

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

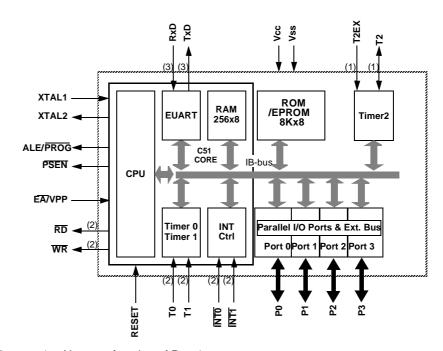

Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ts80c32x2-vcb
Supplier Device Package	44-PLCC (16.6x16.6)
Package / Case	44-LCC (J-Lead)
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Oscillator Type	Internal
Data Converters	-
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
RAM Size	256 x 8
EEPROM Size	-
Program Memory Type	ROMIess
Program Memory Size	-
Number of I/O	32
Peripherals	POR
Connectivity	UART/USART
Speed	60/30MHz
Core Size	8-Bit
Core Processor	80C51
Product Status	Obsolete
Details	

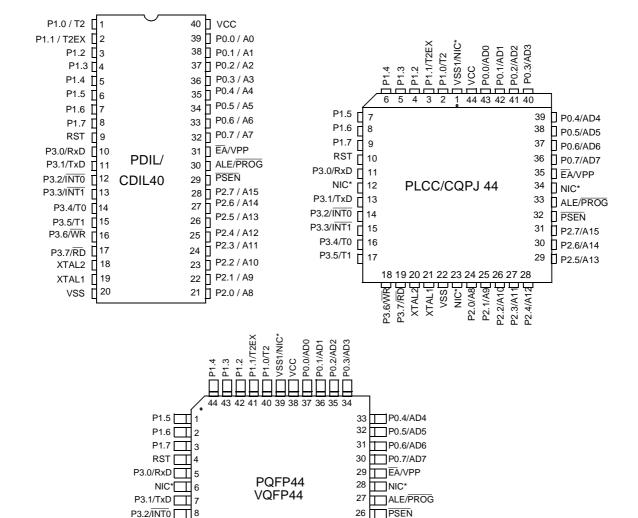
Table 1. Memory Size

	ROM (bytes)	EPROM (bytes)	TOTAL RAM (bytes)
TS80C32X2	0	0	256
TS80C52X2	8k	0	256
TS87C52X2	0	8k	256

Block Diagram

Notes: 1. Alternate function of Port 1

2. Alternate function of Port 3


SFR Mapping

The Special Function Registers (SFRs) of the TS80C52X2 fall into the following categories:

- C51 core registers: ACC, B, DPH, DPL, PSW, SP, AUXR1
- I/O port registers: P0, P1, P2, P3
- Timer registers: T2CON, T2MOD, TCON, TH0, TH1, TH2, TMOD, TL0, TL1, TL2, RCAP2L, RCAP2H
- Serial I/O port registers: SADDR, SADEN, SBUF, SCON
- · Power and clock control registers: PCON
- Interrupt system registers: IE, IP, IPH
- Others: AUXR, CKCON

