

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	40/20MHz
Connectivity	UART/USART
Peripherals	POR
Number of I/O	32
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIL
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ts80c32x2-mca

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. All SFRs with their address and their reset value

	Bit Addressable			Nc	on Bit Addressal	ble			
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8h									FFh
F0h	B 0000 0000								F7h
E8h									EFh
E0h	ACC 0000 0000								E7h
D8 h									DFh
D0 h	PSW 0000 0000								D7h
C8 h	T2CON 0000 0000	T2MOD XXXX XX00	RCAP2L 0000 0000	RCAP2H 0000 0000	TL2 0000 0000	TH2 0000 0000			CFh
C0 h									C7h
B8h	IP XX00 0000	SADEN 0000 0000							BFh
B0h	P3 1111 1111							IPH XX00 0000	B7h
A8h	IE 0X00 0000	SADDR 0000 0000							AFh
A0h	P2 1111 1111		AUXR1 XXXX XXX0						A7h
98h	SCON 0000 0000	SBUF XXXX XXXX							9Fh
90h	P1 1111 1111								97h
88h	TCON 0000 0000	TMOD 0000 0000	TL0 0000 0000	TL1 0000 0000	TH0 0000 0000	TH1 0000 0000	AUXR XXXXXXX0	CKCON XXXX XXX0	8Fh
80h	P0 1111 1111	SP 0000 0111	DPL 0000 0000	DPH 0000 0000				PCON 00X1 0000	87h
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	

Reserved

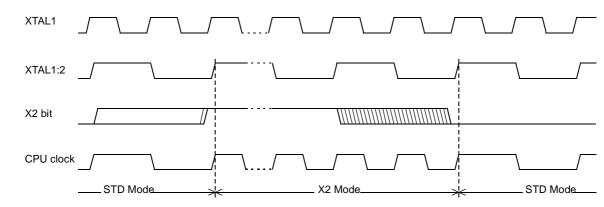


Figure 2. Mode Switching Waveforms

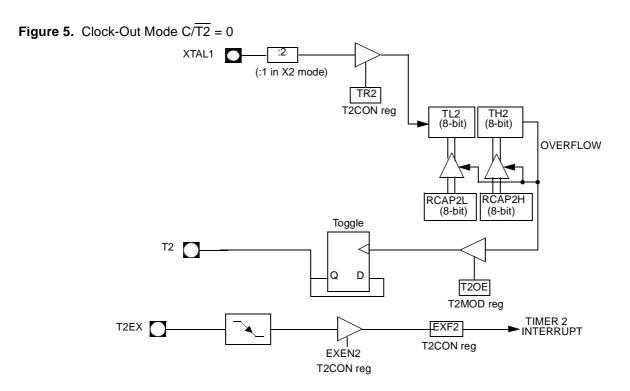
The X2 bit in the CKCON register (See Table 3.) allows to switch from 12 clock cycles per instruction to 6 clock cycles and vice versa. At reset, the standard speed is activated (STD mode). Setting this bit activates the X2 feature (X2 mode).

Note: In order to prevent any incorrect operation while operating in X2 mode, user must be aware that all peripherals using clock frequency as time reference (UART, timers) will have their time reference divided by two. For example a free running timer generating an interrupt every 20 ms will then generate an interrupt every 10 ms. UART with 4800 baud rate will have 9600 baud rate.

Table 3. CKCON Register

CKCON - Clock Control Register (8Fh)

7	6	5	4	3	2	1	0				
-	-	-	-	-	-	-	X2				
Bit Number	Bit Mnemonic	Description	Description								
7	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.					
6	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.					
5	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.					
4	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.					
3	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.					
2	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.					
1	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.								
0	X2		ct 12 clock pe	k bit riods per mac ds per machin							


Reset Value = XXXX XXX0b

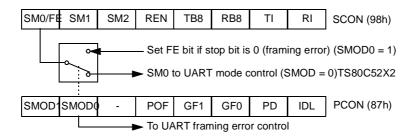
Not bit addressable

For further details on the X2 feature, please refer to ANM072 available on the web (http://www.atmel.com)

