
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	60/30MHz
Connectivity	UART/USART
Peripherals	POR
Number of I/O	32
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-VQFP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ts80c32x2-vie

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. All SFRs with their address and their reset value

	Bit Addressable			Nc	on Bit Addressal	ble			
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8h									FFh
F0h	B 0000 0000								F7h
E8h									EFh
E0h	ACC 0000 0000								E7h
D8 h									DFh
D0 h	PSW 0000 0000								D7h
C8 h	T2CON 0000 0000	T2MOD XXXX XX00	RCAP2L 0000 0000	RCAP2H 0000 0000	TL2 0000 0000	TH2 0000 0000			CFh
C0 h									C7h
B8h	IP XX00 0000	SADEN 0000 0000							BFh
B0h	P3 1111 1111							IPH XX00 0000	B7h
A8h	IE 0X00 0000	SADDR 0000 0000							AFh
A0h	P2 1111 1111		AUXR1 XXXX XXX0						A7h
98h	SCON 0000 0000	SBUF XXXX XXXX							9Fh
90h	P1 1111 1111								97h
88h	TCON 0000 0000	TMOD 0000 0000	TL0 0000 0000	TL1 0000 0000	TH0 0000 0000	TH1 0000 0000	AUXR XXXXXXX0	CKCON XXXX XXX0	8Fh
80h	P0 1111 1111	SP 0000 0111	DPL 0000 0000	DPH 0000 0000				PCON 00X1 0000	87h
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	

Reserved

Mnemonic	I	Pin Nu	mber	Туре	Name and Function			
	DIL	LCC	VQFP 1.4					
V _{SS}	20	22	16	I	Ground: 0V reference			
Vss1		1	39	I	Optional Ground: Contact the Sales Office for ground connection.			
V _{CC}	40	44	38	I	Power Supply: This is the power supply voltage for normal, idle and power-down operation			
P0.0-P0.7	39- 32	43- 36	37-30	I/O	Port 0 : Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as high impedance inputs.Port 0 pins must be polarized to Vcc			
					or Vss in order to prevent any parasitic current consumption. Port 0 is also the multiplexed low-order address and data bus during access to external program and data memory. In this application, it uses strong internal pull-up when emitting 1s. Port 0 also inputs the code bytes during EPROM programming. External pull-ups are required during program verification during which P0 outputs the code bytes.			
P1.0-P1.7	1-8	2-9	40-44 1-3	I/O	I/O Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins that have 1s written to them are pulle high by the internal pull-ups and can be used as inputs. A inputs, Port 1 pins that are externally pulled low will source			
					inputs, Port 1 pins that are externally pulled low will source current because of the internal pull-ups. Port 1 also receives the low-order address byte during memory programming and verification.			
					Alternate functions for Port 1 include:			
	1	2	40	I/O	T2 (P1.0): Timer/Counter 2 external count input/Clockout			
	2	3	41	I	T2EX (P1.1): Timer/Counter 2 Reload/Capture/Direction Control			
P2.0-P2.7	21- 28	24- 31	18-25	I/O	Port 2 : Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As			
					inputs, Port 2 pins that are externally pulled low will source current because of the internal pull-ups. Port 2 emits the high- order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX atDPTR). In this application, it uses strong internal pull-ups emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX atRi), port 2 emits the contents of the P2 SFR. Some Port 2 pins receive the high order address bits during EPROM programming and verification: P2.0 to P2.4			
P3.0-P3.7	10- 17	11, 13- 19	5, 7-13	I/O	Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally pulled low will source			
					current because of the internal pull-ups. Port 3 also serves the special features of the 80C51 family, as listed below.			
	10	11	5	I	RXD (P3.0): Serial input port			
	11	13	7	0	TXD (P3.1): Serial output port			
	12	14	8	Ι	INT0 (P3.2): External interrupt 0			

