

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	40/20MHz
Connectivity	UART/USART
Peripherals	POR
Number of I/O	32
Program Memory Size	•
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.6x16.6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ts80c32x2-mib

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Configuration

*NIC: No Internal Connection

Mnemonic	Pin Number		mber	Туре	Name and Function	
	DIL	LCC	VQFP 1.4			
V _{SS}	20	22	16	I	Ground: 0V reference	
Vss1		1	39	I	Optional Ground: Contact the Sales Office for ground connection.	
V _{cc}	40	44	38	I	Power Supply: This is the power supply voltage for normal, idle and power-down operation	
P0.0-P0.7	39- 32	43- 36	37-30	I/O	Port 0 : Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as bidh impedance inputs Port 0 pins must be polarized to Vcc.	
					or Vss in order to prevent any parasitic current consumption Port 0 is also the multiplexed low-order address and data bu during access to external program and data memory. In this application, it uses strong internal pull-up when emitting 1s. Port 0 also inputs the code bytes during EPROM programming. External pull-ups are required during program verification during which P0 outputs the code bytes.	
P1.0-P1.7	1-8	2-9	40-44 1-3	I/O	Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins that have 1s written to them are pulled bids by the internal pull-ups and can be used as inputs. As	
					 high by the internal pull-ups and can be used as inputs. A inputs, Port 1 pins that are externally pulled low will sourc current because of the internal pull-ups. Port 1 also receive the low-order address byte during memory programming a verification. Alternate functions for Port 1 include: 	
	1	2	40	I/O	T2 (P1.0): Timer/Counter 2 external count input/Clockout	
	2	3	41	1	T2EX (P1.1): Timer/Counter 2 Reload/Capture/Direction Control	
P2.0-P2.7	21- 28	24- 31	18-25	I/O	Port 2 : Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s written to them are pulled with a structure of a structure of the structure	
					high by the internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally pulled low will source current because of the internal pull-ups. Port 2 emits the high- order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX atDPTR). In this application, it uses strong internal pull-ups emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX atRi), port 2 emits the contents of the P2 SFR. Some Port 2 pins receive the high order address bits during EPROM programming and verification: P2.0 to P2.4	
P3.0-P3.7	10- 17	11, 13- 19	5, 7-13	I/O	Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally pulled low will source	
					current because of the internal pull-ups. Port 3 also serves the special features of the 80C51 family, as listed below.	
	10	11	5	I	RXD (P3.0): Serial input port	
	11	13	7	0	TXD (P3.1): Serial output port	
	12	14	8	Ι	INT0 (P3.2): External interrupt 0	

TS8xCx2X2

6

TS80C52X2 Enhanced Features

In comparison to the original 80C52, the TS80C52X2 implements some new features, which are:

- The X2 option
- The Dual Data Pointer
- The 4 level interrupt priority system
- The power-off flag
- The ONCE mode
- The ALE disabling
- Some enhanced features are also located in the UART and the Timer 2

X2 Feature The TS80C52X2 core needs only 6 clock periods per machine cycle. This feature called "X2" provides the following advantages:

- Divide frequency crystals by 2 (cheaper crystals) while keeping same CPU power
- Save power consumption while keeping same CPU power (oscillator power saving)
- Save power consumption by dividing dynamically operating frequency by 2 in operating and idle modes
- Increase CPU power by 2 while keeping same crystal frequency

In order to keep the original C51 compatibility, a divider by 2 is inserted between the XTAL1 signal and the main clock input of the core (phase generator). This divider may be disabled by software.

DescriptionThe clock for the whole circuit and peripheral is first divided by two before being used by
the CPU core and peripherals. This allows any cyclic ratio to be accepted on XTAL1
input. In X2 mode, as this divider is bypassed, the signals on XTAL1 must have a cyclic
ratio between 40 to 60%. Figure 1. shows the clock generation block diagram. X2 bit is
validated on XTAL1÷2 rising edge to avoid glitches when switching from X2 to STD
mode. Figure 2 shows the mode switching waveforms.

Figure 1. Clock Generation Diagram

8

Figure 2. Mode Switching Waveforms

The X2 bit in the CKCON register (See Table 3.) allows to switch from 12 clock cycles per instruction to 6 clock cycles and vice versa. At reset, the standard speed is activated (STD mode). Setting this bit activates the X2 feature (X2 mode).

