

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	40/20MHz
Connectivity	UART/USART
Peripherals	POR
Number of I/O	32
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-VQFP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ts80c32x2-mie

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

SFR Mapping

The Special Function Registers (SFRs) of the TS80C52X2 fall into the following categories:

- C51 core registers: ACC, B, DPH, DPL, PSW, SP, AUXR1
- I/O port registers: P0, P1, P2, P3
- Timer registers: T2CON, T2MOD, TCON, TH0, TH1, TH2, TMOD, TL0, TL1, TL2, RCAP2L, RCAP2H
- Serial I/O port registers: SADDR, SADEN, SBUF, SCON
- Power and clock control registers: PCON
- Interrupt system registers: IE, IP, IPH
- Others: AUXR, CKCON

Mnemonic	Pin Number		Туре	Name and Function	
	DIL	LCC	VQFP 1.4		
	13	15	9	I	INT1 (P3.3): External interrupt 1
	14	16	10	I	T0 (P3.4): Timer 0 external input
	15	17	11	I	T1 (P3.5): Timer 1 external input
	16	18	12	0	WR (P3.6): External data memory write strobe
	17	19	13	0	RD (P3.7): External data memory read strobe
Reset	9	10	4	I	Reset: A high on this pin for two machine cycles while the oscillator is running, resets the device. An internal diffused resistor to V_{SS} permits a power-on reset using only an external capacitor to V_{CC} .
ALE/PROG	30	33	27	O (I)	Address Latch Enable/Program Pulse: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 (1/3 in X2 mode) the oscillator frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external data memory. This pin is also the program pulse input (PROG) during EPROM programming. ALE can be disabled by setting SFR's AUXR.0 bit. With this bit set, ALE will be inactive during internal fetches.
PSEN	29	32	26	0	Program Store ENable: The read strobe to external program memory. When executing code from the external program memory, <u>PSEN</u> is activated twice each machine cycle, except that two <u>PSEN</u> activations are skipped during each access to external data memory. <u>PSEN</u> is not activated during fetches from internal program memory.
ĒĀ/V _{PP}	31	35	29	I	External Access Enable/Programming Supply Voltage: EA must be externally held low to enable the device to fetch code from external program memory locations 0000H and 3FFFH (RB) or 7FFFH (RC), or FFFFH (RD). If EA is held high, the device executes from internal program memory unless the program counter contains an address greater than 3FFFH (RB) or 7FFFH (RC) EA must be held low for ROMless devices. This pin also receives the 12.75V programming supply voltage (V _{PP}) during EPROM programming. If security level 1 is programmed, EA will be internally latched on Reset.
XTAL1	19	21	15	I	Crystal 1: Input to the inverting oscillator amplifier and input
					to the internal clock generator circuits.
XTAL2	18	20	14	0	Crystal 2: Output from the inverting oscillator amplifier

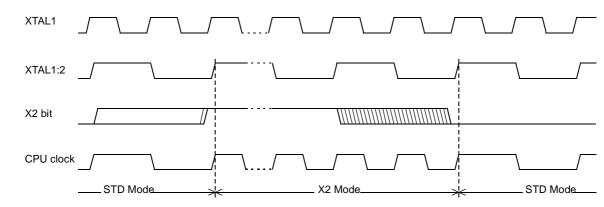


Figure 2. Mode Switching Waveforms

The X2 bit in the CKCON register (See Table 3.) allows to switch from 12 clock cycles per instruction to 6 clock cycles and vice versa. At reset, the standard speed is activated (STD mode). Setting this bit activates the X2 feature (X2 mode).

Note: In order to prevent any incorrect operation while operating in X2 mode, user must be aware that all peripherals using clock frequency as time reference (UART, timers) will have their time reference divided by two. For example a free running timer generating an interrupt every 20 ms will then generate an interrupt every 10 ms. UART with 4800 baud rate will have 9600 baud rate.