Pin Configuration

25 P2.7/A15 24 P2.6/A14

23 P2.5/A13

*NIC: No Internal Connection

P3.3/INT1 9

P3.4/T0 10 P3.5/T1 11

12 13 14 15 16 17 18 19 20 21 22

P2.0/A8 P2.1/A9 P2.3/A11

P2.2/A10

XTAL2 XTAL1

VSS NIC*

Mnemonic	ı	Pin Nu	mber	Туре	Name and Function
	DIL	LCC	VQFP 1.4		
V _{SS}	20	22	16	I	Ground: 0V reference
Vss1		1	39	I	Optional Ground: Contact the Sales Office for ground connection.
V _{CC}	40	44	38	I	Power Supply: This is the power supply voltage for normal, idle and power-down operation
P0.0-P0.7	39- 32	43- 36	37-30	I/O	Port 0: Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as high impedance inputs.Port 0 pins must be polarized to Vcc or Vss in order to prevent any parasitic current consumption. Port 0 is also the multiplexed low-order address and data bus during access to external program and data memory. In this application, it uses strong internal pull-up when emitting 1s. Port 0 also inputs the code bytes during EPROM programming. External pull-ups are required during program
					verification during which P0 outputs the code bytes.
P1.0-P1.7	1-8	2-9	40-44 1-3	I/O	Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As
					inputs, Port 1 pins that are externally pulled low will source current because of the internal pull-ups. Port 1 also receives the low-order address byte during memory programming and verification. Alternate functions for Port 1 include:
	1	2	40	I/O	T2 (P1.0): Timer/Counter 2 external count input/Clockout
	2	3	41	I	T2EX (P1.1): Timer/Counter 2 Reload/Capture/Direction Control
P2.0-P2.7	21- 28	24- 31	18-25	I/O	Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As
					inputs, Port 2 pins that are externally pulled low will source current because of the internal pull-ups. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX atDPTR). In this application, it uses strong internal pull-ups emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX atRi), port 2 emits the contents of the P2 SFR. Some Port 2 pins receive the high order address bits during EPROM programming and verification: P2.0 to P2.4
P3.0-P3.7	10- 17	11, 13- 19	5, 7-13	I/O	Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally pulled low will source
					current because of the internal pull-ups. Port 3 also serves the special features of the 80C51 family, as listed below.
	10	11	5	I	RXD (P3.0): Serial input port
	11	13	7	0	TXD (P3.1): Serial output port
	12	14	8	I	INTO (P3.2): External interrupt 0

Application

Software can take advantage of the additional data pointers to both increase speed and reduce code size, for example, block operations (copy, compare, search ...) are well served by using one data pointer as a 'source' pointer and the other one as a "destination" pointer.

ASSEMBLY LANGUAGE

```
; Block move using dual data pointers
; Destroys DPTR0, DPTR1, A and PSW
; note: DPS exits opposite of entry state
; unless an extra INC AUXR1 is added
00A2 AUXR1 EQU 0A2H
0000 909000MOV DPTR, #SOURCE; address of SOURCE
0003 05A2 INC AUXR1; switch data pointers
0005 90A000 MOV DPTR,#DEST; address of DEST
0008 LOOP:
0008 05A2 INC AUXR1; switch data pointers
000A E0 MOVX A, at DPTR; get a byte from SOURCE
000B A3 INC DPTR; increment SOURCE address
000C 05A2 INC AUXR1; switch data pointers
000E F0 MOVX atDPTR,A; write the byte to DEST
000F A3 INC DPTR; increment DEST address
0010 70F6JNZ LOOP; check for 0 terminator
0012 05A2 INC AUXR1; (optional) restore DPS
```

INC is a short (2 bytes) and fast (12 clocks) way to manipulate the DPS bit in the AUXR1 SFR. However, note that the INC instruction does not directly force the DPS bit to a particular state, but simply toggles it. In simple routines, such as the block move example, only the fact that DPS is toggled in the proper sequence matters, not its actual value. In other words, the block move routine works the same whether DPS is '0' or '1' on entry. Observe that without the last instruction (INC AUXR1), the routine will exit with DPS in the opposite state.

Figure 5. Clock-Out Mode $C/\overline{T2} = 0$

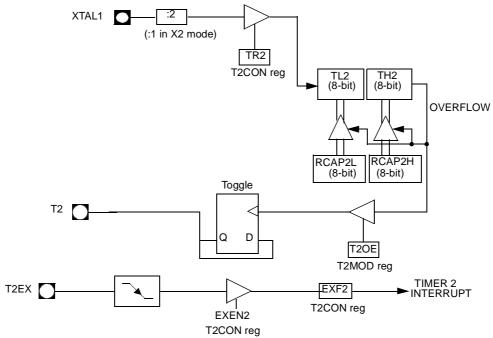
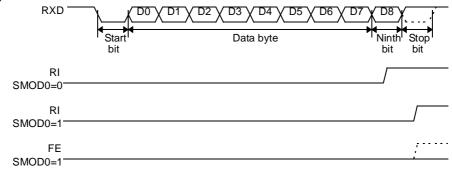



Figure 8. UART Timings in Modes 2 and 3

Automatic Address Recognition

The automatic address recognition feature is enabled when the multiprocessor communication feature is enabled (SM2 bit in SCON register is set).