Note: In order to prevent any incorrect operation while operating in X2 mode, user must be aware that all peripherals using clock frequency as time reference (UART, timers) will have their time reference divided by two. For example a free running timer generating an interrupt every 20 ms will then generate an interrupt every 10 ms. UART with 4800 baud rate will have 9600 baud rate.

Table 3. CKCON Register

CKCON - Clock Control Register (8Fh)

7	6	5	4	3	2	1	0	
-	-	-	-	-	-	-	X2	
Bit Number	Bit Mnemonic	Description	Description					
7	-	Reserved The value rea	eserved The value read from this bit is indeterminate. Do not set this bit.					
6	-	Reserved The value rea	eserved he value read from this bit is indeterminate. Do not set this bit.					
5	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.					
4	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.					
3	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not s	et this bit.		
2	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not s	et this bit.		
1	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not s	et this bit.		
0	X2	CPU and pe Clear to sele Set to select	ripheral cloc ct 12 clock pe 6 clock period	k bit priods per mac ds per machin	hine cycle (S ⁻ e cycle (X2 m	TD mode, F _{OS} ode, F _{OSC} =F _X	_C =F _{XTAL} /2). _{TAL}).	

Reset Value = XXXX XXX0b

Not bit addressable

For further details on the X2 feature, please refer to ANM072 available on the web (http://www.atmel.com)

For slave A, bit 0 (the LSB) is a don't-care bit; for slaves B and C, bit 0 is a 1. To communicate with slave A only, the master must send an address where bit 0 is clear (e.g.

18 **TS8xCx2X2**

1111 0000b).
For slave A, bit 1 is a 1; for slaves B and C, bit 1 is a don't care bit. To communicate with slaves B and C, but not slave A, the master must send an address with bits 0 and 1 both set (e.g. 1111 0011b).
To communicate with slaves A, B and C, the master must send an address with bit 0 set, bit 1 clear, and bit 2 clear (e.g. 1111 0001b).

Broadcast Address A broadcast address is formed from the logical OR of the SADDR and SADEN registers with zeros defined as don't-care bits, e.g.:

SADDR 0101 0110b SADEN 1111 1100b Broadcast =SADDR OR SADEN1111 111Xb

The use of don't-care bits provides flexibility in defining the broadcast address, however in most applications, a broadcast address is FFh. The following is an example of using broadcast addresses:

Slave A:SADDR1111 0001b <u>SADEN1111 1010b</u> Broadcast1111 1X11b, Slave B:SADDR1111 0011b <u>SADEN1111 1001b</u> Broadcast1111 1X11B,

Slave C:SADDR=1111 0010b <u>SADEN1111 1101b</u> Broadcast1111 1111b

For slaves A and B, bit 2 is a don't care bit; for slave C, bit 2 is set. To communicate with all of the slaves, the master must send an address FFh. To communicate with slaves A and B, but not slave C, the master can send and address FBh.

Reset AddressesOn reset, the SADDR and SADEN registers are initialized to 00h, i.e. the given and
broadcast addresses are XXXX XXXb (all don't-care bits). This ensures that the serial
port will reply to any address, and so, that it is backwards compatible with the 80C51
microcontrollers that do not support automatic address recognition.

 Table 7.
 SADEN Register

SADEN - Slave Address	Mask Register	(B9h)
-----------------------	---------------	-------

7	6	5	4	3	2	1	0
Reset Value = 0000 0000b Not bit addressable Table 8. SADDR Register SADDR - Slave Address Register (A9h)							
7	6	5	4	3	2	1	0
Reset Value	e = 0000 0	000b	1	1	1		

Not bit addressable

Table 9.SCON RegisterSCON - Serial Control Register (98h)