Table 3. CKCON Register

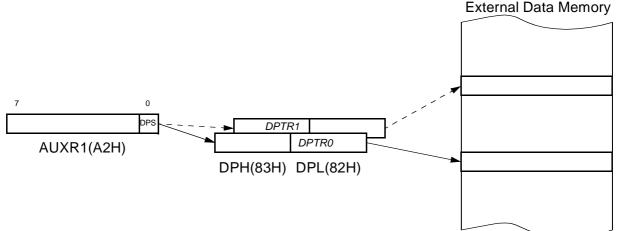
CKCON - Clock Control Register (8Fh)

7	6	5	4	3	2	1	0				
-	-	-	-	-	-	-	X2				
Bit Number	Bit Mnemonic	Description	Description								
7	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.								
6	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.								
5	-	Reserved The value read from this bit is indeterminate. Do not set this bit.									
4	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.					
3	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.					
2	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.								
1	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.								
0	X2	CPU and peripheral clock bit Clear to select 12 clock periods per machine cycle (STD mode, $F_{OSC}=F_{XTAL}/2$). Set to select 6 clock periods per machine cycle (X2 mode, $F_{OSC}=F_{XTAL}$).									

Reset Value = XXXX XXX0b

Not bit addressable

For further details on the X2 feature, please refer to ANM072 available on the web (http://www.atmel.com)


Dual Data Pointer Register (Ddptr)

The additional data pointer can be used to speed up code execution and reduce code size in a number of ways.

The dual DPTR structure is a way by which the chip will specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called

DPS = AUXR1/bit0 (See Table 5.) that allows the program code to switch between them (Refer to Figure 3).

Figure 3. Use of Dual Pointer

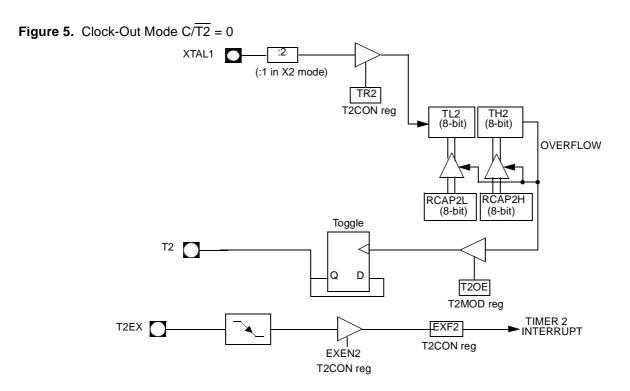
Table 4. AUXR1: Auxiliary Register 1

7	6	5	4	3	2	1	0			
-	-	-	-	GF3	0	-	DPS			
Bit Number	Bit Mnemonic	Description	Description							
7	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.							
6	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.							
5	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.							
4	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.							
3	GF3	This bit is a	general purp	ose user flag						
2	0	Reserved Always stud	Reserved Always stuck at 0							
1	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.							
0	DPS	Clear to sel	Data Pointer Selection Clear to select DPTR0. Set to select DPTR1.							

Reset Value = XXXX XXX0 Not bit addressable

Application

Software can take advantage of the additional data pointers to both increase speed and reduce code size, for example, block operations (copy, compare, search ...) are well served by using one data pointer as a 'source' pointer and the other one as a "destination" pointer.


ASSEMBLY LANGUAGE

; Block move using dual data pointers ; Destroys DPTR0, DPTR1, A and PSW ; note: DPS exits opposite of entry state ; unless an extra INC AUXR1 is added 00A2 AUXR1 EQU 0A2H 0000 909000MOV DPTR,#SOURCE ; address of SOURCE 0003 05A2 INC AUXR1 ; switch data pointers 0005 90A000 MOV DPTR,#DEST ; address of DEST 0008 LOOP: 0008 05A2 INC AUXR1 ; switch data pointers 000A E0 MOVX A, atDPTR ; get a byte from SOURCE 000B A3 INC DPTR ; increment SOURCE address 000C 05A2 INC AUXR1 ; switch data pointers 000E F0 MOVX atDPTR, A ; write the byte to DEST 000F A3 INC DPTR ; increment DEST address 0010 70F6JNZ LOOP ; check for 0 terminator 0012 05A2 INC AUXR1 ; (optional) restore DPS

INC is a short (2 bytes) and fast (12 clocks) way to manipulate the DPS bit in the AUXR1 SFR. However, note that the INC instruction does not directly force the DPS bit to a particular state, but simply toggles it. In simple routines, such as the block move example, only the fact that DPS is toggled in the proper sequence matters, not its actual value. In other words, the block move routine works the same whether DPS is '0' or '1' on entry. Observe that without the last instruction (INC AUXR1), the routine will exit with DPS in the opposite state.

