре	Name and Function	
	DIL	LCC	VQFP 1.4			
	13	15	9	I	INT1 (P3.3): External interrupt 1	
	14	16	10	I	T0 (P3.4): Timer 0 external input	
	15	17	11	I	T1 (P3.5): Timer 1 external input	
	16	18	12	0	WR (P3.6): External data memory write strobe	
	17	19	13	0	RD (P3.7): External data memory read strobe	
Reset	9	10	4	I	Reset: A high on this pin for two machine cycles while the oscillator is running, resets the device. An internal diffused resistor to V_{SS} permits a power-on reset using only an external capacitor to V_{CC} .	
ALE/PROG	30	33	27	O (I)	Address Latch Enable/Program Pulse: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 (1/3 in X2 mode) the oscillator frequency and can be used for external timing or clocking. Note that on ALE pulse is skipped during each access to external data memory. This pin is also the program pulse input (PROG) during EPROM programming. ALE can be disabled by setting SFR's AUXR.0 bit. With this bit set, ALE will be inactive during internal fetches.	
PSEN	29	32	26	0	Program Store ENable: The read strobe to external program memory. When executing code from the external program memory, <u>PSEN</u> is activated twice each machine cycle, except that two <u>PSEN</u> activations are skipped during each access to external data memory. <u>PSEN</u> is not activated during fetches from internal program memory.	
ĒĀ/V _{PP}	31	35	29	I	External Access Enable/Programming Supply Voltage: EA must be externally held low to enable the device to fetch code from external program memory locations 0000H and 3FFFH (RB) or 7FFFH (RC), or FFFFH (RD). If EA is held high, the device executes from internal program memory unless the program counter contains an address greater than 3FFFH (RB) or 7FFFH (RC) EA must be held low for ROMless devices. This pin also receives the 12.75V programming supply voltage (V _{PP}) during EPROM programming. If security level 1 is programmed, EA will be internally latched on Reset.	
XTAL1	19	21	15	I	Crystal 1: Input to the inverting oscillator amplifier and input	
					to the internal clock generator circuits.	
XTAL2	18	20	14	0	Crystal 2: Output from the inverting oscillator amplifier	


Dual Data Pointer Register (Ddptr)

The additional data pointer can be used to speed up code execution and reduce code size in a number of ways.

The dual DPTR structure is a way by which the chip will specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called

DPS = AUXR1/bit0 (See Table 5.) that allows the program code to switch between them (Refer to Figure 3).

Figure 3. Use of Dual Pointer

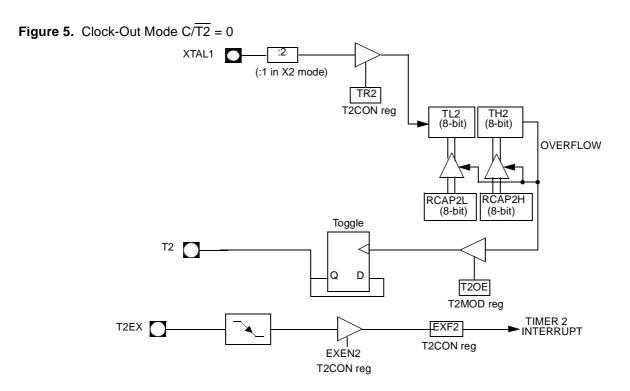


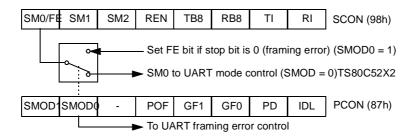
Table 4. AUXR1: Auxiliary Register 1

7	6	5	4	3	2	1	0	
-	-	-	-	GF3	0	-	DPS	
Bit Number	Bit Mnemonic	Description	Description					
7	-	Reserved The value re	ead from this	bit is indeterm	inate. Do not	set this bit.		
6	-	Reserved The value re	ead from this	bit is indeterm	inate. Do not	set this bit.		
5	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.					
4	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.					
3	GF3	This bit is a	general purp	ose user flag				
2	0	Reserved Always stud	k at 0					
1	-	Reserved The value re	ead from this	bit is indeterm	inate. Do not	set this bit.		
0	DPS	Data Pointe Clear to select Set to select						

