




Welcome to **E-XFL.COM** 

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

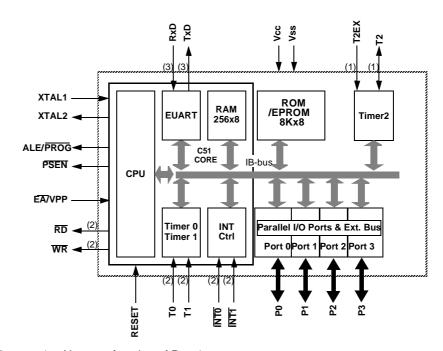

| Details                    |                                                                         |
|----------------------------|-------------------------------------------------------------------------|
| Product Status             | Obsolete                                                                |
| Core Processor             | 80C51                                                                   |
| Core Size                  | 8-Bit                                                                   |
| Speed                      | 60/30MHz                                                                |
| Connectivity               | UART/USART                                                              |
| Peripherals                | POR                                                                     |
| Number of I/O              | 32                                                                      |
| Program Memory Size        | -                                                                       |
| Program Memory Type        | ROMIess                                                                 |
| EEPROM Size                | -                                                                       |
| RAM Size                   | 256 x 8                                                                 |
| Voltage - Supply (Vcc/Vdd) | 4.5V ~ 5.5V                                                             |
| Data Converters            | -                                                                       |
| Oscillator Type            | Internal                                                                |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                       |
| Mounting Type              | Surface Mount                                                           |
| Package / Case             | 44-LCC (J-Lead)                                                         |
| Supplier Device Package    | 44-PLCC (16.6x16.6)                                                     |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/ts80c32x2-vib |
|                            |                                                                         |



Table 1. Memory Size

|           | ROM (bytes) | EPROM (bytes) | TOTAL RAM (bytes) |
|-----------|-------------|---------------|-------------------|
| TS80C32X2 | 0           | 0             | 256               |
| TS80C52X2 | 8k          | 0             | 256               |
| TS87C52X2 | 0           | 8k            | 256               |

# **Block Diagram**



Notes: 1. Alternate function of Port 1

2. Alternate function of Port 3



| Mnemonic        | nic Pin Number |                  | Pin Number Type Name and Function |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|-----------------|----------------|------------------|-----------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                 | DIL            | LCC              | VQFP<br>1.4                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| V <sub>SS</sub> | 20             | 22               | 16                                | I   | Ground: 0V reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Vss1            |                | 1                | 39                                | I   | Optional Ground: Contact the Sales Office for ground connection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| V <sub>CC</sub> | 40             | 44               | 38                                | I   | Power Supply: This is the power supply voltage for normal, idle and power-down operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| P0.0-P0.7       | 39-<br>32      | 43-<br>36        | 37-30                             | I/O | Port 0: Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as high impedance inputs.Port 0 pins must be polarized to Vcc or Vss in order to prevent any parasitic current consumption. Port 0 is also the multiplexed low-order address and data bus during access to external program and data memory. In this application, it uses strong internal pull-up when emitting 1s. Port 0 also inputs the code bytes during EPROM programming. External pull-ups are required during program                                     |  |  |
|                 |                |                  |                                   |     | verification during which P0 outputs the code bytes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| P1.0-P1.7       | 1-8            | 2-9              | 40-44<br>1-3                      | I/O | Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                 |                |                  |                                   |     | inputs, Port 1 pins that are externally pulled low will source current because of the internal pull-ups. Port 1 also receives the low-order address byte during memory programming and verification.  Alternate functions for Port 1 include:                                                                                                                                                                                                                                                                                                                                             |  |  |
|                 | 1              | 2                | 40                                | I/O | T2 (P1.0): Timer/Counter 2 external count input/Clockout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                 | 2              | 3                | 41                                | I   | T2EX (P1.1): Timer/Counter 2 Reload/Capture/Direction Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| P2.0-P2.7       | 21-<br>28      | 24-<br>31        | 18-25                             | I/O | Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                 |                |                  |                                   |     | inputs, Port 2 pins that are externally pulled low will source current because of the internal pull-ups. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX atDPTR). In this application, it uses strong internal pull-ups emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX atRi), port 2 emits the contents of the P2 SFR. Some Port 2 pins receive the high order address bits during EPROM programming and verification: P2.0 to P2.4 |  |  |
| P3.0-P3.7       | 10-<br>17      | 11,<br>13-<br>19 | 5,<br>7-13                        | I/O | Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally pulled low will source                                                                                                                                                                                                                                                                                                                                  |  |  |
|                 |                |                  |                                   |     | current because of the internal pull-ups. Port 3 also serves the special features of the 80C51 family, as listed below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                 | 10             | 11               | 5                                 | I   | RXD (P3.0): Serial input port                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                 | 11             | 13               | 7                                 | 0   | TXD (P3.1): Serial output port                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                 | 12             | 14               | 8                                 | I   | INTO (P3.2): External interrupt 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |



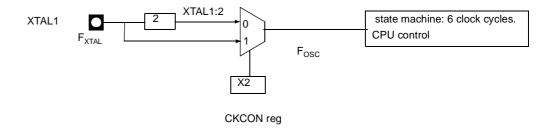
# TS80C52X2 Enhanced Features

In comparison to the original 80C52, the TS80C52X2 implements some new features, which are:

- The X2 option
- The Dual Data Pointer
- The 4 level interrupt priority system
- The power-off flag
- The ONCE mode
- The ALE disabling
- Some enhanced features are also located in the UART and the Timer 2

# X2 Feature

The TS80C52X2 core needs only 6 clock periods per machine cycle. This feature called "X2" provides the following advantages:


- Divide frequency crystals by 2 (cheaper crystals) while keeping same CPU power
- Save power consumption while keeping same CPU power (oscillator power saving)
- Save power consumption by dividing dynamically operating frequency by 2 in operating and idle modes
- Increase CPU power by 2 while keeping same crystal frequency

In order to keep the original C51 compatibility, a divider by 2 is inserted between the XTAL1 signal and the main clock input of the core (phase generator). This divider may be disabled by software.

# Description

The clock for the whole circuit and peripheral is first divided by two before being used by the CPU core and peripherals. This allows any cyclic ratio to be accepted on XTAL1 input. In X2 mode, as this divider is bypassed, the signals on XTAL1 must have a cyclic ratio between 40 to 60%. Figure 1. shows the clock generation block diagram. X2 bit is validated on XTAL1÷2 rising edge to avoid glitches when switching from X2 to STD mode. Figure 2 shows the mode switching waveforms.