14 **TS8xCx2X2**

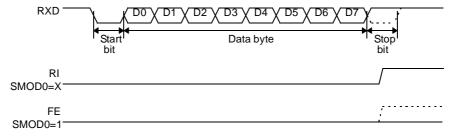
Table 5	T2CON	Register
---------	-------	----------

T2CON - Timer 2 Control Register (C8h)


7	6	5	4	3	2	1	0		
TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#		
Bit Number	Bit Mnemonic	Description							
7	TF2	Timer 2 overflow Flag Must be cleared by software. Set by hardware on timer 2 overflow, if RCLK = 0 and TCLK = 0.							
6	EXF2	Timer 2 Exter Set when a ca EXEN2=1. When set, cau interrupt is ena Must be cleare mode (DCEN	oture or a relo ses the CPU abled. ad by software	to vector to tim	er 2 interrupt	routine when	timer 2		
5	RCLK	Receive Clock Clear to use time Set to use time	mer 1 overflov			•			
4	TCLK	Transmit Cloc Clear to use tin Set to use time	mer 1 overflov			•			
3	EXEN2	Timer 2 Exter Clear to ignore Set to cause a detected, if tim	e events on Ta capture or re	2EX pin for tim load when a n	egative transi		pin is		
2	TR2	Timer 2 Run of Clear to turn of Set to turn on	ff timer 2.						
1	C/T2#	Clear for timer Set for counter	Timer/Counter 2 select bit Clear for timer operation (input from internal clock system: F _{OSC}). Set for counter operation (input from T2 input pin, falling edge trigger). Must be 0 for clock out mode.						
0	CP/RL2#	Timer 2 Captu If RCLK=1 or 7 timer 2 overflo Clear to Auto-r EXEN2=1. Set to capture	CLK=1, CP/F w. eload on time	RL2# is ignored er 2 overflows o	or negative tra	ansitions on T2			

Reset Value = 0000 0000b Bit addressable

TS80C52X2 Serial I/O
PortThe serial I/O port in the TS80C52X2 is compatible with the serial I/O port in the 80C52.
It provides both synchronous and asynchronous communication modes. It operates as
an Universal Asynchronous Receiver and Transmitter (UART) in three full-duplex
modes (Modes 1, 2 and 3). Asynchronous transmission and reception can occur simul-
taneously and at different baud rates
Serial I/O port includes the following enhancements:
 Framing Error DetectionFraming bit error detection is provided for the three asynchronous modes (modes 1, 2
and 3). To enable the framing bit error detection feature, set SMOD0 bit in PCON regis-
ter (See Figure 6).


Figure 6. Framing Error Block Diagram

When this feature is enabled, the receiver checks each incoming data frame for a valid stop bit. An invalid stop bit may result from noise on the serial lines or from simultaneous transmission by two CPUs. If a valid stop bit is not found, the Framing Error bit (FE) in SCON register (See Table 9.) bit is set.

Software may examine FE bit after each reception to check for data errors. Once set, only software or a reset can clear FE bit. Subsequently received frames with valid stop bits cannot clear FE bit. When FE feature is enabled, RI rises on stop bit instead of the last data bit (See Figure 7. and Figure 8.).

Figure 7. UART Timings in Mode 1

1111 0000b).
For slave A, bit 1 is a 1; for slaves B and C, bit 1 is a don't care bit. To communicate with slaves B and C, but not slave A, the master must send an address with bits 0 and 1 both set (e.g. 1111 0011b).
To communicate with slaves A, B and C, the master must send an address with bit 0 set, bit 1 clear, and bit 2 clear (e.g. 1111 0001b).

Broadcast Address A broadcast address is formed from the logical OR of the SADDR and SADEN registers with zeros defined as don't-care bits, e.g.:

SADDR 0101 0110b SADEN 1111 1100b Broadcast =SADDR OR SADEN1111 111Xb

The use of don't-care bits provides flexibility in defining the broadcast address, however in most applications, a broadcast address is FFh. The following is an example of using broadcast addresses:

Slave A:SADDR1111 0001b <u>SADEN1111 1010b</u> Broadcast1111 1X11b, Slave B:SADDR1111 0011b <u>SADEN1111 1001b</u> Broadcast1111 1X11B,

Slave C:SADDR=1111 0010b <u>SADEN1111 1101b</u> Broadcast1111 1111b

For slaves A and B, bit 2 is a don't care bit; for slave C, bit 2 is set. To communicate with all of the slaves, the master must send an address FFh. To communicate with slaves A and B, but not slave C, the master can send and address FBh.