Implemented in hardware, automatic address recognition enhances the multiprocessor communication feature by allowing the serial port to examine the address of each incoming command frame. Only when the serial port recognizes its own address, the receiver sets RI bit in SCON register to generate an interrupt. This ensures that the CPU is not interrupted by command frames addressed to other devices.

If desired, you may enable the automatic address recognition feature in mode 1. In this configuration, the stop bit takes the place of the ninth data bit. Bit RI is set only when the received command frame address matches the device's address and is terminated by a valid stop bit.

To support automatic address recognition, a device is identified by a given address and a broadcast address.

Note: The multiprocessor communication and automatic address recognition features cannot be enabled in mode 0 (i.e. setting SM2 bit in SCON register in mode 0 has no effect).

Given Address

Each device has an individual address that is specified in SADDR register; the SADEN register is a mask byte that contains don't-care bits (defined by zeros) to form the device's given address. The don't-care bits provide the flexibility to address one or more slaves at a time. The following example illustrates how a given address is formed.

To address a device by its individual address, the SADEN mask byte must be 1111 1111b.

For example:

SADDR0101 0110b SADEN1111 1100b Given0101 01XXb

The following is an example of how to use given addresses to address different slaves:

The SADEN byte is selected so that each slave may be addressed separately. For slave A, bit 0 (the LSB) is a don't-care bit; for slaves B and C, bit 0 is a 1. To communicate with slave A only, the master must send an address where bit 0 is clear (e.g.

Table 9. SCON Register SCON - Serial Control Register (98h)

3 2 1 0 FE/SM0 SM1 SM2 REN TB8 RB8 ΤI RΙ

	· •					
Bit Number	Bit Mnemonic	Description				
7	FE	Framing Error bit (SMOD0=1) Clear to reset the error state, not cleared by a valid stop bit. Set by hardware when an invalid stop bit is detected. SMOD0 must be set to enable access to the FE bit				
	SM0	Serial port Mode bit 0 Refer to SM1 for serial port mode selection. SMOD0 must be cleared to enable access to the SM0 bit				
6	SM1	Serial port Mode bit 1 SM0 SM1 Mode Description Baud Rate 0 0 0 Shift Register F _{XTAL} /12 (/6 in X2 mode) 0 1 1 8-bit UART Variable 1 0 2 9-bit UART F _{XTAL} /64 or F _{XTAL} /32 (/32, /16 in X2 mode) 1 1 3 9-bit UART Variable				
5	SM2	Serial port Mode 2 bit / Multiprocessor Communication Enable bit Clear to disable multiprocessor communication feature. Set to enable multiprocessor communication feature in mode 2 and 3, and eventually mode 1. This bit should be cleared in mode 0.				
4	REN	Reception Enable bit Clear to disable serial reception. Set to enable serial reception.				
3	TB8	Transmitter Bit 8 / Ninth bit to transmit in modes 2 and 3. Clear to transmit a logic 0 in the 9th bit. Set to transmit a logic 1 in the 9th bit.				
2	RB8	Receiver Bit 8 / Ninth bit received in modes 2 and 3 Cleared by hardware if 9th bit received is a logic 0. Set by hardware if 9th bit received is a logic 1. In mode 1, if SM2 = 0, RB8 is the received stop bit. In mode 0 RB8 is not used.				
1	TI	Transmit Interrupt flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0 or at the beginning of the stop bit in the other modes.				
0	RI	Receive Interrupt flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0, see Figure 7. and Figure 8. in the other modes.				