Figure 1. Clock Generation Diagram





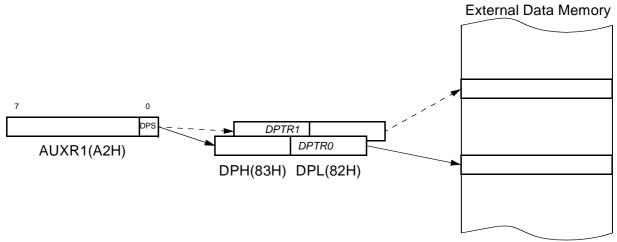
# **Dual Data Pointer Register (Ddptr)**

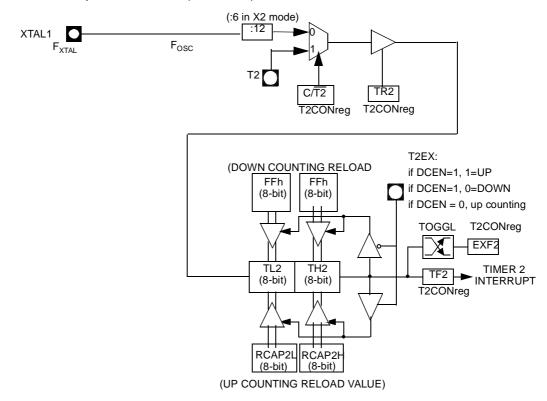
The additional data pointer can be used to speed up code execution and reduce code size in a number of ways.

The dual DPTR structure is a way by which the chip will specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called

DPS = AUXR1/bit0 (See Table 5.) that allows the program code to switch between them (Refer to Figure 3).

Figure 3. Use of Dual Pointer





Table 4. AUXR1: Auxiliary Register 1

| 7 | 6 | 5 | 4 | 3   | 2 | 1 | 0   |
|---|---|---|---|-----|---|---|-----|
| - | - | - | - | GF3 | 0 | - | DPS |

| Bit<br>Number | Bit<br>Mnemonic | Description                                                                  |  |  |  |
|---------------|-----------------|------------------------------------------------------------------------------|--|--|--|
| 7             | -               | Reserved The value read from this bit is indeterminate. Do not set this bit. |  |  |  |
| 6             | -               | Reserved The value read from this bit is indeterminate. Do not set this bit. |  |  |  |
| 5             | -               | Reserved The value read from this bit is indeterminate. Do not set this bit. |  |  |  |
| 4             | -               | Reserved The value read from this bit is indeterminate. Do not set this bit. |  |  |  |
| 3             | GF3             | This bit is a general purpose user flag                                      |  |  |  |
| 2             | 0               | Reserved Always stuck at 0                                                   |  |  |  |
| 1             | -               | Reserved The value read from this bit is indeterminate. Do not set this bit. |  |  |  |
| 0             | DPS             | Data Pointer Selection Clear to select DPTR0. Set to select DPTR1.           |  |  |  |

Reset Value = XXXX XXX0
Not bit addressable

Figure 4. Auto-reload Mode Up/Down Counter (DCEN = 1)



# **Programmable Clock-output**

In the clock-out mode, timer 2 operates as a 50%-duty-cycle, programmable clock generator (See Figure 5) . The input clock increments TL2 at frequency  $F_{\rm OSC}/2$ . The timer repeatedly counts to overflow from a loaded value. At overflow, the contents of RCAP2H and RCAP2L registers are loaded into TH2 and TL2. In this mode, timer 2 overflows do not generate interrupts. The formula gives the clock-out frequency as a function of the system oscillator frequency and the value in the RCAP2H and RCAP2L registers :

$$Clock - OutFrequency = \frac{F_{osc}}{4 \times (65536 - RCAP2H/RCAP2L)}$$

For a 16 MHz system clock, timer 2 has a programmable frequency range of 61 Hz  $(F_{OSC}/2^{16})$  to 4 MHz  $(F_{OSC}/4)$ . The generated clock signal is brought out to T2 pin (P1.0).

Timer 2 is programmed for the clock-out mode as follows:

- Set T2OE bit in T2MOD register.
- Clear C/T2 bit in T2CON register.
- Determine the 16-bit reload value from the formula and enter it in RCAP2H/RCAP2L registers.
- Enter a 16-bit initial value in timer registers TH2/TL2. It can be the same as the reload value or a different one depending on the application.
- To start the timer, set TR2 run control bit in T2CON register.

It is possible to use timer 2 as a baud rate generator and a clock generator simultaneously. For this configuration, the baud rates and clock frequencies are not independent since both functions use the values in the RCAP2H and RCAP2L registers.

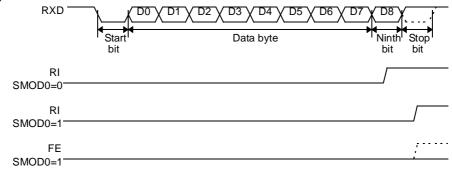


Table 5. T2CON Register

T2CON - Timer 2 Control Register (C8h)

TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2# CP/RL2#

3


| Bit<br>Number | Bit<br>Mnemonic | Description                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|---------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 7             | TF2             | Fimer 2 overflow Flag  Must be cleared by software.  Set by hardware on timer 2 overflow, if RCLK = 0 and TCLK = 0.                                                                                                                                                                                                |  |  |  |  |  |
| 6             | EXF2            | Timer 2 External Flag Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2=1. When set, causes the CPU to vector to timer 2 interrupt routine when timer 2 interrupt is enabled. Must be cleared by software. EXF2 doesn't cause an interrupt in Up/down counter mode (DCEN = 1) |  |  |  |  |  |
| 5             | RCLK            | Receive Clock bit Clear to use timer 1 overflow as receive clock for serial port in mode 1 or 3. Set to use timer 2 overflow as receive clock for serial port in mode 1 or 3.                                                                                                                                      |  |  |  |  |  |
| 4             | TCLK            | Transmit Clock bit Clear to use timer 1 overflow as transmit clock for serial port in mode 1 or 3. Set to use timer 2 overflow as transmit clock for serial port in mode 1 or 3.                                                                                                                                   |  |  |  |  |  |
| 3             | EXEN2           | Timer 2 External Enable bit Clear to ignore events on T2EX pin for timer 2 operation. Set to cause a capture or reload when a negative transition on T2EX pin is detected, if timer 2 is not used to clock the serial port.                                                                                        |  |  |  |  |  |
| 2             | TR2             | Timer 2 Run control bit Clear to turn off timer 2. Set to turn on timer 2.                                                                                                                                                                                                                                         |  |  |  |  |  |
| 1             | C/T2#           | <b>Timer/Counter 2 select bit</b> Clear for timer operation (input from internal clock system: F <sub>OSC</sub> ). Set for counter operation (input from T2 input pin, falling edge trigger). Must be 0 for clock out mode.                                                                                        |  |  |  |  |  |
| 0             | CP/RL2#         | Timer 2 Capture/Reload bit  If RCLK=1 or TCLK=1, CP/RL2# is ignored and timer is forced to Auto-reload on timer 2 overflow.  Clear to Auto-reload on timer 2 overflows or negative transitions on T2EX pin if EXEN2=1.  Set to capture on negative transitions on T2EX pin if EXEN2=1.                             |  |  |  |  |  |

Reset Value = 0000 0000b Bit addressable





Figure 8. UART Timings in Modes 2 and 3



# Automatic Address Recognition

The automatic address recognition feature is enabled when the multiprocessor communication feature is enabled (SM2 bit in SCON register is set).