Reset AddressesOn reset, the SADDR and SADEN registers are initialized to 00h, i.e. the given and
broadcast addresses are XXXX XXXb (all don't-care bits). This ensures that the serial
port will reply to any address, and so, that it is backwards compatible with the 80C51
microcontrollers that do not support automatic address recognition.

 Table 7.
 SADEN Register

7	6	5	4	3	2	1	0
Decet Valu		0006			<u>.</u>		
Reset Valu		0000					
Not bit add	ressable						
Table 8 S		vietor					
	-						
	-		er (A9h)				
Table 8. S SADDR - S 7	-		er (A9h) 4	3	2	1	0
SADDR - S	lave Addre	ess Registe	er (A9h) 4	3	2	1	0
SADDR - S	lave Addre	ess Registe	er (A9h) 4	3	2	1	0

Not bit addressable

Table 9.SCON RegisterSCON - Serial Control Register (98h)

7	6	5	4	3	2	1	0
FE/SM0	SM1	SM2	REN	TB8	RB8	TI	RI
Bit Number	Bit Mnemonic	Description					
7	FE	Framing Erro Clear to reset Set by hardwa SMOD0 must	the error state are when an in	e, not cleare valid stop b		bit.	
	SM0	Serial port Mo Refer to SM1 SMOD0 must	for serial port		tion. ess to the SM0 b	it	
6	SM1	Serial port Mo SM0 SM1 0 0 0 1 1 0 1 1	ModeDesc0Shift18-bit29-bit	Register F UART \ UART F	aud Rate _{XTAL} /12 (/6 in X2 'ariable _{XTAL} /64 or F _{XTAL} / 'ariable		n X2 mode)
5	SM2	Clear to disab Set to enable	le multiproces multiprocesso	sor commu r communic	or Communicat nication feature. ation feature in r eared in mode (node 2 and 3,	
4	REN	Reception En Clear to disab Set to enable	le serial recep				
3	TB8	Transmitter Bi Clear to transr Set to transmi	nit a logic 0 in	the 9th bit.	n modes 2 and 3	i.	
2	RB8	Cleared by ha Set by hardwa	rdware if 9th t are if 9th bit re	bit received ceived is a	0	node 0 RB8 is	not used.
1	ті	Transmit Inte Clear to ackno Set by hardwa stop bit in the	wledge interr		t time in mode 0	or at the begi	nning of the
0	RI	Receive Inter Clear to ackno Set by hardwa 8. in the other	wledge interr		t time in mode 0	, see Figure 7	7. and Figure

Reset Value = 0000 0000b Bit addressable

Table 10. PCON RegisterPCON - Power Control Register (87h)

7	6	5	4	3	2	1	0
SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL
Bit Number	Bit Mnemonic	Descriptio	n				
7	SMOD1		t Mode bit 1 act double bau	ud rate in mode	e 1, 2 or 3.		
6	SMOD0	Clear to se		n SCON regist SCON registe			
5	-	Reserved The value	read from this	bit is indeterm	ninate. Do not	set this bit.	
4	POF		cognize next i dware when V	reset type. /CC rises from	0 to its nomina	al voltage. Ca	n also be set
3	GF1	Cleared by		eral purpose us purpose usage			
2	GF0	Cleared by	-	eral purpose us purpose usage	-		
1	PD	Cleared by	wn mode bit hardware wh r power-down	en reset occu n mode.	rs.		
0	IDL	-		i interrupt or re	eset occurs.		

Reset Value = 00X1 0000b Not bit addressable

Power-off flag reset value will be 1 only after a power on (cold reset). A warm reset doesn't affect the value of this bit.

are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence.