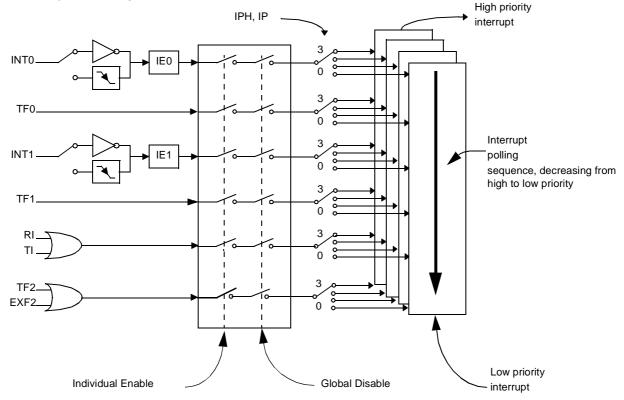
14 **TS8xCx2X2**

Table 10. PCON RegisterPCON - Power Control Register (87h)

7	6	5	4	3	2	1	0		
SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL		
Bit Number	Bit Mnemonic	Descriptio	n						
7	SMOD1		t Mode bit 1 ect double bau	ud rate in mode	e 1, 2 or 3.				
6	SMOD0	Clear to se	Serial port Mode bit 0 Clear to select SM0 bit in SCON register. Set to to select FE bit in SCON register.						
5	-	Reserved The value	Reserved The value read from this bit is indeterminate. Do not set this bit.						
4	POF	Clear to ree Set by hard	Power-off Flag Clear to recognize next reset type. Set by hardware when VCC rises from 0 to its nominal voltage. Can also be set by software.						
3	GF1	Cleared by		eral purpose us purpose usage					
2	GF0	Cleared by	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.						
1	PD	Cleared by	Power-down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.						
0	IDL	Idle mode bit Clear by hardware when interrupt or reset occurs. Set to enter idle mode.							

Reset Value = 00X1 0000b Not bit addressable

Power-off flag reset value will be 1 only after a power on (cold reset). A warm reset doesn't affect the value of this bit.



Interrupt System

The TS80C52X2 has a total of 6 interrupt vectors: two external interrupts (INT0 and INT1), three timer interrupts (timers 0, 1 and 2) and the serial port interrupt. These interrupts are shown in Figure 9.

Figure 9. Interrupt Control System

Each of the interrupt sources can be individually enabled or disabled by setting or clearing a bit in the Interrupt Enable register (See Table 12.). This register also contains a global disable bit, which must be cleared to disable all interrupts at once.

Each interrupt source can also be individually programmed to one out of four priority levels by setting or clearing a bit in the Interrupt Priority register (See Table 13.) and in the Interrupt Priority High register (See Table 14.). shows the bit values and priority levels associated with each combination.

Table 11.	Priority	Level Bit	Values

IPH.x	IP.x	Interrupt Level Priority
0	0	0 (Lowest)
0	1	1
1	0	2
1	1	3 (Highest)

A low-priority interrupt can be interrupted by a high priority interrupt, but not by another low-priority interrupt. A high-priority interrupt can't be interrupted by any other interrupt source.

If two interrupt requests of different priority levels are received simultaneously, the request of higher priority level is serviced. If interrupt requests of the same priority level

are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence.

Table 12. IE Register

IE - Interrupt Enable Register (A8h)

7	6	5	4	3	2	1	0			
EA	-	ET2	ES	ET1	EX1	ET0	EX0			
Bit Number	Bit Mnemonic	Description								
7	EA	Clear to disab Set to enable If EA=1, each	Enable All interrupt bit Clear to disable all interrupts. Set to enable all interrupts. If EA=1, each interrupt source is individually enabled or disabled by setting or clearing its own interrupt enable bit.							
6	-	Reserved The value read	d from this bit	is indetermina	ate. Do not se	t this bit.				
5	ET2	Clear to disab	Timer 2 overflow interrupt Enable bit Clear to disable timer 2 overflow interrupt. Set to enable timer 2 overflow interrupt.							
4	ES	Serial port Er Clear to disab Set to enable	le serial port i	•						
3	ET1	Timer 1 overf Clear to disab Set to enable	le timer 1 ove	rflow interrupt						
2	EX1	Clear to disab	External interrupt 1 Enable bit Clear to disable external interrupt 1. Set to enable external interrupt 1.							
1	ET0	Clear to disab	Timer 0 overflow interrupt Enable bit Clear to disable timer 0 overflow interrupt. Set to enable timer 0 overflow interrupt.							
0	EX0	External interrupt 0 Enable bit Clear to disable external interrupt 0. Set to enable external interrupt 0.								

