

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	30/20MHz
Connectivity	UART/USART
Peripherals	POR
Number of I/O	32
Program Memory Size	· ·
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-PQFP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ts80c32x2-lcc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

SFR Mapping

The Special Function Registers (SFRs) of the TS80C52X2 fall into the following categories:

- C51 core registers: ACC, B, DPH, DPL, PSW, SP, AUXR1
- I/O port registers: P0, P1, P2, P3
- Timer registers: T2CON, T2MOD, TCON, TH0, TH1, TH2, TMOD, TL0, TL1, TL2, RCAP2L, RCAP2H
- Serial I/O port registers: SADDR, SADEN, SBUF, SCON
- Power and clock control registers: PCON
- Interrupt system registers: IE, IP, IPH
- Others: AUXR, CKCON

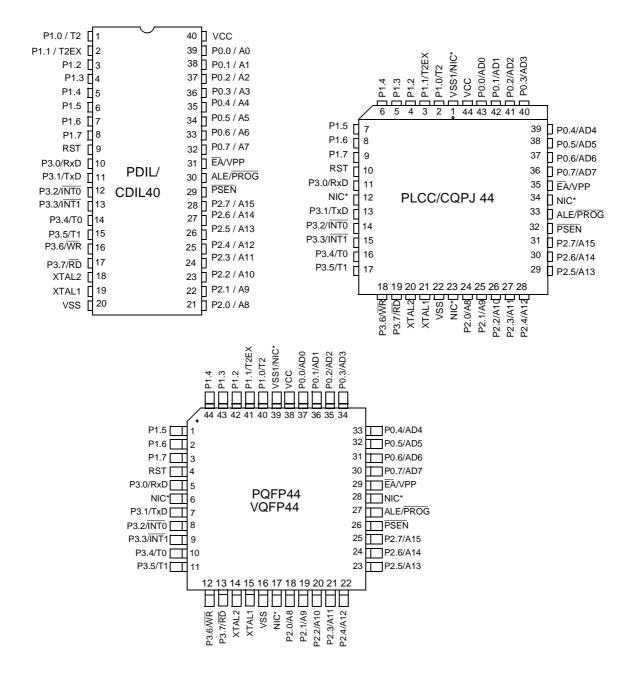


Table 2. All SFRs with their address and their reset value

	Bit Addressable	Non Bit Addressable									
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F			
F8h									FFh		
F0h	B 0000 0000								F7h		
E8h									EFh		
E0h	ACC 0000 0000								E7h		
D8 h									DFh		
D0 h	PSW 0000 0000								D7h		
C8 h	T2CON 0000 0000	T2MOD XXXX XX00	RCAP2L 0000 0000	RCAP2H 0000 0000	TL2 0000 0000	TH2 0000 0000			CFh		
C0 h									C7h		
B8h	IP XX00 0000	SADEN 0000 0000							BFh		
B0h	P3 1111 1111							IPH XX00 0000	B7h		
A8h	IE 0X00 0000	SADDR 0000 0000							AFh		
A0h	P2 1111 1111		AUXR1 XXXX XXX0						A7h		
98h	SCON 0000 0000	SBUF XXXX XXXX							9Fh		
90h	P1 1111 1111								97h		
88h	TCON 0000 0000	TMOD 0000 0000	TL0 0000 0000	TL1 0000 0000	TH0 0000 0000	TH1 0000 0000	AUXR XXXXXXX0	CKCON XXXX XXX0	8Fh		
80h	P0 1111 1111	SP 0000 0111	DPL 0000 0000	DPH 0000 0000				PCON 00X1 0000	87h		
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F			