Implemented in hardware, automatic address recognition enhances the multiprocessor communication feature by allowing the serial port to examine the address of each incoming command frame. Only when the serial port recognizes its own address, the receiver sets RI bit in SCON register to generate an interrupt. This ensures that the CPU is not interrupted by command frames addressed to other devices.

If desired, you may enable the automatic address recognition feature in mode 1. In this configuration, the stop bit takes the place of the ninth data bit. Bit RI is set only when the received command frame address matches the device's address and is terminated by a valid stop bit.

To support automatic address recognition, a device is identified by a given address and a broadcast address.

Note: The multiprocessor communication and automatic address recognition features cannot be enabled in mode 0 (i.e. setting SM2 bit in SCON register in mode 0 has no effect).

# **Given Address**

Each device has an individual address that is specified in SADDR register; the SADEN register is a mask byte that contains don't-care bits (defined by zeros) to form the device's given address. The don't-care bits provide the flexibility to address one or more slaves at a time. The following example illustrates how a given address is formed.

To address a device by its individual address, the SADEN mask byte must be 1111 1111b.

# For example:

SADDR0101 0110b SADEN1111 1100b Given0101 01XXb

The following is an example of how to use given addresses to address different slaves:

The SADEN byte is selected so that each slave may be addressed separately. For slave A, bit 0 (the LSB) is a don't-care bit; for slaves B and C, bit 0 is a 1. To communicate with slave A only, the master must send an address where bit 0 is clear (e.g.

1111 0000b).

For slave A, bit 1 is a 1; for slaves B and C, bit 1 is a don't care bit. To communicate with slaves B and C, but not slave A, the master must send an address with bits 0 and 1 both set (e.g. 1111 0011b).

To communicate with slaves A, B and C, the master must send an address with bit 0 set, bit 1 clear, and bit 2 clear (e.g. 1111 0001b).

#### **Broadcast Address**

A broadcast address is formed from the logical OR of the SADDR and SADEN registers with zeros defined as don't-care bits, e.g.:

```
SADDR 0101 0110b
SADEN 1111 1100b
Broadcast =SADDR OR SADEN1111 111Xb
```

The use of don't-care bits provides flexibility in defining the broadcast address, however in most applications, a broadcast address is FFh. The following is an example of using broadcast addresses:

For slaves A and B, bit 2 is a don't care bit; for slave C, bit 2 is set. To communicate with all of the slaves, the master must send an address FFh. To communicate with slaves A and B, but not slave C, the master can send and address FBh.

#### **Reset Addresses**

On reset, the SADDR and SADEN registers are initialized to 00h, i.e. the given and broadcast addresses are xxxx xxxxb (all don't-care bits). This ensures that the serial port will reply to any address, and so, that it is backwards compatible with the 80C51 microcontrollers that do not support automatic address recognition.

**Table 7.** SADEN Register SADEN - Slave Address Mask Register (B9h)

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |

Reset Value = 0000 0000b Not bit addressable

**Table 8.** SADDR Register SADDR - Slave Address Register (A9h)

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |   |

Reset Value = 0000 0000b Not bit addressable



Table 10. PCON Register

PCON - Power Control Register (87h)

7 6 5 4 3 2 1 0 SMOD1 SMOD0 - POF GF1 GF0 PD IDL

| Bit<br>Number | Bit<br>Mnemonic | Description                                                                                                                                   |
|---------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 7             | SMOD1           | Serial port Mode bit 1 Set to select double baud rate in mode 1, 2 or 3.                                                                      |
| 6             | SMOD0           | Serial port Mode bit 0 Clear to select SM0 bit in SCON register. Set to to select FE bit in SCON register.                                    |
| 5             | -               | Reserved The value read from this bit is indeterminate. Do not set this bit.                                                                  |
| 4             | POF             | Power-off Flag Clear to recognize next reset type. Set by hardware when VCC rises from 0 to its nominal voltage. Can also be set by software. |
| 3             | GF1             | General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.                                        |
| 2             | GF0             | General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.                                        |
| 1             | PD              | Power-down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.                                                      |
| 0             | IDL             | Idle mode bit Clear by hardware when interrupt or reset occurs. Set to enter idle mode.                                                       |

Reset Value = 00X1 0000b Not bit addressable

Power-off flag reset value will be 1 only after a power on (cold reset). A warm reset doesn't affect the value of this bit.



# TS80C52X2

# **ROM Structure**

The TS80C52X2 ROM memory is divided in three different arrays:

- the code array:8 Kbytes.
- the encryption array:64 bytes.
- the signature array:4 bytes.

# **ROM Lock System**

The program Lock system, when programmed, protects the on-chip program against software piracy.

# **Encryption Array**

Within the ROM array are 64 bytes of encryption array that are initially unprogrammed (all FF's). Every time a byte is addressed during program verify, 6 address lines are used to select a byte of the encryption array. This byte is then exclusive-NOR'ed (XNOR) with the code byte, creating an encrypted verify byte. The algorithm, with the encryption array in the unprogrammed state, will return the code in its original, unmodified form.

When using the encryption array, one important factor needs to be considered. If a byte has the value FFh, verifying the byte will produce the encryption byte value. If a large block (>64 bytes) of code is left unprogrammed, a verification routine will display the content of the encryption array. For this reason all the unused code bytes should be programmed with random values. This will ensure program protection.

# **Program Lock Bits**

The lock bits when programmed according to Table 19. will provide different level of protection for the on-chip code and data.

Table 19. Program Lock bits

| Pi                | rogram L | ock Bits |     |                                                                                                                                                                                                 |  |
|-------------------|----------|----------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Security<br>level | LB1      | LB2      | LB3 | Protection Description                                                                                                                                                                          |  |
| 1                 | U        | U        | U   | No program lock features enabled. Code verify will still be encrypted by the encryption array if programmed. MOVC instruction executed from external program memory returns non encrypted data. |  |
| 2                 | Р        | U        | U   | MOVC instruction executed from external program memory are disabled from fetching code bytes from internal memory, $\overline{EA}$ is sampled and latched on reset.                             |  |

U: unprogrammed P: programmed

# Signature bytes

The TS80C52X2 contains 4 factory programmed signatures bytes. To read these bytes, perform the process described in section 9.

# **Verify Algorithm**

Refer to Section "Verify Algorithm".





# **EPROM Structure**

The TS87C52X2 is divided in two different arrays:

- the code array: 8 Kbytes
- the encryption array: 64 bytes

In addition a third non programmable array is implemented:

the signature array: 4 bytes

# **EPROM Lock System**

The program Lock system, when programmed, protects the on-chip program against software piracy.

# **Encryption Array**

Within the EPROM array are 64 bytes of encryption array that are initially unprogrammed (all FF's). Every time a byte is addressed during program verify, 6 address lines are used to select a byte of the encryption array. This byte is then exclusive-NOR'ed (XNOR) with the code byte, creating an encrypted verify byte. The algorithm, with the encryption array in the unprogrammed state, will return the code in its original, unmodified form.