Table 12. IE Register

IE - Interrupt Enable Register (A8h)

7	6	5	4	3	2	1	0		
EA	-	ET2	ES	ET1	EX1	ET0	EX0		
Bit Number	Bit Mnemonic	Description	Description						
7	EA	Clear to disab Set to enable If EA=1, each	Enable All interrupt bit Clear to disable all interrupts. Set to enable all interrupts. If EA=1, each interrupt source is individually enabled or disabled by setting or clearing its own interrupt enable bit.						
6	-	Reserved The value read	d from this bit	is indetermina	ate. Do not se	t this bit.			
5	ET2	Timer 2 overf Clear to disab Set to enable	le timer 2 ove	rflow interrupt					
4	ES	Serial port Er Clear to disab Set to enable	le serial port i	•					
3	ET1	Timer 1 overf Clear to disab Set to enable	le timer 1 ove	rflow interrupt					
2	EX1	Clear to disab	External interrupt 1 Enable bit Clear to disable external interrupt 1. Set to enable external interrupt 1.						
1	ET0	Clear to disab	Timer 0 overflow interrupt Enable bit Clear to disable timer 0 overflow interrupt. Set to enable timer 0 overflow interrupt.						
0	EX0	External inter Clear to disab Set to enable	le external int	errupt 0.					

Reset Value = 0X00 0000b Bit addressable

Table 14.IPH RegisterIPH - Interrupt Priority High Register (B7h)

7	6	5	4	3	2	1	0
-	-	PT2H	PSH	PT1H	PX1H	РТОН	РХОН
Bit Number	Bit Mnemonic	Description					
7	-	Reserved The value rea	d from this bit	is indetermina	ate. Do not se	t this bit.	
6	-	Reserved The value rea	d from this bit	is indetermina	ate. Do not se	t this bit.	
5	PT2H	Timer 2 over PT2H PT2 0 0 1 0 1 1	f low interrup <u>Priority Leve</u> Lowest Highest	t Priority High 한	n bit		
4	PSH	Serial port P PSH PS 0 0 0 1 1 0 1 1	riority High b <u>Priority Leve</u> Lowest Highest				
3	PT1H	Timer 1 over PT1H PT1 0 0 0 1 1 0 1 1		t Priority High 키	n bit		
2	PX1H	External inte PX1H PX1 0 0 1 0 1 1 1 1	rrupt 1 Priori Priority Leve Lowest Highest				
1	РТОН	Timer 0 over PT0H PT0 0 0 1 0 1 1		t Priority High 한	n bit		
0	РХОН	External inte PX0H PX0 0 0 1 1 1 1	rrupt 0 Priori <u>Priority Leve</u> Lowest Highest	ty High bit <u>키</u>			

Reset Value = XX00 0000b Not bit addressable

Exit from power-down by reset redefines all the SFRs, exit from power-down by external interrupt does no affect the SFRs.

Exit from power-down by either reset or external interrupt does not affect the internal RAM content.

Note: If idle mode is activated with power-down mode (IDL and PD bits set), the exit sequence is unchanged, when execution is vectored to interrupt, PD and IDL bits are cleared and idle mode is not entered.

Mode	Program Memory	ALE	PSEN	PORT0	PORT1	PORT2	PORT3
Idle	Internal	1	1	Port Data ⁽¹⁾	Port Data	Port Data	Port Data
Idle	External	1	1	Floating	Port Data	Address	Port Data
Power Down	Internal	0	0	Port Data ⁽¹⁾	Port Data	Port Data	Port Data
Power Down	External	0	0	Floating	Port Data	Port Data	Port Data

Table 15. The State of Ports During Idle and Power-down Modes

Note: 1. Port 0 can force a "zero" level. A "one" will leave port floating.

ONCE[™] Mode (ON Chip Emulation)

The ONCE mode facilitates testing and debugging of systems using TS80C52X2 without removing the circuit from the board. The ONCE mode is invoked by driving certain pins of the TS80C52X2; the following sequence must be exercised:

- Pull ALE low while the device is in reset (RST high) and PSEN is high.
- Hold ALE low as RST is deactivated.

While the TS80C52X2 is in ONCE mode, an emulator or test CPU can be used to drive the circuit Table 26. shows the status of the port pins during ONCE mode.

Normal operation is restored when normal reset is applied.

Table 16. External Pin Status during ONCE Mode

ALE	PSEN	Port 0	Port 1	Port 2	Port 3	XTAL1/2
Weak pull- up	Weak pull- up	Float	Weak pull- up	Weak pull- up	Weak pull- up	Active

Power-off Flag

The power-off flag allows the user to distinguish between a "cold start" reset and a "warm start" reset.