Reserved

Pin Configuration

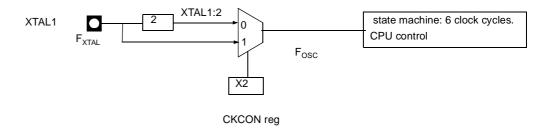
*NIC: No Internal Connection

Mnemonic	I	Pin Nu	mber	Туре	Name and Function
	DIL	LCC	VQFP 1.4		
	13	15	9	I	INT1 (P3.3): External interrupt 1
	14	16	10	I	T0 (P3.4): Timer 0 external input
	15	17	11	I	T1 (P3.5): Timer 1 external input
	16	18	12	0	WR (P3.6): External data memory write strobe
	17	19	13	0	RD (P3.7): External data memory read strobe
Reset	9	10	4	I	Reset: A high on this pin for two machine cycles while the oscillator is running, resets the device. An internal diffused resistor to V_{SS} permits a power-on reset using only an external capacitor to V_{CC} .
ALE/PROG	30	33	27	O (I)	Address Latch Enable/Program Pulse: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 (1/3 in X2 mode) the oscillator frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external data memory. This pin is also the program pulse input (PROG) during EPROM programming. ALE can be disabled by setting SFR's AUXR.0 bit. With this bit set, ALE will be inactive during internal fetches.
PSEN	29	32	26	0	Program Store ENable: The read strobe to external program memory. When executing code from the external program memory, <u>PSEN</u> is activated twice each machine cycle, except that two <u>PSEN</u> activations are skipped during each access to external data memory. <u>PSEN</u> is not activated during fetches from internal program memory.
ĒĀ/V _{PP}	31	35	29	I	External Access Enable/Programming Supply Voltage: EA must be externally held low to enable the device to fetch code from external program memory locations 0000H and 3FFFH (RB) or 7FFFH (RC), or FFFFH (RD). If EA is held high, the device executes from internal program memory unless the program counter contains an address greater than 3FFFH (RB) or 7FFFH (RC) EA must be held low for ROMless devices. This pin also receives the 12.75V programming supply voltage (V _{PP}) during EPROM programming. If security level 1 is programmed, EA will be internally latched on Reset.
XTAL1	19	21	15	I	Crystal 1: Input to the inverting oscillator amplifier and input
					to the internal clock generator circuits.
XTAL2	18	20	14	0	Crystal 2: Output from the inverting oscillator amplifier

TS80C52X2 Enhanced Features

In comparison to the original 80C52, the TS80C52X2 implements some new features, which are:

- The X2 option
- The Dual Data Pointer
- The 4 level interrupt priority system
- The power-off flag
- The ONCE mode
- The ALE disabling
- Some enhanced features are also located in the UART and the Timer 2


X2 Feature The TS80C52X2 core needs only 6 clock periods per machine cycle. This feature called "X2" provides the following advantages:

- Divide frequency crystals by 2 (cheaper crystals) while keeping same CPU power
- Save power consumption while keeping same CPU power (oscillator power saving)
- Save power consumption by dividing dynamically operating frequency by 2 in operating and idle modes
- Increase CPU power by 2 while keeping same crystal frequency

In order to keep the original C51 compatibility, a divider by 2 is inserted between the XTAL1 signal and the main clock input of the core (phase generator). This divider may be disabled by software.

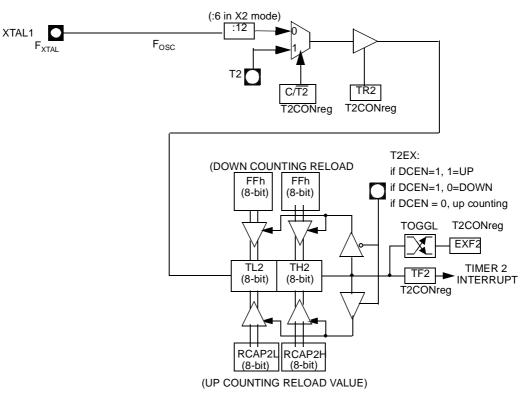
DescriptionThe clock for the whole circuit and peripheral is first divided by two before being used by
the CPU core and peripherals. This allows any cyclic ratio to be accepted on XTAL1
input. In X2 mode, as this divider is bypassed, the signals on XTAL1 must have a cyclic
ratio between 40 to 60%. Figure 1. shows the clock generation block diagram. X2 bit is
validated on XTAL1÷2 rising edge to avoid glitches when switching from X2 to STD
mode. Figure 2 shows the mode switching waveforms.

Figure 1. Clock Generation Diagram

8

Application

Software can take advantage of the additional data pointers to both increase speed and reduce code size, for example, block operations (copy, compare, search ...) are well served by using one data pointer as a 'source' pointer and the other one as a "destination" pointer.