Reset Value = 0X00 0000b Bit addressable

Table 14.IPH RegisterIPH - Interrupt Priority High Register (B7h)

7	6	5	4	3	2	1	0
-	-	PT2H	PSH	PT1H	PX1H	РТОН	РХОН
Bit Number	Bit Mnemonic	Description					
7	-	Reserved The value rea	d from this bit	is indetermina	ate. Do not se	t this bit.	
6	-	Reserved The value rea	d from this bit	is indetermina	ate. Do not se	t this bit.	
5	PT2H	Timer 2 over PT2H PT2 0 0 1 0 1 1	f low interrup <u>Priority Leve</u> Lowest Highest	t Priority High 한	n bit		
4	PSH	Serial port P PSH PS 0 0 0 1 1 0 1 1	riority High b <u>Priority Leve</u> Lowest Highest				
3	PT1H	Timer 1 over PT1H PT1 0 0 0 1 1 0 1 1		t Priority High 키	n bit		
2	PX1H	External inte PX1H PX1 0 0 1 0 1 1 1 1	rrupt 1 Priori Priority Leve Lowest Highest				
1	РТОН	Timer 0 over PT0H PT0 0 0 1 0 1 1		t Priority High 한	n bit		
0	РХОН	External inte PX0H PX0 0 0 1 1 1 1	rrupt 0 Priori <u>Priority Leve</u> Lowest Highest	ty High bit <u>키</u>			

Reset Value = XX00 0000b Not bit addressable

Exit from power-down by reset redefines all the SFRs, exit from power-down by external interrupt does no affect the SFRs.

Exit from power-down by either reset or external interrupt does not affect the internal RAM content.

Note: If idle mode is activated with power-down mode (IDL and PD bits set), the exit sequence is unchanged, when execution is vectored to interrupt, PD and IDL bits are cleared and idle mode is not entered.

Mode	Program Memory	ALE	PSEN	PORT0	PORT1	PORT2	PORT3
Idle	Internal	1	1	Port Data ⁽¹⁾	Port Data	Port Data	Port Data
Idle	External	1	1	Floating	Port Data	Address	Port Data
Power Down	Internal	0	0	Port Data ⁽¹⁾	Port Data	Port Data	Port Data
Power Down	External	0	0	Floating	Port Data	Port Data	Port Data

Table 15. The State of Ports During Idle and Power-down Modes

Note: 1. Port 0 can force a "zero" level. A "one" will leave port floating.

EPROM Structure The TS87C52X2 is divided in two different arrays:

- the code array: 8 Kbytes
- the encryption array: 64 bytes

In addition a third non programmable array is implemented:

the signature array: 4 bytes

EPROM Lock System The program Lock system, when programmed, protects the on-chip program against software piracy.

Encryption Array Within the EPROM array are 64 bytes of encryption array that are initially unprogrammed (all FF's). Every time a byte is addressed during program verify, 6 address lines are used to select a byte of the encryption array. This byte is then exclusive-NOR'ed (XNOR) with the code byte, creating an encrypted verify byte. The algorithm, with the encryption array in the unprogrammed state, will return the code in its original, unmodified form.

When using the encryption array, one important factor needs to be considered. If a byte has the value FFh, verifying the byte will produce the encryption byte value. If a large block (>64 bytes) of code is left unprogrammed, a verification routine will display the content of the encryption array. For this reason all the unused code bytes should be programmed with random values. This will ensure program protection.

Program Lock Bits The three lock bits, when programmed according to Table 1., will provide different level of protection for the on-chip code and data.

Program Lock Bits					
Security level	LB1	LB2	LB3	Protection Description	
1	U	U	U	No program lock features enabled. Code verify will still be encrypted by the encryption array if programmed. MOVC instruction executed from external program memory returns non encrypted data.	
2	Ρ	U	U	MOVC instruction executed from external program memory are disabled from fetching code bytes from internal memory, EA is sampled and latched on reset, and further programming of the EPROM is disabled.	
3	U	Р	U	Same as 2, also verify is disabled.	
4	U	U	Р	Same as 3, also external execution is disabled.	

U: unprogrammed P: programmed

WARNING: Security level 2 and 3 should only be programmed after EPROM and Core verification.

Signature Bytes The TS80/87C52X2 contains 4 factory programmed signatures bytes. To read these bytes, perform the process described in section 9.

EPROM Programming

Set-up modes

In order to program and verify the EPROM or to read the signature bytes, the TS87C52X2 is placed in specific set-up modes (See Figure 11.).