7	6	5	4	3	2	1	0	
FE/SM0	SM1	SM2	REN	TB8	RB8	TI	RI	
Bit Number	Bit Mnemonic	Description						
7	FE	Framing Error Clear to reset Set by hardwa SMOD0 must	r bit (SMOD0 the error state re when an in be set to enal	=1) e, not cleared avalid stop bit ole access to	l by a valid stop is detected. the FE bit	bit.		
	SM0	Serial port Mo Refer to SM1 f SMOD0 must	Serial port Mode bit 0 Refer to SM1 for serial port mode selection. SMOD0 must be cleared to enable access to the SM0 bit					
6	SM1	Serial port Mo SM0 SM1 0 0 1 0 1 1 1 1	ModeDesc0Shift18-bit29-bit39-bit	r <u>iption Ba</u> Register F _{>} UART Va UART F _{>} UART Va	aud Rate _{TAL} /12 (/6 in X2 ariable _{TAL} /64 or F _{XTAL} / ariable	mode) 32 (/32, /16 ir	n X2 mode)	
5	SM2	Serial port Mode 2 bit / Multiprocessor Communication Enable bit Clear to disable multiprocessor communication feature. Set to enable multiprocessor communication feature in mode 2 and 3, and eventually mode 1. This bit should be cleared in mode 0.					i t and	
4	REN	Reception En Clear to disabl Set to enable s	able bit e serial recep serial receptic	otion. on.				
3	TB8	Transmitter Bit Clear to transr Set to transmit	: 8 / Ninth bit t nit a logic 0 in : a logic 1 in tł	to transmit in 1 the 9th bit. 1 he 9th bit.	modes 2 and 3			
2	RB8	Receiver Bit 8 Cleared by hau Set by hardwa In mode 1, if S	B / Ninth bit r rdware if 9th b re if 9th bit re M2 = 0, RB8	eceived in n bit received is ceived is a lo is the receive	nodes 2 and 3 s a logic 0. ogic 1. ed stop bit. In m	ode 0 RB8 is	not used.	
1	TI	Transmit Inter Clear to ackno Set by hardwa stop bit in the o	rrupt flag wledge interr re at the end other modes.	upt. of the 8th bit	time in mode 0	or at the begi	nning of the	
0	RI	Receive Intern Clear to ackno Set by hardwa 8. in the other	rupt flag wledge interr re at the end modes.	upt. of the 8th bit	time in mode 0,	see Figure 7	'. and Figure	

Reset Value = 0000 0000b Bit addressable

are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence.

Table 12. IE Register

IE - Interrupt Enable Register (A8h)

7	6	5	4	3	2	1	0	
EA	-	ET2	ES	ET1	EX1	ET0	EX0	
Bit Number	Bit Mnemonic	Description	Description					
7	EA	Enable All int Clear to disab Set to enable If EA=1, each clearing its ow	Enable All interrupt bit Clear to disable all interrupts. Set to enable all interrupts. If EA=1, each interrupt source is individually enabled or disabled by setting or clearing its own interrupt enable bit.					
6	-	Reserved The value read	d from this bit	is indetermina	ate. Do not se	t this bit.		
5	ET2	Timer 2 overf Clear to disab Set to enable	Timer 2 overflow interrupt Enable bit Clear to disable timer 2 overflow interrupt. Set to enable timer 2 overflow interrupt.					
4	ES	Serial port Er Clear to disab Set to enable	n able bit le serial port i serial port inte	nterrupt. errupt.				
3	ET1	Timer 1 overf Clear to disab Set to enable	low interrup le timer 1 ove timer 1 overfle	t Enable bit rflow interrupt ow interrupt.				
2	EX1	External inter Clear to disab Set to enable	rupt 1 Enable le external int external inter	e bit errupt 1. rupt 1.				
1	ET0	Timer 0 overf Clear to disab Set to enable	Timer 0 overflow interrupt Enable bit Clear to disable timer 0 overflow interrupt. Set to enable timer 0 overflow interrupt.					
0	EX0	External inter Clear to disab Set to enable	rupt 0 Enable le external int external inter	e bit errupt 0. rupt 0.				