ASSEMBLY LANGUAGE

; Block move using dual data pointers ; Destroys DPTR0, DPTR1, A and PSW ; note: DPS exits opposite of entry state ; unless an extra INC AUXR1 is added 00A2 AUXR1 EQU 0A2H 0000 909000MOV DPTR,#SOURCE ; address of SOURCE 0003 05A2 INC AUXR1 ; switch data pointers 0005 90A000 MOV DPTR,#DEST ; address of DEST 0008 LOOP: 0008 05A2 INC AUXR1 ; switch data pointers 000A E0 MOVX A, atDPTR ; get a byte from SOURCE 000B A3 INC DPTR ; increment SOURCE address 000C 05A2 INC AUXR1 ; switch data pointers 000E F0 MOVX atDPTR, A ; write the byte to DEST 000F A3 INC DPTR ; increment DEST address 0010 70F6JNZ LOOP ; check for 0 terminator 0012 05A2 INC AUXR1 ; (optional) restore DPS

INC is a short (2 bytes) and fast (12 clocks) way to manipulate the DPS bit in the AUXR1 SFR. However, note that the INC instruction does not directly force the DPS bit to a particular state, but simply toggles it. In simple routines, such as the block move example, only the fact that DPS is toggled in the proper sequence matters, not its actual value. In other words, the block move routine works the same whether DPS is '0' or '1' on entry. Observe that without the last instruction (INC AUXR1), the routine will exit with DPS in the opposite state.

Programmable Clock-output

In the clock-out mode, timer 2 operates as a 50%-duty-cycle, programmable clock generator (See Figure 5). The input clock increments TL2 at frequency F_{OSC}/2. The timer repeatedly counts to overflow from a loaded value. At overflow, the contents of RCAP2H and RCAP2L registers are loaded into TH2 and TL2. In this mode, timer 2 overflows do not generate interrupts. The formula gives the clock-out frequency as a function of the system oscillator frequency and the value in the RCAP2H and RCAP2L registers :

$$Clock - OutFrequency = \frac{F_{osc}}{4 \times (65536 - RCAP2H/RCAP2L)}$$

For a 16 MHz system clock, timer 2 has a programmable frequency range of 61 Hz $(F_{OSC}/2^{16})$ to 4 MHz $(F_{OSC}/4)$. The generated clock signal is brought out to T2 pin (P1.0).

Timer 2 is programmed for the clock-out mode as follows:

- Set T2OE bit in T2MOD register.
- Clear C/T2 bit in T2CON register.
- Determine the 16-bit reload value from the formula and enter it in RCAP2H/RCAP2L registers.
- Enter a 16-bit initial value in timer registers TH2/TL2. It can be the same as the reload value or a different one depending on the application.
- To start the timer, set TR2 run control bit in T2CON register.

It is possible to use timer 2 as a baud rate generator and a clock generator simultaneously. For this configuration, the baud rates and clock frequencies are not independent since both functions use the values in the RCAP2H and RCAP2L registers.

Table 6. T2MOD Register

T2MOD - Timer 2 Mode Control Register (C9h)

7	6	5	4	3	2	1	0				
-	-	-	-	-	-	T2OE	DCEN				
Bit Number	Bit Mnemonic	Description	Description								
7	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not s	et this bit.					
6	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not s	et this bit.					
5	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not s	et this bit.					
4	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not se	et this bit.					
3	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not s	et this bit.					
2	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not s	et this bit.					
1	T2OE	Clear to prog	Timer 2 Output Enable bit Clear to program P1.0/T2 as clock input or I/O port. Set to program P1.0/T2 as clock output.								
0	DCEN	Clear to disa	Down Counter Enable bit Clear to disable timer 2 as up/down counter. Set to enable timer 2 as up/down counter.								

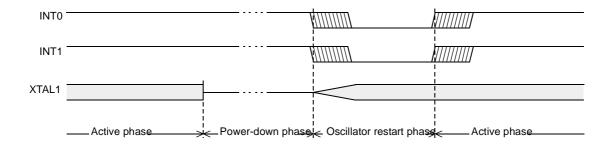
Reset Value = XXXX XX00b Not bit addressable are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence.