When using the encryption array, one important factor needs to be considered. If a byte has the value FFh, verifying the byte will produce the encryption byte value. If a large block (>64 bytes) of code is left unprogrammed, a verification routine will display the content of the encryption array. For this reason all the unused code bytes should be programmed with random values. This will ensure program protection.

# **Program Lock Bits**

The three lock bits, when programmed according to Table 1., will provide different level of protection for the on-chip code and data.

| Program Lock Bits |     |     |     |                                                                                                                                                                                                          |
|-------------------|-----|-----|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Security<br>level | LB1 | LB2 | LB3 | Protection Description                                                                                                                                                                                   |
| 1                 | U   | U   | U   | No program lock features enabled. Code verify will still be encrypted by the encryption array if programmed. MOVC instruction executed from external program memory returns non encrypted data.          |
| 2                 | Р   | U   | U   | MOVC instruction executed from external program memory are disabled from fetching code bytes from internal memory, EA is sampled and latched on reset, and further programming of the EPROM is disabled. |
| 3                 | U   | Р   | U   | Same as 2, also verify is disabled.                                                                                                                                                                      |
| 4                 | U   | U   | Р   | Same as 3, also external execution is disabled.                                                                                                                                                          |

U: unprogrammed P: programmed

WARNING: Security level 2 and 3 should only be programmed after EPROM and Core verification.

# **Signature Bytes**

The TS80/87C52X2 contains 4 factory programmed signatures bytes. To read these bytes, perform the process described in section 9.

# **EPROM Programming**

### Set-up modes

In order to program and verify the EPROM or to read the signature bytes, the TS87C52X2 is placed in specific set-up modes (See Figure 11.).



# **Electrical Characteristics**

# **Absolute Maximum** Ratings<sup>(1)</sup>

| Ambiant Temperature Under Bias:               |                                |
|-----------------------------------------------|--------------------------------|
| C = commercial                                | 0°C to 70°C                    |
| I = industrial                                | 40°C to 85°C                   |
| Storage Temperature                           | 65°C to + 150°C                |
| Voltage on V <sub>CC</sub> to V <sub>SS</sub> | 0.5V to + 7 V                  |
| Voltage on V <sub>PP</sub> to V <sub>SS</sub> |                                |
| Voltage on Any Pin to V <sub>SS</sub>         | 0.5V to V <sub>CC</sub> + 0.5V |
| Power Dissipation                             | 1 W <sup>(2)</sup>             |
|                                               |                                |

- Notes: 1. Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
  - 2. This value is based on the maximum allowable die temperature and the thermal resistance of the package.

# **Power Consumption** Measurement

Since the introduction of the first C51 devices, every manufacturer made operating Icc measurements under reset, which made sense for the designs were the CPU was running under reset. In Atmel new devices, the CPU is no more active during reset, so the power consumption is very low but is not really representative of what will happen in the customer system. That's why, while keeping measurements under Reset, Atmel presents a new way to measure the operating Icc:

Using an internal test ROM, the following code is executed:

SJMP Label (80 FE) Label:

Ports 1, 2, 3 are disconnected, Port 0 is tied to FFh, EA = Vcc, RST = Vss, XTAL2 is not connected and XTAL1 is driven by the clock.

This is much more representative of the real operating lcc.

# **DC** Parameters for Standard Voltage

TA = 0°C to +70°C;  $V_{SS}$  = 0 V;  $V_{CC}$  = 5V  $\pm$  10%; F = 0 to 40 MHz. TA = -40°C to +85°C;  $V_{SS} = 0 \text{ V}$ ;  $V_{CC} = 5\text{V} \pm 10\%$ ; F = 0 to 40 MHz.

Table 22. DC Parameters in Standard Voltage

| Symbol           | Parameter                                        | Min                       | Тур | Max                       | Unit        | Test Conditions                                                                                         |
|------------------|--------------------------------------------------|---------------------------|-----|---------------------------|-------------|---------------------------------------------------------------------------------------------------------|
| V <sub>IL</sub>  | Input Low Voltage                                | -0.5                      |     | 0.2 V <sub>CC</sub> - 0.1 | V           |                                                                                                         |
| V <sub>IH</sub>  | Input High Voltage except XTAL1, RST             | 0.2 V <sub>CC</sub> + 0.9 |     | V <sub>CC</sub> + 0.5     | V           |                                                                                                         |
| V <sub>IH1</sub> | Input High Voltage, XTAL1, RST                   | 0.7 V <sub>CC</sub>       |     | V <sub>CC</sub> + 0.5     | V           |                                                                                                         |
| V <sub>OL</sub>  | Output Low Voltage, ports 1, 2, 3 <sup>(6)</sup> |                           |     | 0.3<br>0.45<br>1.0        | V<br>V<br>V | $I_{OL} = 100 \ \mu A^{(4)}$ $I_{OL} = 1.6 \ mA^{(4)}$ $I_{OL} = 3.5 \ mA^{(4)}$                        |
| V <sub>OL1</sub> | Output Low Voltage, port 0 (6)                   |                           |     | 0.3<br>0.45<br>1.0        | V<br>V<br>V | $I_{OL}$ = 200 $\mu$ A <sup>(4)</sup> $I_{OL}$ = 3.2 mA <sup>(4)</sup> $I_{OL}$ = 7.0 mA <sup>(4)</sup> |
| V <sub>OL2</sub> | Output Low Voltage, ALE, PSEN                    |                           |     | 0.3<br>0.45<br>1.0        | V<br>V<br>V | $I_{OL} = 100 \mu A^{(4)}$ $I_{OL} = 1.6 \text{ mA}^{(4)}$ $I_{OL} = 3.5 \text{ mA}^{(4)}$              |

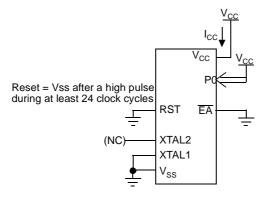


# DC Parameters for Low Voltage

TA = 0°C to +70°C;  $V_{SS}$  = 0 V;  $V_{CC}$  = 2.7 V to 5.5V; F = 0 to 30 MHz. TA = -40°C to +85°C;  $V_{SS}$  = 0 V;  $V_{CC}$  = 2.7 V to 5.5V; F = 0 to 30 MHz.