Reset Value = 0000 0000b Bit addressable

Table 14. IPH Register IPH - Interrupt Priority High Register (B7h)

7	6	5	4	3	2	1	0
-	-	PT2H	PSH	PT1H	PX1H	РТ0Н	РХ0Н

Bit Number	Bit Mnemonic	Description
7	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
6	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
5	PT2H	Timer 2 overflow interrupt Priority High bit PT2H PT2 Priority Level 0 0 Lowest 0 1 1 0 1 Highest
4	PSH	Serial port Priority High bit PSH PS Priority Level 0 0 Lowest 0 1 1 0 1 Highest
3	PT1H	Timer 1 overflow interrupt Priority High bit PT1H PT1 Priority Level 0 0 Lowest 0 1 1 0 1 1 Highest
2	PX1H	External interrupt 1 Priority High bit PX1H PX1 Priority Level 0 0 Lowest 0 1 1 0 1 1 Highest
1	РТОН	Timer 0 overflow interrupt Priority High bit PT0H PT0 Priority Level 0 0 Lowest 0 1 1 0 1 1 Highest
0	PX0H	External interrupt 0 Priority High bit PX0H PX0 Priority Level 0 0 Lowest 0 1 1 0 1 1 Highest

Reset Value = XX00 0000b Not bit addressable

Exit from power-down by reset redefines all the SFRs, exit from power-down by external interrupt does no affect the SFRs.

Exit from power-down by either reset or external interrupt does not affect the internal RAM content.

Note:

If idle mode is activated with power-down mode (IDL and PD bits set), the exit sequence is unchanged, when execution is vectored to interrupt, PD and IDL bits are cleared and idle mode is not entered.

Table 15. The State of Ports During Idle and Power-down Modes

Mode	Program Memory	ALE	PSEN	PORT0	PORT1	PORT2	PORT3
Idle	Internal	1	1	Port Data ⁽¹⁾	Port Data	Port Data	Port Data
Idle	External	1	1	Floating	Port Data	Address	Port Data
Power Down	Internal	0	0	Port Data ⁽¹⁾	Port Data	Port Data	Port Data
Power Down	External	0	0	Floating	Port Data	Port Data	Port Data

Note: 1. Port 0 can force a "zero" level. A "one" will leave port floating.

Power-off Flag

The power-off flag allows the user to distinguish between a "cold start" reset and a "warm start" reset.

A cold start reset is the one induced by V_{CC} switch-on. A warm start reset occurs while V_{CC} is still applied to the device and could be generated for example by an exit from power-down.

The power-off flag (POF) is located in PCON register (See Table 17.). POF is set by hardware when V_{CC} rises from 0 to its nominal voltage. The POF can be set or cleared by software allowing the user to determine the type of reset.

The POF value is only relevant with a Vcc range from 4.5V to 5.5V. For lower Vcc value, reading POF bit will return indeterminate value.

Table 17. PCON Register PCON - Power Control Register (87h)

7	6	5	4	3	2	1	0
SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL

Bit Number	Bit Mnemonic	Description			
7	SMOD1	Serial port Mode bit 1 Set to select double baud rate in mode 1, 2 or 3.			
6	SMOD0	Serial port Mode bit 0 Clear to select SM0 bit in SCON register. Set to to select FE bit in SCON register.			
5	-	Reserved The value read from this bit is indeterminate. Do not set this bit.			
4	POF	Power-off Flag Clear to recognize next reset type. Set by hardware when V _{CC} rises from 0 to its nominal voltage. Can also be set by software.			
3	GF1	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.			
2	GF0	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.			
1	PD	Power-down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.			
0	IDL	Idle mode bit Clear by hardware when interrupt or reset occurs. Set to enter idle mode.			