Table 12. IE Register

IE - Interrupt Enable Register (A8h)

7	6	5	4	3	2	1	0				
EA	-	ET2	ET2 ES ET1 EX1 ET0								
Bit Number	Bit Mnemonic	Description									
7	EA	Clear to disab Set to enable If EA=1, each	Enable All interrupt bit Clear to disable all interrupts. Set to enable all interrupts. If EA=1, each interrupt source is individually enabled or disabled by setting or clearing its own interrupt enable bit.								
6	-	Reserved The value read	d from this bit	is indetermina	ate. Do not se	t this bit.					
5	ET2	Timer 2 overf Clear to disab Set to enable	le timer 2 ove	rflow interrupt							
4	ES	Serial port Er Clear to disab Set to enable	le serial port i	•							
3	ET1	Timer 1 overf Clear to disab Set to enable	le timer 1 ove	rflow interrupt							
2	EX1	External inter Clear to disab Set to enable	le external int	errupt 1.							
1	ET0	Clear to disab	Timer 0 overflow interrupt Enable bit Clear to disable timer 0 overflow interrupt. Set to enable timer 0 overflow interrupt.								
0	EX0	External interrupt 0 Enable bit Clear to disable external interrupt 0. Set to enable external interrupt 0.									

Reset Value = 0X00 0000b Bit addressable


Table 13. IP RegisterIP - Interrupt Priority Register (B8h)

7	6	5	4	3	2	1	0			
-	-	PT2	PT2 PS PT1 PX1 PT0							
Bit Number	Bit Mnemonic	Descriptio	Description							
7	-	Reserved The value	read from this	bit is indetern	ninate. Do not	set this bit.				
6	-	Reserved The value	read from this	bit is indetern	ninate. Do not	set this bit.				
5	PT2		erflow interr 2H for priority	upt Priority b y level.	it					
4	PS		t Priority bit SH for priority	level.						
3	PT1		erflow interr	upt Priority b y level.	it					
2	PX1		nterrupt 1 Pri	•						
1	PT0		Timer 0 overflow interrupt Priority bit Refer to PT0H for priority level.							
0	PX0		External interrupt 0 Priority bit Refer to PX0H for priority level.							

Reset Value = XX00 0000b Bit addressable

Idle mode	An instruction that sets PCON.0 causes that to be the last instruction executed before going into the Idle mode. In the Idle mode, the internal clock signal is gated off to the CPU, but not to the interrupt, Timer, and Serial Port functions. The CPU status is pre- served in its entirely : the Stack Pointer, Program Counter, Program Status Word, Accumulator and all other registers maintain their data during Idle. The port pins hold the logical states they had at the time Idle was activated. ALE and PSEN hold at logic high levels.
	There are two ways to terminate the Idle. Activation of any enabled interrupt will cause PCON.0 to be cleared by hardware, terminating the Idle mode. The interrupt will be serviced, and following RETI the next instruction to be executed will be the one following the instruction that put the device into idle.
	The flag bits GF0 and GF1 can be used to give an indication if an interrupt occured dur- ing normal operation or during an Idle. For example, an instruction that activates Idle can also set one or both flag bits. When Idle is terminated by an interrupt, the interrupt service routine can examine the flag bits.
	The other way of terminating the Idle mode is with a hardware reset. Since the clock oscillator is still running, the hardware reset needs to be held active for only two machine cycles (24 oscillator periods) to complete the reset.
Power-down Mode	To save maximum power, a power-down mode can be invoked by software (Refer to Table 10., PCON register).
	In power-down mode, the oscillator is stopped and the instruction that invoked power- down mode is the last instruction executed. The internal RAM and SFRs retain their value until the power-down mode is terminated. V_{CC} can be lowered to save further power. Either a hardware reset or an external interrupt can cause an exit from power- down. To properly terminate power-down, the reset or external interrupt should not be executed before V_{CC} is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize.
	Only external interrupts INT0 and INT1 are useful to exit from power-down. For that, interrupt must be enabled and configured as level or edge sensitive interrupt input. Holding the pin low restarts the oscillator but bringing the pin high completes the exit as detailed in Figure 10. When both interrupts are enabled, the oscillator restarts as soon as one of the two inputs is held low and power down exit will be completed when the first input will be released. In this case the higher priority interrupt service routine is executed.
	Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put TS80C52X2 into power-down mode.
Figure 10. Power-down Exit Wa	veform

MEI

ONCE[™] Mode (ON Chip Emulation)

The ONCE mode facilitates testing and debugging of systems using TS80C52X2 without removing the circuit from the board. The ONCE mode is invoked by driving certain pins of the TS80C52X2; the following sequence must be exercised:

- Pull ALE low while the device is in reset (RST high) and PSEN is high.
- Hold ALE low as RST is deactivated.

While the TS80C52X2 is in ONCE mode, an emulator or test CPU can be used to drive the circuit Table 26. shows the status of the port pins during ONCE mode.