Table 23. DC Parameters for Low Voltage

| Symbol                            | Parameter                                         | Min                       | Тур                                    | Max                                                  | Unit | Test Conditions                                                                                     |
|-----------------------------------|---------------------------------------------------|---------------------------|----------------------------------------|------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------|
| V <sub>IL</sub>                   | Input Low Voltage                                 | -0.5                      |                                        | 0.2 V <sub>CC</sub> - 0.1                            | V    |                                                                                                     |
| V <sub>IH</sub>                   | Input High Voltage except XTAL1, RST              | 0.2 V <sub>CC</sub> + 0.9 |                                        | V <sub>CC</sub> + 0.5                                | V    |                                                                                                     |
| V <sub>IH1</sub>                  | Input High Voltage, XTAL1, RST                    | 0.7 V <sub>CC</sub>       |                                        | V <sub>CC</sub> + 0.5                                | V    |                                                                                                     |
| V <sub>OL</sub>                   | Output Low Voltage, ports 1, 2, 3 (6)             |                           |                                        | 0.45                                                 | V    | $I_{OL} = 0.8 \text{ mA}^{(4)}$                                                                     |
| V <sub>OL1</sub>                  | Output Low Voltage, port 0, ALE, PSEN (6)         |                           |                                        | 0.45                                                 | V    | I <sub>OL</sub> = 1.6 mA <sup>(4)</sup>                                                             |
| V <sub>OH</sub>                   | Output High Voltage, ports 1, 2, 3                | 0.9 V <sub>CC</sub>       |                                        |                                                      | V    | I <sub>OH</sub> = -10 μA                                                                            |
| V <sub>OH1</sub>                  | Output High Voltage, port 0, ALE, PSEN            | 0.9 V <sub>CC</sub>       |                                        |                                                      | V    | I <sub>OH</sub> = -40 μA                                                                            |
| I <sub>IL</sub>                   | Logical 0 Input Current ports 1, 2 and 3          |                           |                                        | -50                                                  | μΑ   | Vin = 0.45V                                                                                         |
| I <sub>LI</sub>                   | Input Leakage Current                             |                           |                                        | ±10                                                  | μΑ   | 0.45V < Vin < V <sub>CC</sub>                                                                       |
| I <sub>TL</sub>                   | Logical 1 to 0 Transition Current, ports 1, 2, 3  |                           |                                        | -650                                                 | μΑ   | Vin = 2.0 V                                                                                         |
| R <sub>RST</sub>                  | RST Pulldown Resistor                             | 50                        | 90 (5)                                 | 200                                                  | kΩ   |                                                                                                     |
| CIO                               | Capacitance of I/O Buffer                         |                           |                                        | 10                                                   | pF   | Fc = 1 MHz<br>Ta = 25°C                                                                             |
| I <sub>PD</sub>                   | Power Down Current                                |                           | 20 <sup>(5)</sup><br>10 <sup>(5)</sup> | 50<br>30                                             | μА   | $V_{CC} = 2.0 \text{ V to } 5.5 \text{V}^{(3)}$<br>$V_{CC} = 2.0 \text{ V to } 3.3 \text{ V}^{(3)}$ |
| I <sub>CC</sub><br>under<br>RESET | Power Supply Current Maximum values, X1 mode: (7) |                           |                                        | 1 + 0.2 Freq<br>(MHz)<br>at12MHz 3.4<br>at16MHz 4.2  | mA   | $V_{CC} = 3.3 V^{(1)}$                                                                              |
| I <sub>CC</sub> operating         | Power Supply Current Maximum values, X1 mode: (7) |                           |                                        | 1 + 0.3 Freq<br>(MHz)<br>at12MHz 4.6<br>at16MHz 5.8  | mA   | $V_{CC} = 3.3 V^{(8)}$                                                                              |
| I <sub>CC</sub> idle              | Power Supply Current Maximum values, X1 mode: (7) |                           |                                        | 0.15 Freq<br>(MHz) + 0.2<br>at12MHz 2<br>at16MHz 2.6 | mA   | $V_{CC} = 3.3 V^{(2)}$                                                                              |


Notes: 1.  $I_{CC}$  under reset is measured with all output pins disconnected; XTAL1 driven with  $T_{CLCH}$ ,  $T_{CHCL} = 5$  ns (see Figure 17.),  $V_{IL} = V_{SS} + 0.5V$ ,

 $V_{IH} = V_{CC} - 0.5V$ ; XTAL2 N.C.;  $\overline{EA} = RST = Port \ 0 = V_{CC}$ .  $I_{CC}$  would be slightly higher if a crystal oscillator used..

- 2. Idle I<sub>CC</sub> is measured with all out<u>put</u> pins disconnected; XTAL1 driven with T<sub>CLCH</sub>, T<sub>CHCL</sub> = 5 ns, V<sub>IL</sub> = V<sub>SS</sub> + 0.5V, V<sub>IH</sub> = V<sub>CC</sub> 0.5V; XTAL2 N.C; Port 0 = V<sub>CC</sub>; EA = RST = V<sub>SS</sub> (see Figure 15.).
- 3. Power Down I<sub>CC</sub> is measured with all output pins disconnected; EA = V<sub>SS</sub>, PORT 0 = V<sub>CC</sub>; XTAL2 NC.; RST = V<sub>SS</sub> (see Figure 16.).
- 4. Capacitance loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the V<sub>OL</sub>s of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1 to 0 transitions during bus operation. In the worst cases (capacitive loading 100pF), the noise pulse on the ALE line may exceed 0.45V with maxi V<sub>OL</sub> peak 0.6V. A Schmitt Trigger use is not necessary.
- 5. Typicals are based on a limited number of samples and are not guaranteed. The values listed are at room temperature and 5V.
- Under steady state (non-transient) conditions, I<sub>OL</sub> must be externally limited as follows: Maximum I<sub>OL</sub> per port pin: 10 mA Maximum I<sub>OL</sub> per 8-bit port:

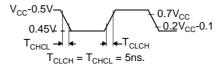



Figure 16. I<sub>CC</sub> Test Condition, Power-down Mode



All other pins are disconnected.

Figure 17. Clock Signal Waveform for I<sub>CC</sub> Tests in Active and Idle Modes



# **AC Parameters**

# Explanation of the AC Symbols

Each timing symbol has 5 characters. The first character is always a "T" (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

Example:  $T_{AVLL}$  = Time for Address Valid to ALE Low.

 $T_{IIPI}$  = Time for ALE Low to  $\overline{PSEN}$  Low.

TA = 0 to +70°C (commercial temperature range);  $V_{SS}$  = 0 V;  $V_{CC}$  = 5V  $\pm$  10%; -M and -V ranges.

T<sub>A</sub> = -40°C to +85°C (industrial temperature range);  $V_{SS}$  = 0 V;  $V_{CC}$  = 5V  $\pm$  10%; -M and -V ranges.

 $T_A = 0$  to +70°C (commercial temperature range);  $V_{SS} = 0$  V; 2.7 V <  $V_{CC} < 5.5$ V; -L range.

 $T_A = -40^{\circ}C$  to +85°C (industrial temperature range);  $V_{SS} = 0$  V; 2.7 V <  $V_{CC} < 5.5$ V; -L range.

Table 24. gives the maximum applicable load capacitance for Port 0, Port 1, 2 and 3, and ALE and PSEN signals. Timings will be guaranteed if these capacitances are respected. Higher capacitance values can be used, but timings will then be degraded.