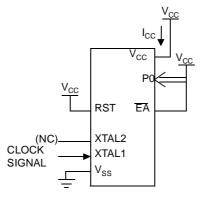
12,000 μ W/cm² rating for 30 minutes, at a distance of about 25 mm, should be sufficient. An exposure of 1 hour is recommended with most of standard erasers.

Erasure of the EPROM begins to occur when the chip is exposed to light with wavelength shorter than approximately 4,000 Å. Since sunlight and fluorescent lighting have wavelengths in this range, exposure to these light sources over an extended time (about 1 week in sunlight, or 3 years in room-level fluorescent lighting) could cause inadvertent erasure. If an application subjects the device to this type of exposure, it is suggested that an opaque label be placed over the window.

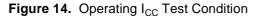
Signature Bytes The TS80/87C52X2 has four signature bytes in location 30h, 31h, 60h and 61h. To read these bytes follow the procedure for EPROM verify but activate the control lines provided in Table 31. for Read Signature Bytes. Table 35. shows the content of the signature byte for the TS80/87C52X2.

Location	Contents	Comment
30h	58h	Manufacturer Code: Atmel
31h	57h	Family Code: C51 X2
60h	2Dh	Product name: TS80C52X2
60h	ADh	Product name:TS87C52X2
60h	20h	Product name: TS80C32X2
61h	FFh	Product revision number

Table 21. Signature Bytes Content


TS8xCx2X2

Port 0: 26 mA Ports 1, 2 and 3: 15 mA Maximum total I_{OL} for all output pins: 71 mA If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.


- 7. For other values, please contact your sales office.
- Operating I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH}, T_{CHCL} = 5 ns (see Figure 17.), V_{IL} = V_{SS} + 0.5V,

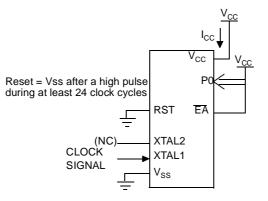
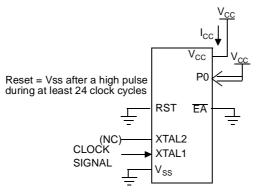

 $V_{IH} = V_{CC} - 0.5V$; XTAL2 N.C.; $\overline{EA} = Port 0 = V_{CC}$; RST = V_{SS} . The internal ROM runs the code 80 FE (label: SJMP label). I_{CC} would be slightly higher if a crystal oscillator is used. Measurements are made with OTP products when possible, which is the worst case.

Figure 13. I_{CC} Test Condition, under reset


All other pins are disconnected.

All other pins are disconnected.

Figure 15. I_{CC} Test Condition, Idle Mode

All other pins are disconnected.

External Data Memory Read Cycle

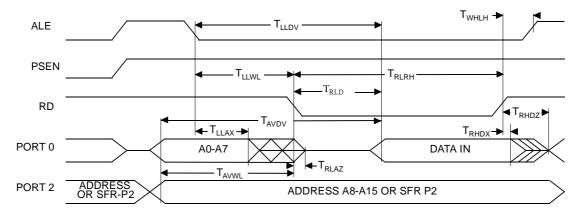
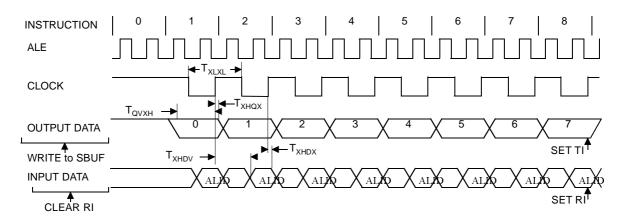


Figure 20. External Data Memory Read Cycle

Serial Port Timing - Shift Register Mode

Table 32. Symbol Description

Symbol	Parameter
T _{XLXL}	Serial port clock cycle time
T _{QVHX}	Output data set-up to clock rising edge
T _{XHQX}	Output data hold after clock rising edge
T _{XHDX}	Input data hold after clock rising edge
T _{XHDV}	Clock rising edge to input data valid


Speed	-I 40 I	M MHz		ИНz	stan mod	V dard le 40 Hz		node MHz MHz	stan mo	L dard ode MHz	Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
T _{XLXL}	300		200		300		300		400		ns
T _{QVHX}	200		117		200		200		283		ns
T _{XHQX}	30		13		30		30		47		ns
T _{XHDX}	0		0		0		0		0		ns
T_{XHDV}		117		34		117		117		200	ns