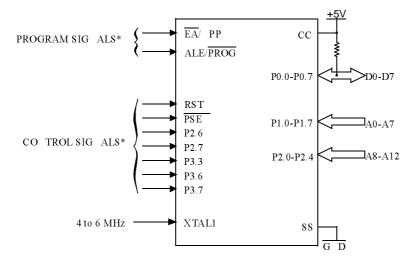
Reset Value = 00X1 0000b Not bit addressable

Control and program signals must be held at the levels indicated in Table 35.

Definition of terms

Address Lines: P1.0-P1.7, P2.0-P2.4 respectively for A0-A12

Data Lines: P0.0-P0.7 for D0-D7


Control Signals: RST, PSEN, P2.6, P2.7, P3.3, P3.6, P3.7.

Program Signals: ALE/PROG, EA/VPP.

Table 20. EPROM Set-up Modes

Mode	RST	PSEN	ALE/ PROG	EA/ VPP	P2.6	P2.7	P3.3	P3.6	P3.7
Program Code data	1	0	T.	12.75V	0	1	1	1	1
Verify Code data	1	0	1	1	0		0	1	1
Program Encryption Array Address 0-3Fh	1	0	ъ	12.75V	0	1	1	0	1
Read Signature Bytes	1	0	1	1	0		0	0	0
Program Lock bit 1	1	0	П	12.75V	1	1	1	1	1
Program Lock bit 2	1	0	ப	12.75V	1	1	1	0	0
Program Lock bit 3	1	0	ъ	12.75V	1	0	1	1	0

Figure 11. Set-Up Modes Configuration

^{*} See Table 31. for proper value on these inputs

Programming Algorithm

The Improved Quick Pulse algorithm is based on the Quick Pulse algorithm and decreases the number of pulses applied during byte programming from 25 to 1.

To program the TS87C52X2 the following sequence must be exercised:

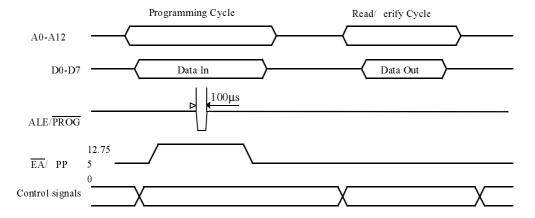
- Step 1: Activate the combination of control signals.
- Step 2: Input the valid address on the address lines.
- Step 3: Input the appropriate data on the data lines.
- Step 4: Raise EA/VPP from VCC to VPP (typical 12.75V).
- Step 5: Pulse ALE/PROG once.
- Step 6: Lower EA/VPP from VPP to VCC

Repeat step 2 through 6 changing the address and data for the entire array or until the end of the object file is reached (See Figure 12.).

Verify Algorithm

Code array verify must be done after each byte or block of bytes is programmed. In either case, a complete verify of the programmed array will ensure reliable programming of the TS87C52X2.

P 2.7 is used to enable data output.


To verify the TS87C52X2 code the following sequence must be exercised:

- Step 1: Activate the combination of program and control signals.
- Step 2: Input the valid address on the address lines.
- Step 3: Read data on the data lines.

Repeat step 2 through 3 changing the address for the entire array verification (See Figure 12.)

The encryption array cannot be directly verified. Verification of the encryption array is done by observing that the code array is well encrypted.

Figure 12. Programming and Verification Signal's Waveform

EPROM Erasure (Windowed Packages Only)

Erasing the EPROM erases the code array, the encryption array and the lock bits returning the parts to full functionality.

Erasure leaves all the EPROM cells in a 1's state (FF).

Erasure Characteristics

The recommended erasure procedure is exposure to ultraviolet light (at 2537 Å) to an integrated dose at least 15 W-sec/cm². Exposing the EPROM to an ultraviolet lamp of

 $12,000 \,\mu\text{W/cm}^2$ rating for 30 minutes, at a distance of about 25 mm, should be sufficient. An exposure of 1 hour is recommended with most of standard erasers.