Reset Value = 0X00 0000b Bit addressable

Table 13. IP RegisterIP - Interrupt Priority Register (B8h)

7	6	5	4	3	2	1	0	
-	-	PT2	PS	PT1	PX1	PT0	PX0	
Bit Number	Bit Mnemonic	Descriptio	n					
7	-	Reserved The value	Reserved The value read from this bit is indeterminate. Do not set this bit.					
6	-	Reserved The value	Reserved The value read from this bit is indeterminate. Do not set this bit.					
5	PT2	Timer 2 ov Refer to PT	Timer 2 overflow interrupt Priority bit Refer to PT2H for priority level.					
4	PS	Serial port	t Priority bit SH for priority	level.				
3	PT1	Timer 1 ov Refer to PT	rerflow interr	r upt Priority b y level.	bit			
2	PX1	External in Refer to P	External interrupt 1 Priority bit Refer to PX1H for priority level.					
1	PT0	Timer 0 ov Refer to PT	Timer 0 overflow interrupt Priority bit Refer to PT0H for priority level.					
0	PX0	External in Refer to P	nterrupt 0 Pri (0H for priorit	i ority bit y level.				

Reset Value = XX00 0000b Bit addressable

Table 14.IPH RegisterIPH - Interrupt Priority High Register (B7h)

7	6	5	4	3	2	1	0	
-	-	PT2H	PSH	PT1H	PX1H	РТОН	PX0H	
Bit Number	Bit Mnemonic	Description						
7	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.					
6	-	Reserved The value rea	d from this bit	is indetermina	ate. Do not se	t this bit.		
5	PT2H	Timer 2 over PT2H PT2 0 0 1 0 1 1	flow interrup Priority Leve Lowest Highest	t Priority Higl _임	ı bit			
4	PSH	Serial port P PSH PS 0 0 1 0 1 1	riority High b <u>Priority Leve</u> Lowest Highest	it el				
3	PT1H	Timer 1 over PT1H PT1 0 0 1 0 1 1	flow interrupt Priority Leve Lowest Highest	t Priority Higl ગ	ו bit			
2	PX1H	External inte PX1H PX1 0 0 0 1 1 0 1 1	rrupt 1 Priori <u>Priority Leve</u> Lowest Highest	ty High bit 한				
1	РТОН	Timer 0 over PTOH PTO 0 0 1 0 1 1	flow interrup Priority Leve Lowest Highest	t Priority Higl <u>위</u>	ı bit			
0	РХОН	External inte PXOH PXO 0 0 0 1 1 0 1 1	rrupt 0 Priori Priority Leve Lowest Highest	ty High bit 1				

Reset Value = XX00 0000b Not bit addressable

Exit from power-down by reset redefines all the SFRs, exit from power-down by external interrupt does no affect the SFRs.

Exit from power-down by either reset or external interrupt does not affect the internal RAM content.

Note: If idle mode is activated with power-down mode (IDL and PD bits set), the exit sequence is unchanged, when execution is vectored to interrupt, PD and IDL bits are cleared and idle mode is not entered.

Mode	Program Memory	ALE	PSEN	PORT0	PORT1	PORT2	PORT3
Idle	Internal	1	1	Port Data ⁽¹⁾	Port Data	Port Data	Port Data
Idle	External	1	1	Floating	Port Data	Address	Port Data
Power Down	Internal	0	0	Port Data ⁽¹⁾	Port Data	Port Data	Port Data
Power Down	External	0	0	Floating	Port Data	Port Data	Port Data

Table 15. The State of Ports During Idle and Power-down Modes

Note: 1. Port 0 can force a "zero" level. A "one" will leave port floating.

TS80C52X2

ROM Structure The T

The TS80C52X2 ROM memory is divided in three different arrays:

- the code array:8 Kbytes.
- the encryption array:64 bytes.
- the signature array:4 bytes.

ROM Lock System The program Lock system, when programmed, protects the on-chip program against software piracy.

Encryption Array Within the ROM array are 64 bytes of encryption array that are initially unprogrammed (all FF's). Every time a byte is addressed during program verify, 6 address lines are used to select a byte of the encryption array. This byte is then exclusive-NOR'ed (XNOR) with the code byte, creating an encrypted verify byte. The algorithm, with the encryption array in the unprogrammed state, will return the code in its original, unmodified form.

When using the encryption array, one important factor needs to be considered. If a byte has the value FFh, verifying the byte will produce the encryption byte value. If a large block (>64 bytes) of code is left unprogrammed, a verification routine will display the content of the encryption array. For this reason all the unused code bytes should be programmed with random values. This will ensure program protection.