Normal operation is restored when normal reset is applied.

Table 16. External Pin Status during ONCE Mode

ALE	PSEN	Port 0	Port 1	Port 2	Port 3	XTAL1/2
Weak pull- up	Weak pull- up	Float	Weak pull- up	Weak pull- up	Weak pull- up	Active

EPROM Structure The TS87C52X2 is divided in two different arrays:

- the code array: 8 Kbytes
- the encryption array: 64 bytes

In addition a third non programmable array is implemented:

the signature array: 4 bytes

EPROM Lock System The program Lock system, when programmed, protects the on-chip program against software piracy.

Encryption Array Within the EPROM array are 64 bytes of encryption array that are initially unprogrammed (all FF's). Every time a byte is addressed during program verify, 6 address lines are used to select a byte of the encryption array. This byte is then exclusive-NOR'ed (XNOR) with the code byte, creating an encrypted verify byte. The algorithm, with the encryption array in the unprogrammed state, will return the code in its original, unmodified form.

When using the encryption array, one important factor needs to be considered. If a byte has the value FFh, verifying the byte will produce the encryption byte value. If a large block (>64 bytes) of code is left unprogrammed, a verification routine will display the content of the encryption array. For this reason all the unused code bytes should be programmed with random values. This will ensure program protection.

Program Lock Bits The three lock bits, when programmed according to Table 1., will provide different level of protection for the on-chip code and data.

Program Lock Bits					
Security level	LB1	LB2	LB3	Protection Description	
1	U	U	U	No program lock features enabled. Code verify will still be encrypted by the encryption array if programmed. MOVC instruction executed from external program memory returns non encrypted data.	
2	Ρ	U	U	MOVC instruction executed from external program memory are disabled from fetching code bytes from internal memory, EA is sampled and latched on reset, and further programming of the EPROM is disabled.	
3	U	Р	U	Same as 2, also verify is disabled.	
4	U	U	Р	Same as 3, also external execution is disabled.	

U: unprogrammed P: programmed

WARNING: Security level 2 and 3 should only be programmed after EPROM and Core verification.

Signature Bytes The TS80/87C52X2 contains 4 factory programmed signatures bytes. To read these bytes, perform the process described in section 9.

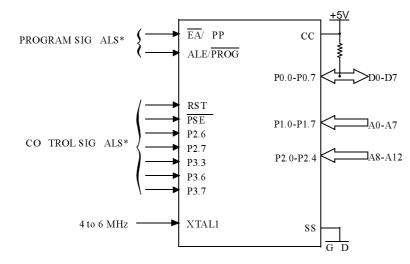
EPROM Programming

Set-up modes

In order to program and verify the EPROM or to read the signature bytes, the TS87C52X2 is placed in specific set-up modes (See Figure 11.).

TS8xCx2X2

Control and program signals must be held at the levels indicated in Table 35.


Definition of terms

Address Lines: P1.0-P1.7, P2.0-P2.4 respectively for A0-A12 Data Lines: P0.0-P0.7 for D0-D7 Control Signals: RST, PSEN, P2.6, P2.7, P3.3, P3.6, P3.7. Program Signals: ALE/PROG, EA/VPP.

Table 20. EPROM Set-up Modes

Mode	RST	PSEN	ALE/ PROG	EA/ VPP	P2.6	P2.7	P3.3	P3.6	P3.7
Program Code data	1	0	IJ	12.75V	0	1	1	1	1
Verify Code data	1	0	1	1	0		0	1	1
Program Encryption Array Address 0-3Fh	1	0	U	12.75V	0	1	1	0	1
Read Signature Bytes	1	0	1	1	0	<u>т</u> г	0	0	0
Program Lock bit 1	1	0	ប	12.75V	1	1	1	1	1
Program Lock bit 2	1	0	ъ	12.75V	1	1	1	0	0
Program Lock bit 3	1	0	Ъ	12.75V	1	0	1	1	0

Figure 11. Set-Up Modes Configuration

* See Table 31. for proper value on these inputs

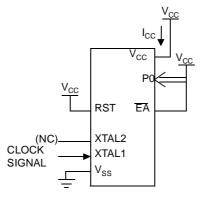
12,000 μ W/cm² rating for 30 minutes, at a distance of about 25 mm, should be sufficient. An exposure of 1 hour is recommended with most of standard erasers.