TS8xCx2X2

6

Mnemonic	I	Pin Nu	mber	Туре	Name and Function		
	DIL	LCC	VQFP 1.4				
	13	15	9	I	INT1 (P3.3): External interrupt 1		
	14	16	10	I	T0 (P3.4): Timer 0 external input		
	15	17	11	I	T1 (P3.5): Timer 1 external input		
	16	18	12	0	WR (P3.6): External data memory write strobe		
	17	19	13	0	RD (P3.7): External data memory read strobe		
Reset	9	10	4	I	Reset: A high on this pin for two machine cycles while the oscillator is running, resets the device. An internal diffused resistor to V_{SS} permits a power-on reset using only an external capacitor to V_{CC} .		
ALE/PROG	30	33	27	O (I)			
PSEN	29	32	26	0	Program Store ENable: The read strobe to external program memory. When executing code from the external program memory, <u>PSEN</u> is activated twice each machine cycle, except that two <u>PSEN</u> activations are skipped during each access to external data memory. <u>PSEN</u> is not activated during fetches from internal program memory.		
ĒĀ/V _{PP}	31	35	29	I	External Access Enable/Programming Supply Voltage: EA must be externally held low to enable the device to fetch code from external program memory locations 0000H and 3FFFH (RB) or 7FFFH (RC), or FFFFH (RD). If EA is held high, the device executes from internal program memory unless the program counter contains an address greater than 3FFFH (RB) or 7FFFH (RC) EA must be held low for ROMless devices. This pin also receives the 12.75V programming supply voltage (V _{PP}) during EPROM programming. If security level 1 is programmed, EA will be internally latched on Reset.		
XTAL1	19	21	15	I	Crystal 1: Input to the inverting oscillator amplifier and input		
					to the internal clock generator circuits.		
XTAL2	18	20	14	0	Crystal 2: Output from the inverting oscillator amplifier		

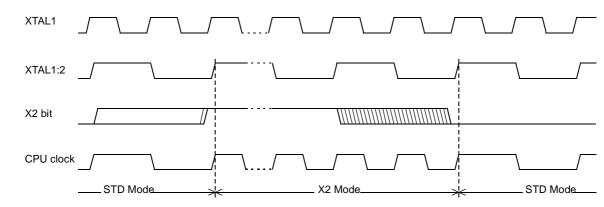


Figure 2. Mode Switching Waveforms

The X2 bit in the CKCON register (See Table 3.) allows to switch from 12 clock cycles per instruction to 6 clock cycles and vice versa. At reset, the standard speed is activated (STD mode). Setting this bit activates the X2 feature (X2 mode).

Note: In order to prevent any incorrect operation while operating in X2 mode, user must be aware that all peripherals using clock frequency as time reference (UART, timers) will have their time reference divided by two. For example a free running timer generating an interrupt every 20 ms will then generate an interrupt every 10 ms. UART with 4800 baud rate will have 9600 baud rate.

Table 3. CKCON Register

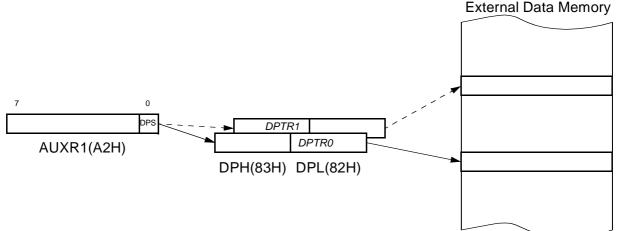
CKCON - Clock Control Register (8Fh)

7	6	5	4	3	2	1	0						
-	-	-	-	-	-	-	X2						
Bit Number	Bit Mnemonic	Description	Description										
7	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.										
6	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.										
5	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.										
4	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.							
3	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.							
2	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.							
1	-	Reserved The value rea	ad from this b	it is indetermi	nate. Do not s	et this bit.							
0	X2		ct 12 clock pe	k bit riods per mac ds per machin									

Reset Value = XXXX XXX0b

Not bit addressable

For further details on the X2 feature, please refer to ANM072 available on the web (http://www.atmel.com)


Dual Data Pointer Register (Ddptr)

The additional data pointer can be used to speed up code execution and reduce code size in a number of ways.

The dual DPTR structure is a way by which the chip will specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called

DPS = AUXR1/bit0 (See Table 5.) that allows the program code to switch between them (Refer to Figure 3).