Erasure of the EPROM begins to occur when the chip is exposed to light with wavelength shorter than approximately 4,000 Å. Since sunlight and fluorescent lighting have wavelengths in this range, exposure to these light sources over an extended time (about 1 week in sunlight, or 3 years in room-level fluorescent lighting) could cause inadvertent erasure. If an application subjects the device to this type of exposure, it is suggested that an opaque label be placed over the window.

Signature Bytes

The TS80/87C52X2 has four signature bytes in location 30h, 31h, 60h and 61h. To read these bytes follow the procedure for EPROM verify but activate the control lines provided in Table 31. for Read Signature Bytes. Table 35. shows the content of the signature byte for the TS80/87C52X2.

Table 21. Signature Bytes Content

Location	Contents	Comment	
30h	58h	Manufacturer Code: Atmel	
31h	57h	Family Code: C51 X2	
60h	2Dh	Product name: TS80C52X2	
60h	ADh	Product name:TS87C52X2	
60h	20h	Product name: TS80C32X2	
61h	FFh	Product revision number	

Electrical Characteristics

Absolute Maximum Ratings⁽¹⁾

Ambiant Temperature Under Bias:	
C = commercial	0°C to 70°C
I = industrial	40°C to 85°C
Storage Temperature	65°C to + 150°C
Voltage on V _{CC} to V _{SS}	0.5V to + 7 V
Voltage on V _{PP} to V _{SS}	
Voltage on Any Pin to V _{SS}	0.5V to V _{CC} + 0.5V
Power Dissipation	1 W ⁽²⁾

- Notes: 1. Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
 - 2. This value is based on the maximum allowable die temperature and the thermal resistance of the package.

Power Consumption Measurement

Since the introduction of the first C51 devices, every manufacturer made operating Icc measurements under reset, which made sense for the designs were the CPU was running under reset. In Atmel new devices, the CPU is no more active during reset, so the power consumption is very low but is not really representative of what will happen in the customer system. That's why, while keeping measurements under Reset, Atmel presents a new way to measure the operating Icc:

Using an internal test ROM, the following code is executed:

SJMP Label (80 FE) Label:

Ports 1, 2, 3 are disconnected, Port 0 is tied to FFh, EA = Vcc, RST = Vss, XTAL2 is not connected and XTAL1 is driven by the clock.

This is much more representative of the real operating lcc.

DC Parameters for Standard Voltage

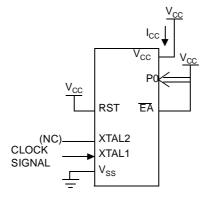
TA = 0°C to +70°C; V_{SS} = 0 V; V_{CC} = 5V \pm 10%; F = 0 to 40 MHz. TA = -40°C to +85°C; $V_{SS} = 0 \text{ V}$; $V_{CC} = 5\text{V} \pm 10\%$; F = 0 to 40 MHz.

Table 22. DC Parameters in Standard Voltage

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{IL}	Input Low Voltage	-0.5		0.2 V _{CC} - 0.1	V	
V _{IH}	Input High Voltage except XTAL1, RST	0.2 V _{CC} + 0.9		V _{CC} + 0.5	V	
V _{IH1}	Input High Voltage, XTAL1, RST	0.7 V _{CC}		V _{CC} + 0.5	V	
V _{OL}	Output Low Voltage, ports 1, 2, 3 ⁽⁶⁾			0.3 0.45 1.0	V V V	$I_{OL} = 100 \ \mu A^{(4)}$ $I_{OL} = 1.6 \ mA^{(4)}$ $I_{OL} = 3.5 \ mA^{(4)}$
V _{OL1}	Output Low Voltage, port 0 (6)			0.3 0.45 1.0	V V V	I_{OL} = 200 μ A ⁽⁴⁾ I_{OL} = 3.2 mA ⁽⁴⁾ I_{OL} = 7.0 mA ⁽⁴⁾
V _{OL2}	Output Low Voltage, ALE, PSEN			0.3 0.45 1.0	V V V	$I_{OL} = 100 \mu A^{(4)}$ $I_{OL} = 1.6 \text{ mA}^{(4)}$ $I_{OL} = 3.5 \text{ mA}^{(4)}$