Reset Value = XXXX XXX0 Not bit addressable

14 **TS8xCx2X2**

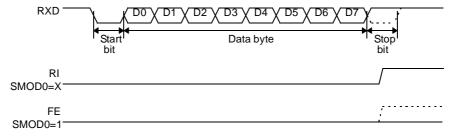
Table 6. T2MOD Register


T2MOD - Timer 2 Mode Control Register (C9h)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	T2OE	DCEN
Bit Number	Bit Mnemonic	Description					
7	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not s	et this bit.	
6	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not s	et this bit.	
5	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not s	et this bit.	
4	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not se	et this bit.	
3	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not s	et this bit.	
2	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not s	et this bit.	
1	T2OE	Clear to prog		it as clock input clock output.			
0	DCEN	Clear to disa		t up/down cou b/down counte			

Reset Value = XXXX XX00b Not bit addressable

TS80C52X2 Serial I/O
PortThe serial I/O port in the TS80C52X2 is compatible with the serial I/O port in the 80C52.
It provides both synchronous and asynchronous communication modes. It operates as
an Universal Asynchronous Receiver and Transmitter (UART) in three full-duplex
modes (Modes 1, 2 and 3). Asynchronous transmission and reception can occur simul-
taneously and at different baud rates
Serial I/O port includes the following enhancements:
 Framing Error DetectionFraming bit error detection is provided for the three asynchronous modes (modes 1, 2
and 3). To enable the framing bit error detection feature, set SMOD0 bit in PCON regis-
ter (See Figure 6).


Figure 6. Framing Error Block Diagram

When this feature is enabled, the receiver checks each incoming data frame for a valid stop bit. An invalid stop bit may result from noise on the serial lines or from simultaneous transmission by two CPUs. If a valid stop bit is not found, the Framing Error bit (FE) in SCON register (See Table 9.) bit is set.

Software may examine FE bit after each reception to check for data errors. Once set, only software or a reset can clear FE bit. Subsequently received frames with valid stop bits cannot clear FE bit. When FE feature is enabled, RI rises on stop bit instead of the last data bit (See Figure 7. and Figure 8.).

Figure 7. UART Timings in Mode 1

Table 10. PCON RegisterPCON - Power Control Register (87h)

7	6	5	4	3	2	1	0	
SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL	
Bit Number	Bit Mnemonic	Descriptio	Description					
7	SMOD1		t Mode bit 1 act double bau	ud rate in mode	e 1, 2 or 3.			
6	SMOD0	Clear to se		n SCON regist SCON registe				
5	-	Reserved The value	Reserved The value read from this bit is indeterminate. Do not set this bit.					
4	POF	Clear to ree Set by hard	Power-off Flag Clear to recognize next reset type. Set by hardware when VCC rises from 0 to its nominal voltage. Can also be set by software.					
3	GF1	Cleared by		eral purpose us purpose usage				
2	GF0	Cleared by	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.					
1	PD	Cleared by	Power-down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.					
0	IDL	-		i interrupt or re	eset occurs.			

Reset Value = 00X1 0000b Not bit addressable

Power-off flag reset value will be 1 only after a power on (cold reset). A warm reset doesn't affect the value of this bit.

Table 13. IP RegisterIP - Interrupt Priority Register (B8h)

7	6	5	4	3	2	1	0
-	-	PT2	PS	PT1	PX1	PT0	PX0
Bit Number	Bit Mnemonic	Descriptio	n				
7	-	Reserved The value	read from this	bit is indetern	ninate. Do not	set this bit.	
6	-	Reserved The value	read from this	bit is indetern	ninate. Do not	set this bit.	
5	PT2		Timer 2 overflow interrupt Priority bit Refer to PT2H for priority level.				
4	PS		t Priority bit SH for priority	level.			
3	PT1		erflow interr	upt Priority b y level.	it		
2	PX1		nterrupt 1 Pri	•			
1	PT0		erflow interr	upt Priority b y level.	it		
0	PX0		nterrupt 0 Pri				

Reset Value = XX00 0000b Bit addressable

Table 14.IPH RegisterIPH - Interrupt Priority High Register (B7h)