Erasure of the EPROM begins to occur when the chip is exposed to light with wavelength shorter than approximately 4,000 Å. Since sunlight and fluorescent lighting have wavelengths in this range, exposure to these light sources over an extended time (about 1 week in sunlight, or 3 years in room-level fluorescent lighting) could cause inadvertent erasure. If an application subjects the device to this type of exposure, it is suggested that an opaque label be placed over the window.

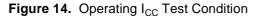
Signature Bytes The TS80/87C52X2 has four signature bytes in location 30h, 31h, 60h and 61h. To read these bytes follow the procedure for EPROM verify but activate the control lines provided in Table 31. for Read Signature Bytes. Table 35. shows the content of the signature byte for the TS80/87C52X2.

Location	Contents	Comment
30h	58h	Manufacturer Code: Atmel
31h	57h	Family Code: C51 X2
60h	2Dh	Product name: TS80C52X2
60h	ADh	Product name:TS87C52X2
60h	20h	Product name: TS80C32X2
61h	FFh	Product revision number

Table 21. Signature Bytes Content


TS8xCx2X2

Port 0: 26 mA Ports 1, 2 and 3: 15 mA Maximum total I_{OL} for all output pins: 71 mA If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.


- 7. For other values, please contact your sales office.
- Operating I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH}, T_{CHCL} = 5 ns (see Figure 17.), V_{IL} = V_{SS} + 0.5V,

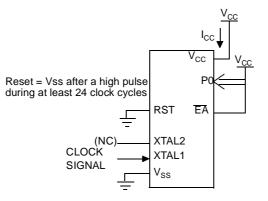
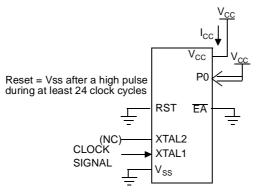
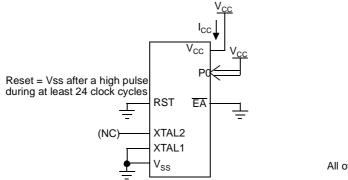

 $V_{IH} = V_{CC} - 0.5V$; XTAL2 N.C.; $\overline{EA} = Port 0 = V_{CC}$; RST = V_{SS} . The internal ROM runs the code 80 FE (label: SJMP label). I_{CC} would be slightly higher if a crystal oscillator is used. Measurements are made with OTP products when possible, which is the worst case.

Figure 13. I_{CC} Test Condition, under reset


All other pins are disconnected.

All other pins are disconnected.

Figure 15. I_{CC} Test Condition, Idle Mode



All other pins are disconnected.

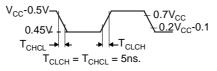


Figure 16. I_{CC} Test Condition, Power-down Mode

All other pins are disconnected.

Figure 17. Clock Signal Waveform for I_{CC} Tests in Active and Idle Modes

AC Parameters

Explanation of the AC Symbols	Each timing symbol has 5 characters. The first character is always a "T" (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.					
		_{_L} = Time for Addr <u>ess Va</u> l e for ALE Low to PSEN L				
	ranges. $T_A = -40^{\circ}C$ to -V ranges. $T_A = 0$ to +70 range. $T_A = -40^{\circ}C$ to range. Table 24. giv	°C (commercial temperat +85°C (industrial temper D°C (commercial temper o +85°C (industrial temper re <u>s the m</u> aximum applica	rature range); $V_{SS} = 0 V$; rature range); $V_{SS} = 0 V$ erature range); $V_{SS} = 0 V$ uble load capacitance for	$V_{CC} = 5V \pm 10\%$; -M and (; 2.7 V < V_{CC} < 5.5V; -L /; 2.7 V < V_{CC} < 5.5V; -L		
	respected. Hi	d PSEN signals. Timing gher capacitance values ad Capacitance versus s	can be used, but timings	•		
		-М	-V	-L		
	Port 0	100	50	100		
	Port 1, 2, 3 80 50 80					
	ALE / PSEN	100	30	100		

Table 5., Table 29. and Table 32. give the description of each AC symbols.

Table 27., Table 30. and Table 33. give for each range the AC parameter.