A cold start reset is the one induced by V_{CC} switch-on. A warm start reset occurs while V_{CC} is still applied to the device and could be generated for example by an exit from power-down.

The power-off flag (POF) is located in PCON register (See Table 17.). POF is set by hardware when V_{CC} rises from 0 to its nominal voltage. The POF can be set or cleared by software allowing the user to determine the type of reset.

The POF value is only relevant with a Vcc range from 4.5V to 5.5V. For lower Vcc value, reading POF bit will return indeterminate value.

7	6	Register 5	4	3	2	1	0				
SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL				
Bit Number	Bit Mnemonic	Descript	Description								
7	SMOD1		rt Mode bit 1 lect double b	aud rate in mo	de 1, 2 or 3.						
6	SMOD0	Clear to s		in SCON regi n SCON regis							
5	-		Reserved The value read from this bit is indeterminate. Do not set this bit.								
4	POF	Clear to r Set by ha	Power-off Flag Clear to recognize next reset type. Set by hardware when V_{CC} rises from 0 to its nominal voltage. Can also be set by software.								
3	GF1	Cleared b	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.								
2	GF0	Cleared b	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.								
1	PD	Cleared b	Power-down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.								
0	IDL			en interrupt or	reset occurs.						

 Table 17.
 PCON Register

PCON - Power Control Register (87h)

Reset Value = 00X1 0000b Not bit addressable

Reduced EMI Mode

The ALE signal is used to demultiplex address and data buses on port 0 when used with external program or data memory. Nevertheless, during internal code execution, ALE signal is still generated. In order to reduce EMI, ALE signal can be disabled by setting AO bit.

The AO bit is located in AUXR register at bit location 0. As soon as AO is set, ALE is no longer output but remains active during MOVX and MOVC instructions and external fetches. During ALE disabling, ALE pin is weakly pulled high.

Table 18. AUXR Register

AUXR - Auxiliary Register (8Eh)

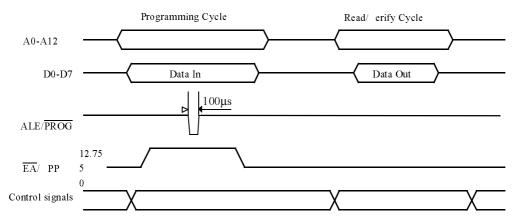
7	6	5	4	3	2	1	0		
-	-	-	-	-	-	-	AO		
Bit Number	Bit Mnemonic	Description							
7	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.			
6	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.						
5	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.						
4	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.			
3	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.						
2	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.						
1	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.						
0	AO		ore ALE operation	ation during in ion during inte					

Reset Value = XXXX XXX0b Not bit addressable

Programming Algorithm	The Improved Quick Pulse algorithm is based on the Quick Pulse algorithm and decreases the number of pulses applied during byte programming from 25 to 1.
	 To program the TS87C52X2 the following sequence must be exercised: Step 1: Activate the combination of control signals. Step 2: Input the valid address on the address lines. Step 3: Input the appropriate data on the data lines. Step 4: Raise EA/VPP from VCC to VPP (typical 12.75V). Step 5: Pulse ALE/PROG once. Step 6: Lower EA/VPP from VPP to VCC Repeat step 2 through 6 changing the address and data for the entire array or until the end of the object file is reached (See Figure 12.).

Verify Algorithm Code array verify must be done after each byte or block of bytes is programmed. In either case, a complete verify of the programmed array will ensure reliable programming of the TS87C52X2.

P 2.7 is used to enable data output.

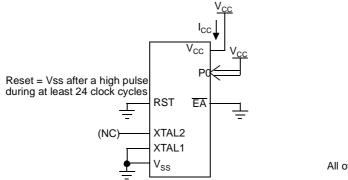

To verify the TS87C52X2 code the following sequence must be exercised:

- Step 1: Activate the combination of program and control signals.
- Step 2: Input the valid address on the address lines.
- Step 3: Read data on the data lines.

Repeat step 2 through 3 changing the address for the entire array verification (See Figure 12.)

The encryption array cannot be directly verified. Verification of the encryption array is done by observing that the code array is well encrypted.

Figure 12. Programming and Verification Signal's Waveform


EPROM Erasure (Windowed Packages Only) Erasing the EPROM erases the code array, the encryption array and the lock bits returning the parts to full functionality.