7	6	5	4	3	2	1	0
-	-	PT2H	PSH	PT1H	PX1H	РТОН	РХОН
Bit Number	Bit Mnemonic	Description					
7	-	Reserved The value rea	d from this bit	is indetermina	ate. Do not se	t this bit.	
6	-	Reserved The value rea	d from this bit	is indetermina	ate. Do not se	t this bit.	
5	PT2H	Timer 2 over PT2H PT2 0 0 1 0 1 1	f low interrup <u>Priority Leve</u> Lowest Highest	t Priority High 한	n bit		
4	PSH	Serial port P PSH PS 0 0 0 1 1 0 1 1	riority High b <u>Priority Leve</u> Lowest Highest				
3	PT1H	Timer 1 over PT1H PT1 0 0 0 1 1 0 1 1		t Priority High 키	n bit		
2	PX1H	External inte PX1H PX1 0 0 1 0 1 1 1 1	rrupt 1 Priori Priority Leve Lowest Highest				
1	РТОН	Timer 0 over PT0H PT0 0 0 1 0 1 1		t Priority High 한	n bit		
0	РХОН	External inte PX0H PX0 0 0 1 1 1 1	rrupt 0 Priori <u>Priority Leve</u> Lowest Highest	ty High bit <u>키</u>			

Reset Value = XX00 0000b Not bit addressable

Power-off Flag

The power-off flag allows the user to distinguish between a "cold start" reset and a "warm start" reset.

A cold start reset is the one induced by V_{CC} switch-on. A warm start reset occurs while V_{CC} is still applied to the device and could be generated for example by an exit from power-down.

The power-off flag (POF) is located in PCON register (See Table 17.). POF is set by hardware when V_{CC} rises from 0 to its nominal voltage. The POF can be set or cleared by software allowing the user to determine the type of reset.

The POF value is only relevant with a Vcc range from 4.5V to 5.5V. For lower Vcc value, reading POF bit will return indeterminate value.

7	6	Register 5	4	3	2	1	0	
SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL	
Bit Number	Bit Mnemonic	Descript	Description					
7	SMOD1		rt Mode bit 1 lect double b	aud rate in mo	de 1, 2 or 3.			
6	SMOD0	SMOD0 Serial port Mode bit 0 Clear to select SM0 bit in SCON register. Set to to select FE bit in SCON register.						
5	-	Reserved The value read from this bit is indeterminate. D				ot set this bit.		
4	POF	Clear to r Set by ha	Power-off Flag Clear to recognize next reset type. Set by hardware when V _{CC} rises from 0 to its nominal voltage. Can also be set by software.				an also be	
3	GF1	Cleared b) neral purpose l purpose usag				
2	GF0	Cleared b	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.					
1	PD	Power-down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.						
0	IDL			en interrupt or	reset occurs.			

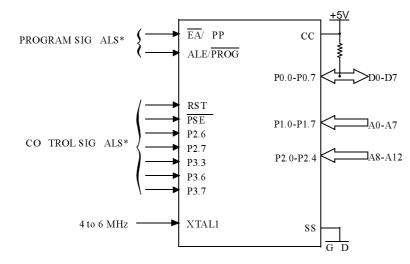
 Table 17.
 PCON Register

PCON - Power Control Register (87h)

Reset Value = 00X1 0000b Not bit addressable

TS8xCx2X2

Control and program signals must be held at the levels indicated in Table 35.


Definition of terms

Address Lines: P1.0-P1.7, P2.0-P2.4 respectively for A0-A12 Data Lines: P0.0-P0.7 for D0-D7 Control Signals: RST, PSEN, P2.6, P2.7, P3.3, P3.6, P3.7. Program Signals: ALE/PROG, EA/VPP.

Table 20. EPROM Set-up Modes

Mode	RST	PSEN	ALE/ PROG	EA/ VPP	P2.6	P2.7	P3.3	P3.6	P3.7
Program Code data	1	0	IJ	12.75V	0	1	1	1	1
Verify Code data	1	0	1	1	0		0	1	1
Program Encryption Array Address 0-3Fh	1	0	U	12.75V	0	1	1	0	1
Read Signature Bytes	1	0	1	1	0		0	0	0
Program Lock bit 1	1	0	ប	12.75V	1	1	1	1	1
Program Lock bit 2	1	0	ъ	12.75V	1	1	1	0	0
Program Lock bit 3	1	0	Ъ	12.75V	1	0	1	1	0