Table 24. Load Capacitance versus speed range, in pF

|              | -M  | -V | -L  |
|--------------|-----|----|-----|
| Port 0       | 100 | 50 | 100 |
| Port 1, 2, 3 | 80  | 50 | 80  |
| ALE / PSEN   | 100 | 30 | 100 |

Table 5., Table 29. and Table 32. give the description of each AC symbols.

Table 27., Table 30. and Table 33. give for each range the AC parameter.



Table 27. AC Parameters for Fix Clock

| Speed             | -M<br>40 MHz |     | -V<br>X2 mode<br>30 MHz<br>60 MHz<br>z equiv. |     | -V<br>standard<br>mode 40<br>MHz |     | -L<br>X2 mode<br>20 MHz<br>40 MHz<br>equiv. |     | -L<br>standard<br>mode<br>30 MHz |     | Units |
|-------------------|--------------|-----|-----------------------------------------------|-----|----------------------------------|-----|---------------------------------------------|-----|----------------------------------|-----|-------|
| Symbol            | Min          | Max | Min                                           | Max | Min                              | Max | Min                                         | Max | Min                              | Max |       |
| Т                 | 25           |     | 33                                            |     | 25                               |     | 50                                          |     | 33                               |     | ns    |
| T <sub>LHLL</sub> | 40           |     | 25                                            |     | 42                               |     | 35                                          |     | 52                               |     | ns    |
| T <sub>AVLL</sub> | 10           |     | 4                                             |     | 12                               |     | 5                                           |     | 13                               |     | ns    |
| T <sub>LLAX</sub> | 10           |     | 4                                             |     | 12                               |     | 5                                           |     | 13                               |     | ns    |
| T <sub>LLIV</sub> |              | 70  |                                               | 45  |                                  | 78  |                                             | 65  |                                  | 98  | ns    |
| T <sub>LLPL</sub> | 15           |     | 9                                             |     | 17                               |     | 10                                          |     | 18                               |     | ns    |
| T <sub>PLPH</sub> | 55           |     | 35                                            |     | 60                               |     | 50                                          |     | 75                               |     | ns    |
| T <sub>PLIV</sub> |              | 35  |                                               | 25  |                                  | 50  |                                             | 30  |                                  | 55  | ns    |
| T <sub>PXIX</sub> | 0            |     | 0                                             |     | 0                                |     | 0                                           |     | 0                                |     | ns    |
| T <sub>PXIZ</sub> |              | 18  |                                               | 12  |                                  | 20  |                                             | 10  |                                  | 18  | ns    |
| T <sub>AVIV</sub> |              | 85  |                                               | 53  |                                  | 95  |                                             | 80  |                                  | 122 | ns    |
| T <sub>PLAZ</sub> |              | 10  |                                               | 10  |                                  | 10  |                                             | 10  |                                  | 10  | ns    |

Table 28. AC Parameters for a Variable Clock: derating formula

| Symbol            | Туре | Standard<br>Clock | X2 Clock  | -M | -V | -L | Units |
|-------------------|------|-------------------|-----------|----|----|----|-------|
| T <sub>LHLL</sub> | Min  | 2 T - x           | T - x     | 10 | 8  | 15 | ns    |
| T <sub>AVLL</sub> | Min  | T - x             | 0.5 T - x | 15 | 13 | 20 | ns    |
| T <sub>LLAX</sub> | Min  | T - x             | 0.5 T - x | 15 | 13 | 20 | ns    |
| T <sub>LLIV</sub> | Max  | 4 T - x           | 2 T - x   | 30 | 22 | 35 | ns    |
| T <sub>LLPL</sub> | Min  | T - x             | 0.5 T - x | 10 | 8  | 15 | ns    |
| T <sub>PLPH</sub> | Min  | 3 T - x           | 1.5 T - x | 20 | 15 | 25 | ns    |
| T <sub>PLIV</sub> | Max  | 3 T - x           | 1.5 T - x | 40 | 25 | 45 | ns    |
| T <sub>PXIX</sub> | Min  | х                 | х         | 0  | 0  | 0  | ns    |
| T <sub>PXIZ</sub> | Max  | T - x             | 0.5 T - x | 7  | 5  | 15 | ns    |
| T <sub>AVIV</sub> | Max  | 5 T - x           | 2.5 T - x | 40 | 30 | 45 | ns    |
| T <sub>PLAZ</sub> | Max  | х                 | х         | 10 | 10 | 10 | ns    |



Table 30. AC Parameters for a Fix Clock

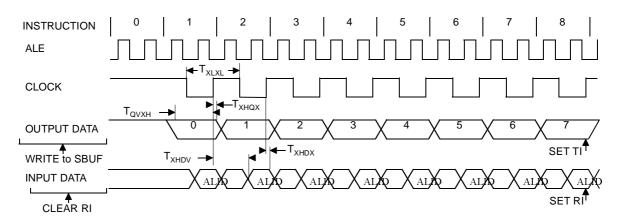

| Speed -M<br>40 MHz |     | 00 IVII 12 |     | -V<br>standard<br>mode 40<br>MHz |     | -L<br>X2 mode<br>20 MHz<br>40 MHz<br>equiv. |     | -L<br>standard<br>mode<br>30 MHz |     | Units |    |
|--------------------|-----|------------|-----|----------------------------------|-----|---------------------------------------------|-----|----------------------------------|-----|-------|----|
| Symbol             | Min | Max        | Min | Max                              | Min | Max                                         | Min | Max                              | Min | Max   |    |
| T <sub>RLRH</sub>  | 130 |            | 85  |                                  | 135 |                                             | 125 |                                  | 175 |       | ns |
| T <sub>WLWH</sub>  | 130 |            | 85  |                                  | 135 |                                             | 125 |                                  | 175 |       | ns |
| T <sub>RLDV</sub>  |     | 100        |     | 60                               |     | 102                                         |     | 95                               |     | 137   | ns |
| T <sub>RHDX</sub>  | 0   |            | 0   |                                  | 0   |                                             | 0   |                                  | 0   |       | ns |
| T <sub>RHDZ</sub>  |     | 30         |     | 18                               |     | 35                                          |     | 25                               |     | 42    | ns |
| T <sub>LLDV</sub>  |     | 160        |     | 98                               |     | 165                                         |     | 155                              |     | 222   | ns |
| T <sub>AVDV</sub>  |     | 165        |     | 100                              |     | 175                                         |     | 160                              |     | 235   | ns |
| T <sub>LLWL</sub>  | 50  | 100        | 30  | 70                               | 55  | 95                                          | 45  | 105                              | 70  | 130   | ns |
| T <sub>AVWL</sub>  | 75  |            | 47  |                                  | 80  |                                             | 70  |                                  | 103 |       | ns |
| $T_{QVWX}$         | 10  |            | 7   |                                  | 15  |                                             | 5   |                                  | 13  |       | ns |
| $T_{QVWH}$         | 160 |            | 107 |                                  | 165 |                                             | 155 |                                  | 213 |       | ns |
| T <sub>WHQX</sub>  | 15  |            | 9   |                                  | 17  |                                             | 10  |                                  | 18  |       | ns |
| T <sub>RLAZ</sub>  |     | 0          |     | 0                                |     | 0                                           |     | 0                                |     | 0     | ns |
| T <sub>WHLH</sub>  | 10  | 40         | 7   | 27                               | 15  | 35                                          | 5   | 45                               | 13  | 53    | ns |