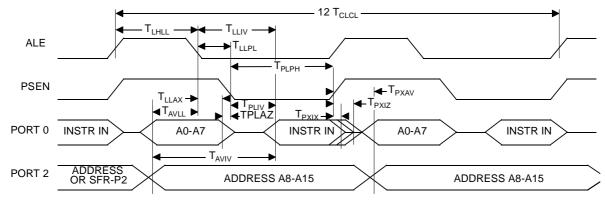

Speed	-M 40 MHz		-V X2 mode 30 MHz 60 MHz equiv.		-V standard mode 40 MHz		-L X2 mode 20 MHz 40 MHz equiv.		-L standard mode 30 MHz		Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Т	25		33		25		50		33		ns
T _{LHLL}	40		25		42		35		52		ns
T _{AVLL}	10		4		12		5		13		ns
T _{LLAX}	10		4		12		5		13		ns
T _{LLIV}		70		45		78		65		98	ns
T _{LLPL}	15		9		17		10		18		ns
T _{PLPH}	55		35		60		50		75		ns
T _{PLIV}		35		25		50		30		55	ns
T _{PXIX}	0		0		0		0		0		ns
T _{PXIZ}		18		12		20		10		18	ns
T _{AVIV}		85		53		95		80		122	ns
T _{PLAZ}		10		10		10		10		10	ns

Table 28. AC Parameters for a Variable Clock: derating formula

Symbol	Туре	Standard Clock	X2 Clock	-М	-V	-L	Units
T _{LHLL}	Min	2 T - x	T - x	10	8	15	ns
T _{AVLL}	Min	T - x	0.5 T - x	15	13	20	ns
T _{LLAX}	Min	T - x	0.5 T - x	15	13	20	ns
T _{LLIV}	Max	4 T - x	2 T - x	30	22	35	ns
T _{LLPL}	Min	T - x	0.5 T - x	10	8	15	ns
T _{PLPH}	Min	3 T - x	1.5 T - x	20	15	25	ns
T _{PLIV}	Max	3 T - x	1.5 T - x	40	25	45	ns
T _{PXIX}	Min	х	х	0	0	0	ns
T _{PXIZ}	Max	T - x	0.5 T - x	7	5	15	ns
T _{AVIV}	Max	5 T - x	2.5 T - x	40	30	45	ns
T _{PLAZ}	Max	х	х	10	10	10	ns

External Program Memory Read Cycle

Figure 18. External Program Memory Read Cycle

External Data Memory Characteristics

 Table 29.
 Symbol Description

Symbol	Parameter							
T _{RLRH}	RD Pulse Width							
T _{WLWH}	WR Pulse Width							
T _{RLDV}	RD to Valid Data In							
T _{RHDX}	Data Hold After RD							
T _{RHDZ}	Data Float After RD							
T _{LLDV}	ALE to Valid Data In							
T _{AVDV}	Address to Valid Data In							
T _{LLWL}	ALE to WR or RD							
T _{AVWL}	Address to WR or RD							
T _{QVWX}	Data Valid to WR Transition							
T _{QVWH}	Data set-up to WR High							
T _{WHQX}	Data Hold After WR							
T _{RLAZ}	RD Low to Address Float							
T _{WHLH}	RD or WR High to ALE high							

External Data Memory Read Cycle

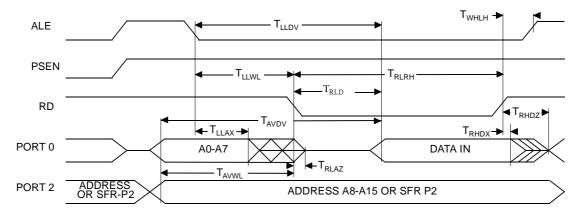


Figure 20. External Data Memory Read Cycle

Serial Port Timing - Shift Register Mode

Table 32. Symbol Description

Symbol	Parameter
T _{XLXL}	Serial port clock cycle time
T _{QVHX}	Output data set-up to clock rising edge
T _{XHQX}	Output data hold after clock rising edge
T _{XHDX}	Input data hold after clock rising edge
T _{XHDV}	Clock rising edge to input data valid

Speed	-M 40 MHz		-V X2 mode 30 MHz 60 MHz equiv.		-V standard mode 40 MHz		-L X2 mode 20 MHz 40 MHz equiv.		-L standard mode 30 MHz		Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
T _{XLXL}	300		200		300		300		400		ns
T _{QVHX}	200		117		200		200		283		ns
T _{XHQX}	30		13		30		30		47		ns
T _{XHDX}	0		0		0		0		0		ns
T_{XHDV}		117		34		117		117		200	ns