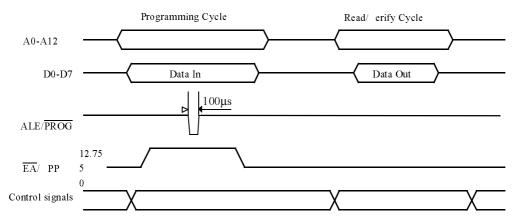
Figure 11. Set-Up Modes Configuration

* See Table 31. for proper value on these inputs

Programming Algorithm	The Improved Quick Pulse algorithm is based on the Quick Pulse algorithm and decreases the number of pulses applied during byte programming from 25 to 1.
	 To program the TS87C52X2 the following sequence must be exercised: Step 1: Activate the combination of control signals. Step 2: Input the valid address on the address lines. Step 3: Input the appropriate data on the data lines. Step 4: Raise EA/VPP from VCC to VPP (typical 12.75V). Step 5: Pulse ALE/PROG once. Step 6: Lower EA/VPP from VPP to VCC Repeat step 2 through 6 changing the address and data for the entire array or until the end of the object file is reached (See Figure 12.).

Verify Algorithm Code array verify must be done after each byte or block of bytes is programmed. In either case, a complete verify of the programmed array will ensure reliable programming of the TS87C52X2.

P 2.7 is used to enable data output.


To verify the TS87C52X2 code the following sequence must be exercised:

- Step 1: Activate the combination of program and control signals.
- Step 2: Input the valid address on the address lines.
- Step 3: Read data on the data lines.

Repeat step 2 through 3 changing the address for the entire array verification (See Figure 12.)

The encryption array cannot be directly verified. Verification of the encryption array is done by observing that the code array is well encrypted.

Figure 12. Programming and Verification Signal's Waveform

EPROM Erasure (Windowed Packages Only) Erasing the EPROM erases the code array, the encryption array and the lock bits returning the parts to full functionality.

Erasure leaves all the EPROM cells in a 1's state (FF).

Erasure Characteristics The recommended erasure procedure is exposure to ultraviolet light (at 2537 Å) to an integrated dose at least 15 W-sec/cm². Exposing the EPROM to an ultraviolet lamp of

Electrical Characteristics

Absolute Maximum Ratings⁽¹⁾

Ambiant Temperature Under Bias:	
C = commercial	0°C to 70°C
I = industrial	40°C to 85°C
Storage Temperature	65°C to + 150°C
Voltage on V _{CC} to V _{SS}	0.5V to + 7 V
Voltage on V _{PP} to V _{SS}	0.5V to + 13 V
Voltage on Any Pin to V _{SS}	0.5V to V _{CC} + 0.5V
Power Dissipation	1 W ⁽²⁾

- Notes: 1. Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
 - 2. This value is based on the maximum allowable die temperature and the thermal resistance of the package.

Power Consumption Measurement Since the introduction of the first C51 devices, every manufacturer made operating lcc measurements under reset, which made sense for the designs were the CPU was running under reset. In Atmel new devices, the CPU is no more active during reset, so the power consumption is very low but is not really representative of what will happen in the customer system. That's why, while keeping measurements under Reset, Atmel presents a new way to measure the operating lcc:

Using an internal test ROM, the following code is executed:

Label: SJMP Label (80 FE)

Ports 1, 2, 3 are disconnected, Port 0 is tied to FFh, EA = Vcc, RST = Vss, XTAL2 is not connected and XTAL1 is driven by the clock.

This is much more representative of the real operating Icc.

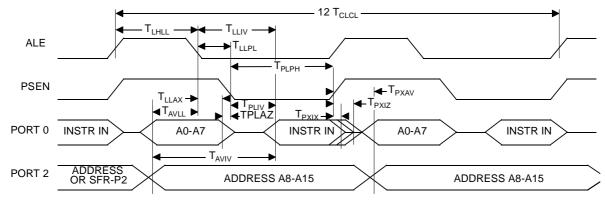

DC Parameters for	TA = 0°C to +70°C; V_{SS} = 0 V; V_{CC} = 5V ± 10%; F = 0 to 40 MHz.
Standard Voltage	TA = -40°C to +85°C; $V_{SS} = 0$ V; $V_{CC} = 5V \pm 10\%$; F = 0 to 40 MHz.