Port 0: 26 mA

Ports 1, 2 and 3: 15 mA


Maximum total I_{OL} for all output pins: 71 mA

If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

- 7. For other values, please contact your sales office.
- 8. Operating I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH} , T_{CHCL} = 5 ns (see Figure 17.), V_{IL} = V_{SS} + 0.5V,

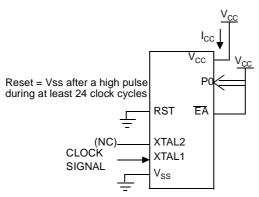

 $V_{IH} = V_{CC} - 0.5V$; XTAL2 N.C.; $\overline{EA} = Port \ 0 = V_{CC}$; RST = V_{SS} . The internal ROM runs the code 80 FE (label: SJMP label). I_{CC} would be slightly higher if a crystal oscillator is used. Measurements are made with OTP products when possible, which is the worst case.

Figure 13. I_{CC} Test Condition, under reset

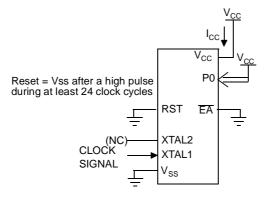
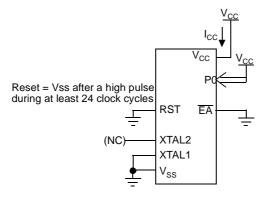

All other pins are disconnected.

Figure 14. Operating I_{CC} Test Condition

All other pins are disconnected.

Figure 15. I_{CC} Test Condition, Idle Mode



All other pins are disconnected.

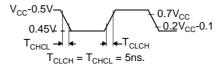


Figure 16. I_{CC} Test Condition, Power-down Mode

All other pins are disconnected.

Figure 17. Clock Signal Waveform for I_{CC} Tests in Active and Idle Modes

AC Parameters

Explanation of the AC Symbols

Each timing symbol has 5 characters. The first character is always a "T" (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

Example: T_{AVLL} = Time for Address Valid to ALE Low.

 T_{IIPI} = Time for ALE Low to \overline{PSEN} Low.

TA = 0 to +70°C (commercial temperature range); V_{SS} = 0 V; V_{CC} = 5V \pm 10%; -M and -V ranges.

T_A = -40°C to +85°C (industrial temperature range); V_{SS} = 0 V; V_{CC} = 5V \pm 10%; -M and -V ranges.

 $T_A = 0$ to +70°C (commercial temperature range); $V_{SS} = 0$ V; 2.7 V < $V_{CC} < 5.5$ V; -L range.

 $T_A = -40^{\circ}C$ to +85°C (industrial temperature range); $V_{SS} = 0$ V; 2.7 V < $V_{CC} < 5.5$ V; -L range.

Table 24. gives the maximum applicable load capacitance for Port 0, Port 1, 2 and 3, and ALE and PSEN signals. Timings will be guaranteed if these capacitances are respected. Higher capacitance values can be used, but timings will then be degraded.

Table 24. Load Capacitance versus speed range, in pF

	-M	-V	-L
Port 0	100	50	100
Port 1, 2, 3	80	50	80
ALE / PSEN	100	30	100

Table 5., Table 29. and Table 32. give the description of each AC symbols.

Table 27., Table 30. and Table 33. give for each range the AC parameter.