Erasure leaves all the EPROM cells in a 1's state (FF).

Erasure Characteristics The recommended erasure procedure is exposure to ultraviolet light (at 2537 Å) to an integrated dose at least 15 W-sec/cm². Exposing the EPROM to an ultraviolet lamp of

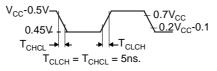


Figure 16. I_{CC} Test Condition, Power-down Mode

All other pins are disconnected.

Figure 17. Clock Signal Waveform for I_{CC} Tests in Active and Idle Modes

AC Parameters

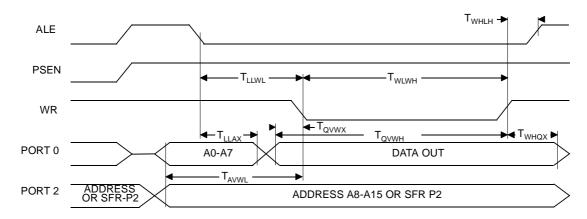
Explanation of the AC Symbols	Each timing symbol has 5 characters. The first character is always a "T" (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.							
		_{_L} = Time for Addr <u>ess V</u> al e for ALE Low to PSEN L						
	TA = 0 to +70°C (commercial temperature range); $V_{SS} = 0$ V; $V_{CC} = 5V \pm 10\%$; -M ranges.TA = -40°C to +85°C (industrial temperature range); $V_{SS} = 0$ V; $V_{CC} = 5V \pm 10\%$; -V ranges.TA = 0 to +70°C (commercial temperature range); $V_{SS} = 0$ V; 2.7 V < $V_{CC} < 5$ range.TA = -40°C to +85°C (industrial temperature range); $V_{SS} = 0$ V; 2.7 V < $V_{CC} < 5$ range.TA = -40°C to +85°C (industrial temperature range); $V_{SS} = 0$ V; 2.7 V < $V_{CC} < 5$ range.Table 24. gives the maximum applicable load capacitance for Port 0, Port 1, 2 and ALE and PSEN signals. Timings will be guaranteed if these capacitance							
	respected. Higher capacitance values can be used, but timings will then be degraded. Table 24. Load Capacitance versus speed range, in pF							
	-M -V -L							
	Port 0 100 50 100							
	Port 1, 2, 3 80 50 80							
	ALE / PSEN	100	30	100				

Table 5., Table 29. and Table 32. give the description of each AC symbols.

Table 27., Table 30. and Table 33. give for each range the AC parameter.

Speed	-M 40 MHz		-V X2 mode 30 MHz 60 MHz equiv.		-V standard mode 40 MHz		-L X2 mode 20 MHz 40 MHz equiv.		-L standard mode 30 MHz		Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Т	25		33		25		50		33		ns
T _{LHLL}	40		25		42		35		52		ns
T _{AVLL}	10		4		12		5		13		ns
T _{LLAX}	10		4		12		5		13		ns
T _{LLIV}		70		45		78		65		98	ns
T _{LLPL}	15		9		17		10		18		ns
T _{PLPH}	55		35		60		50		75		ns
T _{PLIV}		35		25		50		30		55	ns
T _{PXIX}	0		0		0		0		0		ns
T _{PXIZ}		18		12		20		10		18	ns
T _{AVIV}		85		53		95		80		122	ns
T _{PLAZ}		10		10		10		10		10	ns

Table 28. AC Parameters for a Variable Clock: derating formula


Symbol	Туре	Standard Clock	X2 Clock	-М	-V	-L	Units
T _{LHLL}	Min	2 T - x	T - x	10	8	15	ns
T _{AVLL}	Min	T - x	0.5 T - x	15	13	20	ns
T _{LLAX}	Min	T - x	0.5 T - x	15	13	20	ns
T _{LLIV}	Max	4 T - x	2 T - x	30	22	35	ns
T _{LLPL}	Min	T - x	0.5 T - x	10	8	15	ns
T _{PLPH}	Min	3 T - x	1.5 T - x	20	15	25	ns
T _{PLIV}	Max	3 T - x	1.5 T - x	40	25	45	ns
T _{PXIX}	Min	х	х	0	0	0	ns
T _{PXIZ}	Max	T - x	0.5 T - x	7	5	15	ns
T _{AVIV}	Max	5 T - x	2.5 T - x	40	30	45	ns
T _{PLAZ}	Max	х	х	10	10	10	ns