Table 22.	DC Parameters	in	Standard	Voltage
-----------	---------------	----	----------	---------

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{IL}	Input Low Voltage	-0.5		0.2 V _{CC} - 0.1	V	
V _{IH}	Input High Voltage except XTAL1, RST	0.2 V _{CC} + 0.9		V _{CC} + 0.5	V	
V _{IH1}	Input High Voltage, XTAL1, RST	0.7 V _{CC}		V _{CC} + 0.5	V	
V _{OL}	Output Low Voltage, ports 1, 2, 3 ⁽⁶⁾			0.3 0.45 1.0	V V V	$I_{OL} = 100 \ \mu A^{(4)}$ $I_{OL} = 1.6 \ m A^{(4)}$ $I_{OL} = 3.5 \ m A^{(4)}$
V _{OL1}	Output Low Voltage, port 0 ⁽⁶⁾			0.3 0.45 1.0	V V V	$I_{OL} = 200 \ \mu A^{(4)}$ $I_{OL} = 3.2 \ m A^{(4)}$ $I_{OL} = 7.0 \ m A^{(4)}$
V _{OL2}	Output Low Voltage, ALE, PSEN			0.3 0.45 1.0	V V V	$I_{OL} = 100 \ \mu A^{(4)}$ $I_{OL} = 1.6 \ m A^{(4)}$ $I_{OL} = 3.5 \ m A^{(4)}$

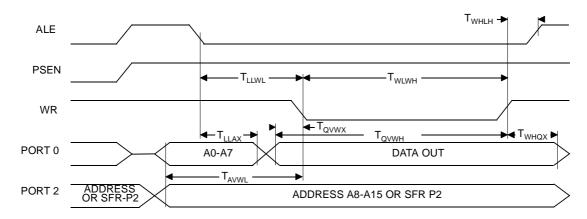
External Program Memory Read Cycle

Figure 18. External Program Memory Read Cycle

External Data Memory Characteristics

 Table 29.
 Symbol Description

Symbol	Parameter
T _{RLRH}	RD Pulse Width
T _{WLWH}	WR Pulse Width
T _{RLDV}	RD to Valid Data In
T _{RHDX}	Data Hold After RD
T _{RHDZ}	Data Float After RD
T _{LLDV}	ALE to Valid Data In
T _{AVDV}	Address to Valid Data In
T _{LLWL}	ALE to WR or RD
T _{AVWL}	Address to WR or RD
T _{QVWX}	Data Valid to WR Transition
T _{QVWH}	Data set-up to WR High
T _{WHQX}	Data Hold After WR
T _{RLAZ}	RD Low to Address Float
T _{WHLH}	RD or WR High to ALE high



Symbol	Туре	Standard Clock	X2 Clock	-М	-V	-L	Units
T _{RLRH}	Min	6 T - x	3 T - x	20	15	25	ns
T _{WLWH}	Min	6 T - x	3 T - x	20	15	25	ns
T _{RLDV}	Max	5 T - x	2.5 T - x	25	23	30	ns
T _{RHDX}	Min	х	х	0	0	0	ns
T _{RHDZ}	Max	2 T - x	T - x	20	15	25	ns
T _{LLDV}	Max	8 T - x	4T -x	40	35	45	ns
T _{AVDV}	Max	9 T - x	4.5 T - x	60	50	65	ns
T _{LLWL}	Min	3 T - x	1.5 T - x	25	20	30	ns
T _{LLWL}	Max	3 T + x	1.5 T + x	25	20	30	ns
T _{AVWL}	Min	4 T - x	2 T - x	25	20	30	ns
T _{QVWX}	Min	T - x	0.5 T - x	15	10	20	ns
T _{QVWH}	Min	7 T - x	3.5 T - x	15	10	20	ns
T _{WHQX}	Min	T - x	0.5 T - x	10	8	15	ns
T _{RLAZ}	Max	х	х	0	0	0	ns
T _{WHLH}	Min	T - x	0.5 T - x	15	10	20	ns
T _{WHLH}	Max	T + x	0.5 T + x	15	10	20	ns

Table 31. AC Parameters for a Variable Clock: Derating Formula

External Data Memory Write Cycle

EPROM Programming and Verification Characteristics

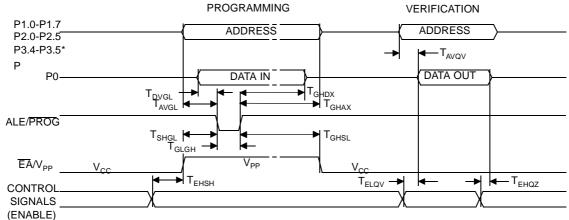

 T_A = 21°C to 27°C; V_{SS} = 0V; $~V_{CC}$ = 5V \pm 10% while programming. V_{CC} = operating range while verifying.