Program Lock BitsThe lock bits when programmed according to Table 19. will provide different level of pro-
tection for the on-chip code and data.

Table 19.	Program	Lock bits	
Pr	ogram Lock	Bits	

Pi	rogram L	ock Bits		
Security level	LB1	LB2	LB3	Protection Description
1	U	U	U	No program lock features enabled. Code verify will still be encrypted by the encryption array if programmed. MOVC instruction executed from external program memory returns non encrypted data.
2	Ρ	U	U	MOVC instruction executed from external program memory are disabled from fetching code bytes from internal memory, EA is sampled and latched on reset.

U: unprogrammed P: programmed

Signature bytes

The TS80C52X2 contains 4 factory programmed signatures bytes. To read these bytes, perform the process described in section 9.

Verify Algorithm

Refer to Section "Verify Algorithm".

Table 23. DC Parameters for Low Voltage

Symbol	Parameter	Min	Тур	Мах	Unit	Test Conditions
V _{IL}	Input Low Voltage	-0.5		0.2 V _{CC} - 0.1	V	
V _{IH}	Input High Voltage except XTAL1, RST	0.2 V _{CC} + 0.9		V _{CC} + 0.5	V	
V _{IH1}	Input High Voltage, XTAL1, RST	0.7 V _{CC}		V _{CC} + 0.5	V	
V _{OL}	Output Low Voltage, ports 1, 2, 3 ⁽⁶⁾			0.45	V	I _{OL} = 0.8 mA ⁽⁴⁾
V _{OL1}	Output Low Voltage, port 0, ALE, PSEN (6)			0.45	V	I _{OL} = 1.6 mA ⁽⁴⁾
V _{OH}	Output High Voltage, ports 1, 2, 3	0.9 V _{CC}			V	I _{OH} = -10 μA
V _{OH1}	Output High Voltage, port 0, ALE, PSEN	0.9 V _{CC}			V	I _{OH} = -40 μA
I _{IL}	Logical 0 Input Current ports 1, 2 and 3			-50	μΑ	Vin = 0.45V
I _{LI}	Input Leakage Current			±10	μΑ	0.45V < Vin < V _{CC}
I _{TL}	Logical 1 to 0 Transition Current, ports 1, 2, 3			-650	μΑ	Vin = 2.0 V
R _{RST}	RST Pulldown Resistor	50	90 ⁽⁵⁾	200	kΩ	
CIO	Capacitance of I/O Buffer			10	pF	Fc = 1 MHz TA = 25°C
I _{PD}	Power Down Current		20 ⁽⁵⁾ 10 ⁽⁵⁾	50 30	μA	$V_{CC} = 2.0 \text{ V to } 5.5 \text{V}^{(3)}$ $V_{CC} = 2.0 \text{ V to } 3.3 \text{ V}^{(3)}$
I _{CC} under RESET	Power Supply Current Maximum values, X1 mode: (7)			1 + 0.2 Freq (MHz) at12MHz 3.4 at16MHz 4.2	mA	$V_{CC} = 3.3 V^{(1)}$
I _{CC} operating	Power Supply Current Maximum values, X1 mode: ⁽⁷⁾			1 + 0.3 Freq (MHz) at12MHz 4.6 at16MHz 5.8	mA	$V_{\rm CC} = 3.3 \ V^{(8)}$
I _{CC} idle	Power Supply Current Maximum values, X1 mode: (7)			0.15 Freq (MHz) + 0.2 at12MHz 2 at16MHz 2.6	mA	V _{CC} = 3.3 V ⁽²⁾

Notes: 1. I_{CC} under reset is measured with all output pins disconnected; XTAL1 driven with T_{CLCH}, T_{CHCL} = 5 ns (see Figure 17.), V_{IL} = V_{SS} + 0.5V,

 $V_{IH} = V_{CC} - 0.5V$; XTAL2 N.C.; $\overline{EA} = RST = Port 0 = V_{CC}$. I_{CC} would be slightly higher if a crystal oscillator used...