Symbol	Туре	Standard Clock	X2 Clock	-М	-V	-L	Units
T _{XLXL}	Min	12 T	6 T				ns
T _{QVHX}	Min	10 T - x	5 T - x	50	50	50	ns
T _{XHQX}	Min	2 T - x	T - x	20	20	20	ns
T _{XHDX}	Min	х	х	0	0	0	ns
T _{XHDV}	Max	10 T - x	5 T- x	133	133	133	ns

Table 34. AC Parameters for a Variable Clock: Derating Formula

Shift Register Timing Waveforms

EPROM Programming and Verification Characteristics

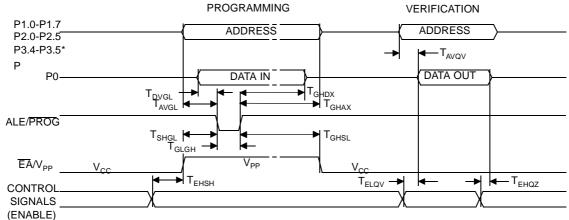

 T_A = 21°C to 27°C; V_{SS} = 0V; $~V_{CC}$ = 5V \pm 10% while programming. V_{CC} = operating range while verifying.

 Table 35.
 EPROM Programming Parameters

Symbol	Parameter	Min	Мах	Units
V _{PP}	Programming Supply Voltage	12.5	13	V
I _{PP}	Programming Supply Current		75	mA
1/T _{CLCL}	Oscillator Frquency	4	6	MHz
T _{AVGL}	Address Setup to PROG Low	48 T _{CLCL}		
T _{GHAX}	Adress Hold after PROG	48 T _{CLCL}		
T _{DVGL}	Data Setup to PROG Low	48 T _{CLCL}		
T _{GHDX}	Data Hold after PROG	48 T _{CLCL}		
T _{EHSH}	(Enable) High to V _{PP}	48 T _{CLCL}		
T _{SHGL}	V _{PP} Setup to PROG Low	10		μs
T _{GHSL}	V _{PP} Hold after PROG	10		μs
T _{GLGH}	PROG Width	90	110	μs
T _{AVQV}	Address to Valid Data		48 T _{CLCL}	
T _{ELQV}	ENABLE Low to Data Valid		48 T _{CLCL}	
T _{EHQZ}	Data Float after ENABLE	0	48 T _{CLCL}	