 Table 35.
 EPROM Programming Parameters

Symbol	Parameter	Min	Мах	Units
V _{PP}	Programming Supply Voltage	12.5	13	V
I _{PP}	Programming Supply Current		75	mA
1/T _{CLCL}	Oscillator Frquency	4	6	MHz
T _{AVGL}	Address Setup to PROG Low	48 T _{CLCL}		
T _{GHAX}	Adress Hold after PROG	48 T _{CLCL}		
T _{DVGL}	Data Setup to PROG Low	48 T _{CLCL}		
T _{GHDX}	Data Hold after PROG	48 T _{CLCL}		
T _{EHSH}	(Enable) High to V _{PP}	48 T _{CLCL}		
T _{SHGL}	V _{PP} Setup to PROG Low	10		μs
T _{GHSL}	V _{PP} Hold after PROG	10		μs
T _{GLGH}	PROG Width	90	110	μs
T _{AVQV}	Address to Valid Data		48 T _{CLCL}	
T _{ELQV}	ENABLE Low to Data Valid		48 T _{CLCL}	
T _{EHQZ}	Data Float after ENABLE	0	48 T _{CLCL}	

EPROM Programming and Verification Waveforms

Figure 22. EPROM Programming and Verification Waveforms

* 8KB: up to P2.4, 16KB: up to P2.5, 32KB: up to P3.4, 64KB: up to P3.5

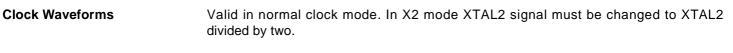
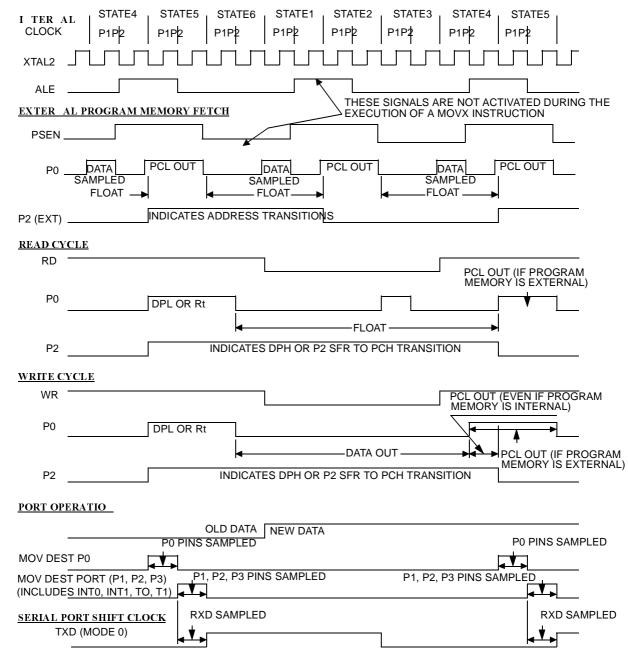



Figure 26. Clock Waveforms

This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins, however, ranges from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pin loading. Propagation also varies from output to output and component. Typically though ($T_A = 25^{\circ}C$ fully loaded) RD and WR propagation delays are approximately 50ns. The other signals are typically 85 ns. Propagation delays are incorporated in the AC specifications.

Atmel Headquarters

Corporate Headquarters

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 487-2600

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France TEL (33) 2-40-18-18-18 FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4-42-53-60-00 FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland TEL (44) 1355-803-000 FAX (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany TEL (49) 71-31-67-0 FAX (49) 71-31-67-2340

1150 East Chevenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France TEL (33) 4-76-58-30-00 FAX (33) 4-76-58-34-80

e-mail

literature@atmel.com

Web Site

http://www.atmel.com

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© Atmel Corporation 2006. All rights reserved. Atmel[®], logo and combinations thereof, are registered trademarks, and Everywhere You Are[®] are the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. 4184G–8051–09/06