2. Idle I_{CC} is measured with all out<u>put</u> pins disconnected; XTAL1 driven with T_{CLCH} , $T_{CHCL} = 5$ ns, $V_{IL} = V_{SS} + 0.5V$, $V_{IH} = V_{CC} - 0.5V$; XTAL2 N.C; Port 0 = V_{CC} ; EA = RST = V_{SS} (see Figure 15.).

Power Down I_{CC} is measured with all output pins disconnected; EA = V_{SS}, PORT 0 = V_{CC}; XTAL2 NC.; RST = V_{SS} (see Figure 16.).

4. Capacitance loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the V_{OL}s of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1 to 0 transitions during bus operation. In the worst cases (capacitive loading 100pF), the noise pulse on the ALE line may exceed 0.45V with maxi V_{OL} peak 0.6V. A Schmitt Trigger use is not necessary.

5. Typicals are based on a limited number of samples and are not guaranteed. The values listed are at room temperature and 5V.

 Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows: Maximum I_{OL} per port pin: 10 mA Maximum I_{OL} per 8-bit port:

Figure 16. I_{CC} Test Condition, Power-down Mode

All other pins are disconnected.

Figure 17. Clock Signal Waveform for I_{CC} Tests in Active and Idle Modes

AC Parameters

Explanation of the AC Symbols	Each timing symbol has 5 characters. The first character is always a "T" (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.								
	Example:T _{AVL} T _{LLPL} = Tim	Example: T_{AVLL} = Time for Address Valid to ALE Low. T_{LLPL} = Time for ALE Low to PSEN Low.							
	$T_A = 0 \text{ to } +70^\circ$ ranges. $T_A = -40^\circ\text{C to}$ -V ranges. $T_A = 0 \text{ to } +70^\circ$ range. $T_A = -40^\circ\text{C to}$ range.	°C (commercial temperat +85°C (industrial temper 0°C (commercial temper 0 +85°C (industrial temper	ure range); $V_{SS} = 0 V$; V_{C} rature range); $V_{SS} = 0 V$; rature range); $V_{SS} = 0 V$ erature range); $V_{SS} = 0 V$	$V_{CC} = 5V \pm 10\%$; -M and -V $V_{CC} = 5V \pm 10\%$; -M and $V_{CC} = 5V \pm 10\%$; -M and $V_{CC} = 5.5V$; -L $V_{CC} = 5.5V$; -L					
	Table 24. giv and ALE and respected. Hi Table 24. Los	e <u>s the m</u> aximum applica I PSEN signals. Timing gher capacitance values ad Capacitance versus s	ble load capacitance for s will be guaranteed if can be used, but timings peed range, in pF	r Port 0, Port 1, 2 and 3, these capacitances are will then be degraded.					
		-M	-V	-L					
	Port 0	100	50	100					
	Port 1, 2, 3	80	50	80					
	ALE / PSEN 100 30 100								

Table 5., Table 29. and Table 32. give the description of each AC symbols.

Table 27., Table 30. and Table 33. give for each range the AC parameter.

External Program Memory Read Cycle

Figure 18. External Program Memory Read Cycle

External Data Memory Characteristics

 Table 29.
 Symbol Description

Symbol	Parameter
T _{RLRH}	RD Pulse Width
T _{WLWH}	WR Pulse Width
T _{RLDV}	RD to Valid Data In
T _{RHDX}	Data Hold After RD
T _{RHDZ}	Data Float After RD
T _{LLDV}	ALE to Valid Data In
T _{AVDV}	Address to Valid Data In
T _{LLWL}	ALE to WR or RD
T _{AVWL}	Address to WR or RD
T _{QVWX}	Data Valid to WR Transition
T _{QVWH}	Data set-up to WR High
T _{WHQX}	Data Hold After WR
T _{RLAZ}	RD Low to Address Float
T _{WHLH}	RD or WR High to ALE high

Table 30.	AC Parameters	for a	Fix	Clock
-----------	---------------	-------	-----	-------