Table 34. AC Parameters for a Variable Clock: Derating Formula

| Symbol            | Туре | Standard<br>Clock | X2 Clock | -M  | -V  | -L  | Units |
|-------------------|------|-------------------|----------|-----|-----|-----|-------|
| T <sub>XLXL</sub> | Min  | 12 T              | 6 T      |     |     |     | ns    |
| T <sub>QVHX</sub> | Min  | 10 T - x          | 5 T - x  | 50  | 50  | 50  | ns    |
| T <sub>XHQX</sub> | Min  | 2 T - x           | T - x    | 20  | 20  | 20  | ns    |
| T <sub>XHDX</sub> | Min  | х                 | х        | 0   | 0   | 0   | ns    |
| T <sub>XHDV</sub> | Max  | 10 T - x          | 5 T- x   | 133 | 133 | 133 | ns    |

# Shift Register Timing Waveforms

Figure 21. Shift Register Timing Waveforms



# **Ordering Information**

Table 37. Possible Ordering Entries

| able 37. Possible O        | rdering Entries | <u> </u>        | i                    |                       |         | +           |
|----------------------------|-----------------|-----------------|----------------------|-----------------------|---------|-------------|
| Part Number <sup>(3)</sup> | Memory Size     | Supply Voltage  | Temperature<br>Range | Max Frequency         | Package | Packing     |
| TS80C32X2-MCA              | ROMLess         | 5V <u>±</u> 10% | Commercial           | 40 MHz <sup>(1)</sup> | PDIL40  | Stick       |
| TS80C32X2-MCB              | ROMLess         | 5V <u>±</u> 10% | Commercial           | 40 MHz <sup>(1)</sup> | PLCC44  | Stick       |
| TS80C32X2-MCC              | ROMLess         | 5V <u>±</u> 10% | Commercial           | 40 MHz <sup>(1)</sup> | PQFP44  | Tray        |
| TS80C32X2-MCE              | ROMLess         | 5V <u>±</u> 10% | Commercial           | 40 MHz <sup>(1)</sup> | VQFP44  | Tray        |
| TS80C32X2-LCA              | ROMLess         | 2.7 to 5.5V     | Commercial           | 30 MHz <sup>(1)</sup> | PDIL40  | Stick       |
| TS80C32X2-LCB              | ROMLess         | 2.7 to 5.5V     | Commercial           | 30 MHz <sup>(1)</sup> | PLCC44  | Stick       |
| TS80C32X2-LCC              | ROMLess         | 2.7 to 5.5V     | Commercial           | 30 MHz <sup>(1)</sup> | PQFP44  | Tray        |
| TS80C32X2-LCE              | ROMLess         | 2.7 to 5.5V     | Commercial           | 30 MHz <sup>(1)</sup> | VQFP44  | Tray        |
| TS80C32X2-VCA              | ROMLess         | 5V <u>±</u> 10% | Commercial           | 60 MHz <sup>(3)</sup> | PDIL40  | Stick       |
| TS80C32X2-VCB              | ROMLess         | 5V <u>±</u> 10% | Commercial           | 60 MHz <sup>(3)</sup> | PLCC44  | Stick       |
| TS80C32X2-VCC              | ROMLess         | 5V <u>±</u> 10% | Commercial           | 60 MHz <sup>(3)</sup> | PQFP44  | Tray        |
| TS80C32X2-VCE              | ROMLess         | 5V <u>±</u> 10% | Commercial           | 60 MHz <sup>(3)</sup> | VQFP44  | Tray        |
| TS80C32X2-MIA              | ROMLess         | 5V <u>±</u> 10% | Industrial           | 40 MHz <sup>(1)</sup> | PDIL40  | Stick       |
| TS80C32X2-MIB              | ROMLess         | 5V <u>±</u> 10% | Industrial           | 40 MHz <sup>(1)</sup> | PLCC44  | Stick       |
| TS80C32X2-MIC              | ROMLess         | 5V <u>±</u> 10% | Industrial           | 40 MHz <sup>(1)</sup> | PQFP44  | Tray        |
| TS80C32X2-MIE              | ROMLess         | 5V <u>±</u> 10% | Industrial           | 40 MHz <sup>(1)</sup> | VQFP44  | Tray        |
| TS80C32X2-LIA              | ROMLess         | 2.7 to 5.5V     | Industrial           | 30 MHz <sup>(1)</sup> | PDIL40  | Stick       |
| TS80C32X2-LIB              | ROMLess         | 2.7 to 5.5V     | Industrial           | 30 MHz <sup>(1)</sup> | PLCC44  | Stick       |
| TS80C32X2-LIC              | ROMLess         | 2.7 to 5.5V     | Industrial           | 30 MHz <sup>(1)</sup> | PQFP44  | Tray        |
| TS80C32X2-LIE              | ROMLess         | 2.7 to 5.5V     | Industrial           | 30 MHz <sup>(1)</sup> | VQFP44  | Tray        |
| TS80C32X2-VIA              | ROMLess         | 5V <u>±</u> 10% | Industrial           | 60 MHz <sup>(3)</sup> | PDIL40  | Stick       |
| TS80C32X2-VIB              | ROMLess         | 5V <u>±</u> 10% | Industrial           | 60 MHz <sup>(3)</sup> | PLCC44  | Stick       |
| TS80C32X2-VIC              | ROMLess         | 5V <u>±</u> 10% | Industrial           | 60 MHz <sup>(3)</sup> | PQFP44  | Tray        |
| TS80C32X2-VIE              | ROMLess         | 5V <u>±</u> 10% | Industrial           | 60 MHz <sup>(3)</sup> | VQFP44  | Tray        |
|                            |                 |                 |                      |                       |         |             |
| AT80C32X2-3CSUM            | ROMLess         | 5V ±10%         | Industrial & Green   | 40 MHz <sup>(1)</sup> | PDIL40  | Stick       |
| AT80C32X2-SLSUM            | ROMLess         | 5V ±10%         | Industrial & Green   | 40 MHz <sup>(1)</sup> | PLCC44  | Stick       |
| AT80C32X2-RLTUM            | ROMLess         | 5V ±10%         | Industrial & Green   | 40 MHz <sup>(1)</sup> | VQFP44  | Tray        |
| AT80C32X2-RLTUM            | ROMLess         | 5V ±10%         | Industrial & Green   | 40 MHz <sup>(1)</sup> | VQFP44  | Tape & Reel |
| AT80C32X2-3CSUL            | ROMLess         | 2.7 to 5.5V     | Industrial & Green   | 30 MHz <sup>(1)</sup> | PDIL40  | Stick       |
| AT80C32X2-SLSUL            | ROMLess         | 2.7 to 5.5V     | Industrial & Green   | 30 MHz <sup>(1)</sup> | PLCC44  | Stick       |
|                            | 1               | l               | l .                  |                       |         | 1           |