EPROM Programming and Verification Waveforms

Figure 22. EPROM Programming and Verification Waveforms

* 8KB: up to P2.4, 16KB: up to P2.5, 32KB: up to P3.4, 64KB: up to P3.5

Ordering Information

Table 37. Possible Ordering Entries

Part Number ⁽³⁾	Memory Size	Supply Voltage	Temperature Range	Max Frequency	Package	Packing
TS80C32X2-MCA	ROMLess	5V <u>±</u> 10%	Commercial	40 MHz ⁽¹⁾	PDIL40	Stick
TS80C32X2-MCB	ROMLess	5V <u>±</u> 10%	Commercial	40 MHz ⁽¹⁾	PLCC44	Stick
TS80C32X2-MCC	ROMLess	5V <u>±</u> 10%	Commercial	40 MHz ⁽¹⁾	PQFP44	Tray
TS80C32X2-MCE	ROMLess	5V <u>±</u> 10%	Commercial	40 MHz ⁽¹⁾	VQFP44	Tray
TS80C32X2-LCA	ROMLess	2.7 to 5.5V	Commercial	30 MHz ⁽¹⁾	PDIL40	Stick
TS80C32X2-LCB	ROMLess	2.7 to 5.5V	Commercial	30 MHz ⁽¹⁾	PLCC44	Stick
TS80C32X2-LCC	ROMLess	2.7 to 5.5V	Commercial	30 MHz ⁽¹⁾	PQFP44	Tray
TS80C32X2-LCE	ROMLess	2.7 to 5.5V	Commercial	30 MHz ⁽¹⁾	VQFP44	Tray
TS80C32X2-VCA	ROMLess	5V <u>±</u> 10%	Commercial	60 MHz ⁽³⁾	PDIL40	Stick
TS80C32X2-VCB	ROMLess	5V <u>±</u> 10%	Commercial	60 MHz ⁽³⁾	PLCC44	Stick
TS80C32X2-VCC	ROMLess	5V <u>±</u> 10%	Commercial	60 MHz ⁽³⁾	PQFP44	Tray
TS80C32X2-VCE	ROMLess	5V <u>±</u> 10%	Commercial	60 MHz ⁽³⁾	VQFP44	Tray
TS80C32X2-MIA	ROMLess	5V <u>±</u> 10%	Industrial	40 MHz ⁽¹⁾	PDIL40	Stick
TS80C32X2-MIB	ROMLess	5V <u>±</u> 10%	Industrial	40 MHz ⁽¹⁾	PLCC44	Stick
TS80C32X2-MIC	ROMLess	5V <u>±</u> 10%	Industrial	40 MHz ⁽¹⁾	PQFP44	Tray
TS80C32X2-MIE	ROMLess	5V <u>±</u> 10%	Industrial	40 MHz ⁽¹⁾	VQFP44	Tray
TS80C32X2-LIA	ROMLess	2.7 to 5.5V	Industrial	30 MHz ⁽¹⁾	PDIL40	Stick
TS80C32X2-LIB	ROMLess	2.7 to 5.5V	Industrial	30 MHz ⁽¹⁾	PLCC44	Stick
TS80C32X2-LIC	ROMLess	2.7 to 5.5V	Industrial	30 MHz ⁽¹⁾	PQFP44	Tray
TS80C32X2-LIE	ROMLess	2.7 to 5.5V	Industrial	30 MHz ⁽¹⁾	VQFP44	Tray
TS80C32X2-VIA	ROMLess	5V <u>±</u> 10%	Industrial	60 MHz ⁽³⁾	PDIL40	Stick
TS80C32X2-VIB	ROMLess	5V <u>±</u> 10%	Industrial	60 MHz ⁽³⁾	PLCC44	Stick
TS80C32X2-VIC	ROMLess	5V <u>±</u> 10%	Industrial	60 MHz ⁽³⁾	PQFP44	Tray
TS80C32X2-VIE	ROMLess	5V <u>±</u> 10%	Industrial	60 MHz ⁽³⁾	VQFP44	Tray
AT80C32X2-3CSUM	ROMLess	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	PDIL40	Stick
AT80C32X2-SLSUM	ROMLess	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	PLCC44	Stick
AT80C32X2-RLTUM	ROMLess	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	VQFP44	Tray
AT80C32X2-RLTUM	ROMLess	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	VQFP44	Tape & Reel
AT80C32X2-3CSUL	ROMLess	2.7 to 5.5V	Industrial & Green	30 MHz ⁽¹⁾	PDIL40	Stick
AT80C32X2-SLSUL	ROMLess	2.7 to 5.5V	Industrial & Green	30 MHz ⁽¹⁾	PLCC44	Stick

Table 37. Possible Ordering Entries (Continued)