Table 30. AC Parameters for a Fix Clock

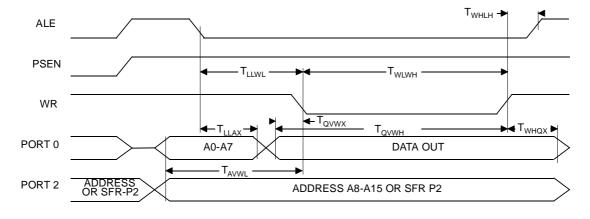
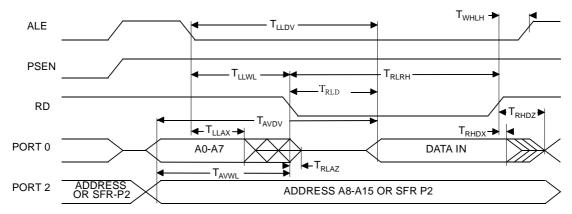

Speed	-M 40 MHz		-V -V X2 mode standard mode 40 60 MHz equiv.		-L X2 mode 20 MHz 40 MHz equiv.		-L standard mode 30 MHz		Units		
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
T _{RLRH}	130		85		135		125		175		ns
T _{WLWH}	130		85		135		125		175		ns
T _{RLDV}		100		60		102		95		137	ns
T _{RHDX}	0		0		0		0		0		ns
T _{RHDZ}		30		18		35		25		42	ns
T _{LLDV}		160		98		165		155		222	ns
T _{AVDV}		165		100		175		160		235	ns
T _{LLWL}	50	100	30	70	55	95	45	105	70	130	ns
T _{AVWL}	75		47		80		70		103		ns
T_{QVWX}	10		7		15		5		13		ns
T_{QVWH}	160		107		165		155		213		ns
T _{WHQX}	15		9		17		10		18		ns
T _{RLAZ}		0		0		0		0		0	ns
T _{WHLH}	10	40	7	27	15	35	5	45	13	53	ns

 Table 31. AC Parameters for a Variable Clock: Derating Formula

Symbol	Туре	Standard Clock	X2 Clock	-M	-V	-L	Units
T _{RLRH}	Min	6 T - x	3 T - x	20	15	25	ns
T _{WLWH}	Min	6 T - x	3 T - x	20	15	25	ns
T _{RLDV}	Max	5 T - x	2.5 T - x	25	23	30	ns
T _{RHDX}	Min	х	х	0	0	0	ns
T _{RHDZ}	Max	2 T - x	T - x	20	15	25	ns
T _{LLDV}	Max	8 T - x	4T -x	40	35	45	ns
T _{AVDV}	Max	9 T - x	4.5 T - x	60	50	65	ns
T _{LLWL}	Min	3 T - x	1.5 T - x	25	20	30	ns
T _{LLWL}	Max	3 T + x	1.5 T + x	25	20	30	ns
T _{AVWL}	Min	4 T - x	2 T - x	25	20	30	ns
T _{QVWX}	Min	T - x	0.5 T - x	15	10	20	ns
T _{QVWH}	Min	7 T - x	3.5 T - x	15	10	20	ns
T _{WHQX}	Min	T - x	0.5 T - x	10	8	15	ns
T _{RLAZ}	Max	х	х	0	0	0	ns
T _{WHLH}	Min	T - x	0.5 T - x	15	10	20	ns
T _{WHLH}	Max	T + x	0.5 T + x	15	10	20	ns

External Data Memory Write Cycle


Figure 19. External Data Memory Write Cycle

External Data Memory Read Cycle

Figure 20. External Data Memory Read Cycle

Serial Port Timing - Shift Register Mode

Table 32. Symbol Description

Symbol	Parameter
T _{XLXL}	Serial port clock cycle time
T _{QVHX}	Output data set-up to clock rising edge
T _{XHQX}	Output data hold after clock rising edge
T _{XHDX}	Input data hold after clock rising edge
T _{XHDV}	Clock rising edge to input data valid

Table 33. AC Parameters for a Fix Clock

Speed	-M 40 MHz				X2 m 30 l	V node MHz MHz uiv.	stan mod	V dard le 40 Hz	X2 m 20 f	L node MHz MHz uiv.	mo	L dard ode MHz	Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max			
T _{XLXL}	300		200		300		300		400		ns		
T _{QVHX}	200		117		200		200		283		ns		
T _{XHQX}	30		13		30		30		47		ns		
T _{XHDX}	0		0		0		0		0		ns		
T _{XHDV}		117		34		117		117		200	ns		