Speed	-1 40 M	M MHz	 X2 n 30 M 60 M equ	V node MHz MHz uiv.	'- stan mod Mi	V dard le 40 Hz	- X2 n 20 f 40 f equ	L node MHz MHz uiv.	- stan mo 30 N	L dard ode MHz	Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
T _{RLRH}	130		85		135		125		175		ns
T _{WLWH}	130		85		135		125		175		ns
T _{RLDV}		100		60		102		95		137	ns
T _{RHDX}	0		0		0		0		0		ns
T _{RHDZ}		30		18		35		25		42	ns
T _{LLDV}		160		98		165		155		222	ns
T _{AVDV}		165		100		175		160		235	ns
T _{LLWL}	50	100	30	70	55	95	45	105	70	130	ns
T _{AVWL}	75		47		80		70		103		ns
T _{QVWX}	10		7		15		5		13		ns
T _{QVWH}	160		107		165		155		213		ns
T _{WHQX}	15		9		17		10		18		ns
T _{RLAZ}		0		0		0		0		0	ns
T _{WHLH}	10	40	7	27	15	35	5	45	13	53	ns

Symbol	Туре	Standard Clock	X2 Clock	-М	-V	-L	Units
T _{RLRH}	Min	6 T - x	3 T - x	20	15	25	ns
T _{WLWH}	Min	6 T - x	3 T - x	20	15	25	ns
T _{RLDV}	Max	5 T - x	2.5 T - x	25	23	30	ns
T _{RHDX}	Min	х	х	0	0	0	ns
T _{RHDZ}	Max	2 T - x	T - x	20	15	25	ns
T _{LLDV}	Max	8 T - x	4T -x	40	35	45	ns
T _{AVDV}	Max	9 T - x	4.5 T - x	60	50	65	ns
T _{LLWL}	Min	3 T - x	1.5 T - x	25	20	30	ns
T _{LLWL}	Max	3 T + x	1.5 T + x	25	20	30	ns
T _{AVWL}	Min	4 T - x	2 T - x	25	20	30	ns
T _{QVWX}	Min	T - x	0.5 T - x	15	10	20	ns
T _{QVWH}	Min	7 T - x	3.5 T - x	15	10	20	ns
T _{WHQX}	Min	T - x	0.5 T - x	10	8	15	ns
T _{RLAZ}	Max	х	х	0	0	0	ns
T _{WHLH}	Min	T - x	0.5 T - x	15	10	20	ns
T _{WHLH}	Max	T + x	0.5 T + x	15	10	20	ns

Table 31. AC Parameters for a Variable Clock: Derating Formula

External Data Memory Write Cycle

External Clock Drive Characteristics (XTAL1)

Table 36. AC Parameters

Symbol	Parameter	Min	Мах	Units
T _{CLCL}	Oscillator Period	25		ns
Т _{снсх}	High Time	5		ns
T _{CLCX}	Low Time	5		ns
T _{CLCH}	Rise Time		5	ns
T _{CHCL}	Fall Time		5	ns
T _{CHCX} /T _{CLCX}	Cyclic ratio in X2 mode	40	60	%

External Clock Drive Waveforms

Figure 23. External Clock Drive Waveforms

AC Testing Input/Output Waveforms

Figure 24. AC Testing Input/Output Waveforms

INPUT/OUTPUT

AC inputs during testing are driven at V_{CC} - 0.5 for a logic "1" and 0.45V for a logic "0". Timing measurement are made at V_{IH} min for a logic "1" and V_{IL} max for a logic "0".

Float Waveforms

Figure 25. Float Waveforms

For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a 100 mV change from the loaded V_{OH}/V_{OL} level occurs. $I_{OL}/I_{OH} \ge \pm 20$ mA.

Figure 26. Clock Waveforms

This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins, however, ranges from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pin loading. Propagation also varies from output to output and component. Typically though ($T_A = 25^{\circ}C$ fully loaded) RD and WR propagation delays are approximately 50ns. The other signals are typically 85 ns. Propagation delays are incorporated in the AC specifications.