Part Number ⁽³⁾	Memory Size	Supply Voltage	Temperature Range	Max Frequency	Package	Packing
AT80C32X2-RLTUL	ROMLess	2.7 to 5.5V	Industrial & Green	30 MHz ⁽¹⁾	VQFP44	Tray
AT80C32X2-3CSUV	ROMLess	5V ±10%	Industrial & Green	60 MHz ⁽³⁾	PDIL40	Stick
AT80C32X2-SLSUV	ROMLess	5V ±10%	Industrial & Green	60 MHz ⁽³⁾	PLCC44	Stick
AT80C32X2-RLTUV	ROMLess	5V ±10%	Industrial & Green	60 MHz ⁽³⁾	VQFP44	Tray
TS80C52X2zzz-MCA	8K ROM	2.7 to 5.5V	Commercial	40 MHz ⁽¹⁾	PDIL40	Stick
TS80C52X2zzz-MCB	8K ROM	2.7 to 5.5V	Commercial	40 MHz ⁽¹⁾	PLCC44	Stick
TS80C52X2zzz-MCC	8K ROM	2.7 to 5.5V	Commercial	40 MHz ⁽¹⁾	PQFP44	Tray
TS80C52X2zzz-MCE	8K ROM	2.7 to 5.5V	Commercial	40 MHz ⁽¹⁾	VQFP44	Tray
TS80C52X2zzz-LCA	8K ROM	2.7 to 5.5V	Commercial	30 MHz ⁽¹⁾	PDIL40	Stick
TS80C52X2zzz-LCB	8K ROM	2.7 to 5.5V	Commercial	30 MHz ⁽¹⁾	PLCC44	Stick
TS80C52X2zzz-LCC	8K ROM	2.7 to 5.5V	Commercial	30 MHz ⁽¹⁾	PQFP44	Tray
TS80C52X2zzz-LCE	8K ROM	2.7 to 5.5V	Commercial	30 MHz ⁽¹⁾	VQFP44	Tray
TS80C52X2zzz-VCA	8K ROM	5V <u>±</u> 10%	Commercial	60 MHz ⁽³⁾	PDIL40	Stick
TS80C52X2zzz-VCB	8K ROM	5V ±10%	Commercial	60 MHz ⁽³⁾	PLCC44	Stick
TS80C52X2zzz-VCC	8K ROM	5V ±10%	Commercial	60 MHz ⁽³⁾	PQFP44	Tray
TS80C52X2zzz-VCE	8K ROM	5V ±10%	Commercial	60 MHz ⁽³⁾	VQFP44	Tray
TS80C52X2zzz-MIA	8K ROM	5V ±10%	Industrial	40 MHz ⁽¹⁾	PDIL40	Stick
TS80C52X2zzz-MIB	8K ROM	5V ±10%	Industrial	40 MHz ⁽¹⁾	PLCC44	Stick
TS80C52X2zzz-MIC	8K ROM	5V ±10%	Industrial	40 MHz ⁽¹⁾	PQFP44	Tray
TS80C52X2zzz-MIE	8K ROM	5V ±10%	Industrial	40 MHz ⁽¹⁾	VQFP44	Tray
TS80C52X2zzz-LIA	8K ROM	2.7 to 5.5V	Industrial	30 MHz ⁽¹⁾	PDIL40	Stick
TS80C52X2zzz-LIB	8K ROM	2.7 to 5.5V	Industrial	30 MHz ⁽¹⁾	PLCC44	Stick
TS80C52X2zzz-LIC	8K ROM	2.7 to 5.5V	Industrial	30 MHz ⁽¹⁾	PQFP44	Tray
TS80C52X2zzz-LIE	8K ROM	2.7 to 5.5V	Industrial	30 MHz ⁽¹⁾	VQFP44	Tray
TS80C52X2zzz-VIA	8K ROM	5V ±10%	Industrial	60 MHz ⁽³⁾	PDIL40	Stick
TS80C52X2zzz-VIB	8K ROM	5V ±10%	Industrial	60 MHz ⁽³⁾	PLCC44	Stick
TS80C52X2zzz-VIC	8K ROM	5V ±10%	Industrial	60 MHz ⁽³⁾	PQFP44	Tray
TS80C52X2zzz-VIE	8K ROM	5V ±10%	Industrial	60 MHz ⁽³⁾	VQFP44	Tray
AT80C52X2zzz-3CSUM	8K ROM	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	PDIL40	Stick
AT80C52X2zzz-SLSUM	8K ROM	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	PLCC44	Stick
AT80C52X2zzz-RLTUM	8K ROM	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	VQFP44	Tray

Table 37. Possible Ordering Entries (Continued)

Part Number ⁽³⁾	Memory Size	Supply Voltage	Temperature Range	Max Frequency	Package	Packing
AT87C52X2-3CSUM	8K OTP	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	PDIL40	Stick
AT87C52X2-SLSUM	8K OTP	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	PLCC44	Stick
AT87C52X2-RLTUM	8K OTP	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	VQFP44	Tray
AT87C52X2-3CSUL	8K OTP	2.7 to 5.5V	Industrial & Green	30 MHz ⁽¹⁾	PDIL40	Stick
AT87C52X2-SLSUL	8K OTP	2.7 to 5.5V	Industrial & Green	30 MHz ⁽¹⁾	PLCC44	Stick
AT87C52X2-RLTUL	8K OTP	2.7 to 5.5V	Industrial & Green	30 MHz ⁽¹⁾	VQFP44	Tray
AT87C52X2-3CSUV	8K OTP	5V ±10%	Industrial & Green	60 MHz ⁽³⁾	PDIL40	Stick
AT87C52X2-SLSUV	8K OTP	5V ±10%	Industrial & Green	60 MHz ⁽³⁾	PLCC44	Stick
AT87C52X2-RLTUV	8K OTP	5V ±10%	Industrial & Green	60 MHz ⁽³⁾	VQFP44	Тгау

Notes: 1. 20 MHz in X2 Mode.

2. Tape and Reel available for SL, PQFP and RL packages

3. 30 MHz in X2 Mode.