Symbol	Туре	Standard Clock	X2 Clock	-М	-V	-L	Units
T _{RLRH}	Min	6 T - x	3 T - x	20	15	25	ns
T _{WLWH}	Min	6 T - x	3 T - x	20	15	25	ns
T _{RLDV}	Max	5 T - x	2.5 T - x	25	23	30	ns
T _{RHDX}	Min	х	х	0	0	0	ns
T _{RHDZ}	Max	2 T - x	T - x	20	15	25	ns
T _{LLDV}	Max	8 T - x	4T -x	40	35	45	ns
T _{AVDV}	Max	9 T - x	4.5 T - x	60	50	65	ns
T _{LLWL}	Min	3 T - x	1.5 T - x	25	20	30	ns
T _{LLWL}	Max	3 T + x	1.5 T + x	25	20	30	ns
T _{AVWL}	Min	4 T - x	2 T - x	25	20	30	ns
T _{QVWX}	Min	T - x	0.5 T - x	15	10	20	ns
T _{QVWH}	Min	7 T - x	3.5 T - x	15	10	20	ns
T _{WHQX}	Min	T - x	0.5 T - x	10	8	15	ns
T _{RLAZ}	Max	х	х	0	0	0	ns
T _{WHLH}	Min	T - x	0.5 T - x	15	10	20	ns
T _{WHLH}	Max	T + x	0.5 T + x	15	10	20	ns

Table 31. AC Parameters for a Variable Clock: Derating Formula

External Data Memory Write Cycle

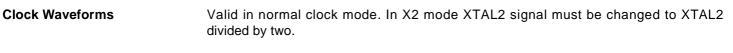
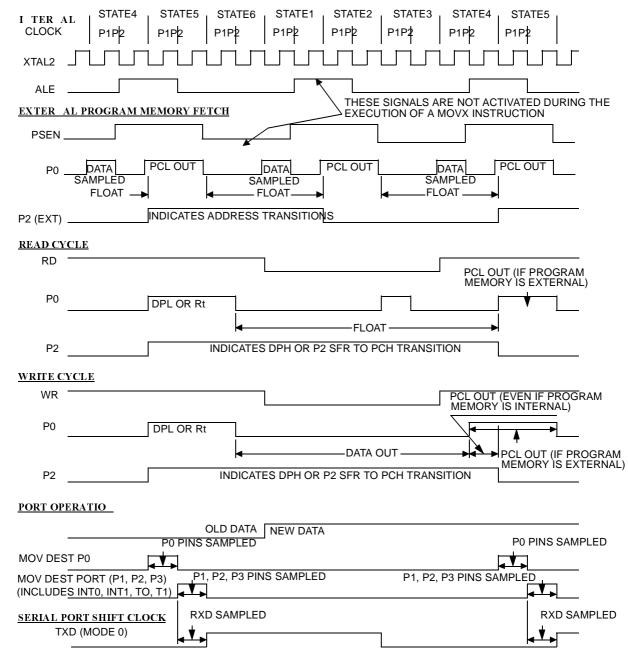



Figure 26. Clock Waveforms

This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins, however, ranges from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pin loading. Propagation also varies from output to output and component. Typically though ($T_A = 25^{\circ}C$ fully loaded) RD and WR propagation delays are approximately 50ns. The other signals are typically 85 ns. Propagation delays are incorporated in the AC specifications.

Atmel Headquarters

Corporate Headquarters

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 487-2600

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France TEL (33) 2-40-18-18-18 FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4-42-53-60-00 FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland TEL (44) 1355-803-000 FAX (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany TEL (49) 71-31-67-0 FAX (49) 71-31-67-2340

1150 East Chevenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France TEL (33) 4-76-58-30-00 FAX (33) 4-76-58-34-80

e-mail

literature@atmel.com

Web Site

http://www.atmel.com

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© Atmel Corporation 2006. All rights reserved. Atmel[®], logo and combinations thereof, are registered trademarks, and Everywhere You Are[®] are the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. 4184G–8051–09/06