Table 37. Possible Ordering Entries (Continued)

			Tommoroturo			
Part Number ⁽³⁾	Memory Size	Supply Voltage	Range	Max Frequency	Package	Packing
AT80C32X2-RLTUL	ROMLess	2.7 to 5.5V	Industrial & Green	30 MHz ⁽¹⁾	VQFP44	Tray
AT80C32X2-3CSUV	ROMLess	5V ±10%	Industrial & Green	60 MHz ⁽³⁾	PDIL40	Stick
AT80C32X2-SLSUV	ROMLess	5V ±10%	Industrial & Green	60 MHz ⁽³⁾	PLCC44	Stick
AT80C32X2-RLTUV	ROMLess	5V ±10%	Industrial & Green	60 MHz ⁽³⁾	VQFP44	Tray
TS80C52X2zzz-MCA	8K ROM	2.7 to 5.5V	Commercial	40 MHz ⁽¹⁾	PDIL40	Stick
TS80C52X2zzz-MCB	8K ROM	2.7 to 5.5V	Commercial	40 MHz ⁽¹⁾	PLCC44	Stick
TS80C52X2zzz-MCC	8K ROM	2.7 to 5.5V	Commercial	40 MHz ⁽¹⁾	PQFP44	Tray
TS80C52X2zzz-MCE	8K ROM	2.7 to 5.5V	Commercial	40 MHz ⁽¹⁾	VQFP44	Tray
TS80C52X2zzz-LCA	8K ROM	2.7 to 5.5V	Commercial	30 MHz ⁽¹⁾	PDIL40	Stick
TS80C52X2zzz-LCB	8K ROM	2.7 to 5.5V	Commercial	30 MHz ⁽¹⁾	PLCC44	Stick
TS80C52X2zzz-LCC	8K ROM	2.7 to 5.5V	Commercial	30 MHz ⁽¹⁾	PQFP44	Tray
TS80C52X2zzz-LCE	8K ROM	2.7 to 5.5V	Commercial	30 MHz ⁽¹⁾	VQFP44	Tray
TS80C52X2zzz-VCA	8K ROM	5V <u>±</u> 10%	Commercial	60 MHz ⁽³⁾	PDIL40	Stick
TS80C52X2zzz-VCB	8K ROM	5V ±10%	Commercial	60 MHz ⁽³⁾	PLCC44	Stick
TS80C52X2zzz-VCC	8K ROM	5V ±10%	Commercial	60 MHz ⁽³⁾	PQFP44	Tray
TS80C52X2zzz-VCE	8K ROM	5V ±10%	Commercial	60 MHz ⁽³⁾	VQFP44	Tray
TS80C52X2zzz-MIA	8K ROM	5V ±10%	Industrial	40 MHz ⁽¹⁾	PDIL40	Stick
TS80C52X2zzz-MIB	8K ROM	5V ±10%	Industrial	40 MHz ⁽¹⁾	PLCC44	Stick
TS80C52X2zzz-MIC	8K ROM	5V ±10%	Industrial	40 MHz ⁽¹⁾	PQFP44	Tray
TS80C52X2zzz-MIE	8K ROM	5V ±10%	Industrial	40 MHz ⁽¹⁾	VQFP44	Tray
TS80C52X2zzz-LIA	8K ROM	2.7 to 5.5V	Industrial	30 MHz ⁽¹⁾	PDIL40	Stick
TS80C52X2zzz-LIB	8K ROM	2.7 to 5.5V	Industrial	30 MHz ⁽¹⁾	PLCC44	Stick
TS80C52X2zzz-LIC	8K ROM	2.7 to 5.5V	Industrial	30 MHz ⁽¹⁾	PQFP44	Tray
TS80C52X2zzz-LIE	8K ROM	2.7 to 5.5V	Industrial	30 MHz ⁽¹⁾	VQFP44	Tray
TS80C52X2zzz-VIA	8K ROM	5V ±10%	Industrial	60 MHz ⁽³⁾	PDIL40	Stick
TS80C52X2zzz-VIB	8K ROM	5V ±10%	Industrial	60 MHz ⁽³⁾	PLCC44	Stick
TS80C52X2zzz-VIC	8K ROM	5V ±10%	Industrial	60 MHz ⁽³⁾	PQFP44	Tray
TS80C52X2zzz-VIE	8K ROM	5V ±10%	Industrial	60 MHz ⁽³⁾	VQFP44	Tray
AT80C52X2zzz-3CSUM	8K ROM	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	PDIL40	Stick
AT80C52X2zzz-SLSUM	8K ROM	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	PLCC44	Stick
AT80C52X2zzz-RLTUM	8K ROM	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	VQFP44	Tray