 Table 37. Possible Ordering Entries (Continued)

| Part Number <sup>(3)</sup> | Memory Size | Supply Voltage | Temperature<br>Range | Max Frequency         | Package | Packing |
|----------------------------|-------------|----------------|----------------------|-----------------------|---------|---------|
| AT80C52X2zzz-3CSUL         | 8K ROM      | 2.7 to 5.5V    | Industrial & Green   | 30 MHz <sup>(1)</sup> | PDIL40  | Stick   |
| AT80C52X2zzz-SLSUL         | 8K ROM      | 2.7 to 5.5V    | Industrial & Green   | 30 MHz <sup>(1)</sup> | PLCC44  | Stick   |
| AT80C52X2zzz-RLTUL         | 8K ROM      | 2.7 to 5.5V    | Industrial & Green   | 30 MHz <sup>(1)</sup> | VQFP44  | Tray    |
| AT80C52X2zzz-3CSUV         | 8K ROM      | 5V ±10%        | Industrial & Green   | 60 MHz <sup>(3)</sup> | PDIL40  | Stick   |
| AT80C52X2zzz-SLSUV         | 8K ROM      | 5V ±10%        | Industrial & Green   | 60 MHz <sup>(3)</sup> | PLCC44  | Stick   |
| AT80C52X2zzz-RLTUV         | 8K ROM      | 5V ±10%        | Industrial & Green   | 60 MHz <sup>(3)</sup> | VQFP44  | Tray    |
|                            |             |                |                      |                       |         |         |
| TS87C52X2-MCA              | 8K OTP      | 5V ±10%        | Commercial           | 40 MHz <sup>(1)</sup> | PDIL40  | Stick   |
| TS87C52X2-MCB              | 8K OTP      | 5V ±10%        | Commercial           | 40 MHz <sup>(1)</sup> | PLCC44  | Stick   |
| TS87C52X2-MCC              | 8K OTP      | 5V ±10%        | Commercial           | 40 MHz <sup>(1)</sup> | PQFP44  | Tray    |
| TS87C52X2-MCE              | 8K OTP      | 5V ±10%        | Commercial           | 40 MHz <sup>(1)</sup> | VQFP44  | Tray    |
| TS87C52X2-LCA              | 8K OTP      | 2.7 to 5.5V    | Commercial           | 30 MHz <sup>(1)</sup> | PDIL40  | Stick   |
| TS87C52X2-LCB              | 8K OTP      | 2.7 to 5.5V    | Commercial           | 30 MHz <sup>(1)</sup> | PLC44   | Stick   |
| TS87C52X2-LCC              | 8K OTP      | 2.7 to 5.5V    | Commercial           | 30 MHz <sup>(1)</sup> | PQFP44  | Tray    |
| TS87C52X2-LCE              | 8K OTP      | 2.7 to 5.5V    | Commercial           | 30 MHz <sup>(1)</sup> | VQFP44  | Tray    |
| TS87C52X2-VCA              | 8K OTP      | 5V ±10%        | Commercial           | 60 MHz <sup>(3)</sup> | PDIL40  | Stick   |
| TS87C52X2-VCB              | 8K OTP      | 5V ±10%        | Commercial           | 60 MHz <sup>(3)</sup> | PLCC44  | Stick   |
| TS87C52X2-VCC              | 8K OTP      | 5V ±10%        | Commercial           | 60 MHz <sup>(3)</sup> | PQFP44  | Tray    |
| TS87C52X2-VCE              | 8K OTP      | 5V ±10%        | Commercial           | 60 MHz <sup>(3)</sup> | VQFP44  | Tray    |
| TS87C52X2-MIA              | 8K OTP      | 5V ±10%        | Industrial           | 40 MHz <sup>(1)</sup> | PDIL40  | Stick   |
| TS87C52X2-MIB              | 8K OTP      | 5V ±10%        | Industrial           | 40 MHz <sup>(1)</sup> | PLCC44  | Stick   |
| TS87C52X2-MIC              | 8K OTP      | 5V ±10%        | Industrial           | 40 MHz <sup>(1)</sup> | PQFP44  | Tray    |
| TS87C52X2-MIE              | 8K OTP      | 5V ±10%        | Industrial           | 40 MHz <sup>(1)</sup> | VQFP44  | Tray    |
| <b>TS87C52X2</b> -LIA      | 8K OTP      | 2.7 to 5.5V    | Industrial           | 30 MHz <sup>(1)</sup> | PDIL40  | Stick   |
| <b>TS87C52X2</b> -LIB      | 8K OTP      | 2.7 to 5.5V    | Industrial           | 30 MHz <sup>(1)</sup> | PLCC44  | Stick   |
| TS87C52X2-LIC              | 8K OTP      | 2.7 to 5.5V    | Industrial           | 30 MHz <sup>(1)</sup> | PQFP44  | Tray    |
| TS87C52X2-LIE              | 8K OTP      | 2.7 to 5.5V    | Industrial           | 30 MHz <sup>(1)</sup> | VQFP44  | Tray    |
| TS87C52X2-VIA              | 8K OTP      | 5V ±10%        | Industrial           | 60 MHz <sup>(3)</sup> | PDIL40  | Stick   |
| TS87C52X2-VIB              | 8K OTP      | 5V ±10%        | Industrial           | 60 MHz <sup>(3)</sup> | PLCC44  | Stick   |
| TS87C52X2-VIC              | 8K OTP      | 5V ±10%        | Industrial           | 60 MHz <sup>(3)</sup> | PQFP44  | Tray    |
| TS87C52X2-VIE              | 8K OTP      | 5V ±10%        | Industrial           | 60 MHz <sup>(3)</sup> | VQFP44  | Tray    |
|                            |             |                |                      |                       |         |         |
|                            |             |                |                      |                       |         |         |





# **Atmel Headquarters**

# Corporate Headquarters

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 487-2600

# **Europe**

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500

#### Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

### Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

# **Atmel Operations**

#### Memory

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

#### Microcontrollers

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France TEL (33) 2-40-18-18-18 FAX (33) 2-40-18-19-60

#### ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4-42-53-60-00 FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland TEL (44) 1355-803-000 FAX (44) 1355-242-743

# RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany TEL (49) 71-31-67-0 FAX (49) 71-31-67-2340

1150 East Chevenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

# Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France TEL (33) 4-76-58-30-00 FAX (33) 4-76-58-34-80

# e-mail

literature@atmel.com

Web Site

http://www.atmel.com

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or

© Atmel Corporation 2006. All rights reserved. Atmel®, logo and combinations thereof, are registered trademarks, and Everywhere You Are® are the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

4184G–8051–09/06