Figure 3. Use of Dual Pointer

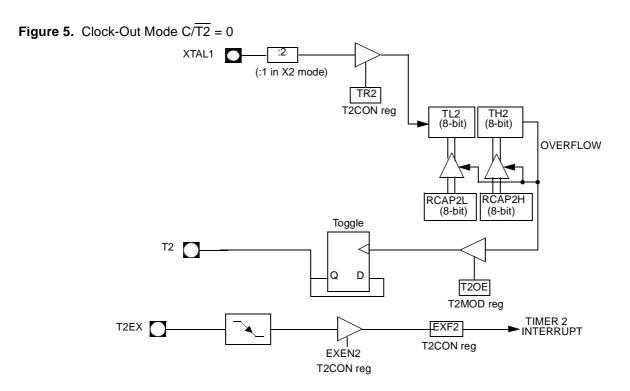


Table 4. AUXR1: Auxiliary Register 1

7	6	5	4	3	2	1	0				
-	-	-	-	GF3	0	-	DPS				
Bit Number	Bit Mnemonic	Description	Description								
7	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.								
6	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.								
5	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.								
4	-	Reserved The value re	ead from this	bit is indeterm	inate. Do not	set this bit.					
3	GF3	This bit is a	general purp	ose user flag							
2	0	Reserved Always stud	k at 0								
1	-	Reserved The value re	ead from this	bit is indeterm	inate. Do not	set this bit.					
0	DPS	Data Pointe Clear to select Set to select									

Reset Value = XXXX XXX0 Not bit addressable

14 **TS8xCx2X2**

Table 6. T2MOD Register

T2MOD - Timer 2 Mode Control Register (C9h)

7	6	5	4	3	2	1	0					
-	-	-	-	-	-	T2OE	DCEN					
Bit Number	Bit Mnemonic	Description	escription									
7	-	Reserved The value rea	Reserved he value read from this bit is indeterminate. Do not set this bit.									
6	-	Reserved The value rea	eserved he value read from this bit is indeterminate. Do not set this bit.									
5	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.									
4	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not se	et this bit.						
3	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not s	et this bit.						
2	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not s	et this bit.						
1	T2OE	Clear to prog	Timer 2 Output Enable bit Clear to program P1.0/T2 as clock input or I/O port. Set to program P1.0/T2 as clock output.									
0	DCEN	Clear to disa		t up/down cou b/down counte								

Reset Value = XXXX XX00b Not bit addressable are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence.

Table 12. IE Register

IE - Interrupt Enable Register (A8h)

7	6	5	5 4 3 2 1									
EA	-	ET2	ET2 ES ET1 EX1 ET0									
Bit Number	Bit Mnemonic	Description	Description									
7	EA	Clear to disab Set to enable If EA=1, each	Enable All interrupt bit Clear to disable all interrupts. Set to enable all interrupts. f EA=1, each interrupt source is individually enabled or disabled by setting or clearing its own interrupt enable bit.									
6	-	Reserved The value read	d from this bit	is indetermina	ate. Do not se	t this bit.						
5	ET2	Clear to disab	Timer 2 overflow interrupt Enable bit Clear to disable timer 2 overflow interrupt. Set to enable timer 2 overflow interrupt.									
4	ES	Serial port Er Clear to disab Set to enable	le serial port i	•								
3	ET1	Timer 1 overf Clear to disab Set to enable	le timer 1 ove	rflow interrupt								
2	EX1	External inter Clear to disab Set to enable	le external int	errupt 1.								
1	ET0	Clear to disab	Timer 0 overflow interrupt Enable bit Clear to disable timer 0 overflow interrupt. Set to enable timer 0 overflow interrupt.									
0	EX0	External inter Clear to disab Set to enable	le external int	errupt 0.								

Reset Value = 0X00 0000b Bit addressable

Table 14.IPH RegisterIPH - Interrupt Priority High Register (B7h)

7	6	5	4	3	2	1	0				
-	-	PT2H	PSH	PT1H	PX1H	РТОН	РХОН				
Bit Number	Bit Mnemonic	Description	Description								
7	-	Reserved The value rea	eserved he value read from this bit is indeterminate. Do not set this bit.								
6	-	Reserved The value rea	eserved he value read from this bit is indeterminate. Do not set this bit.								
5	PT2H	Timer 2 over PT2H PT2 0 0 1 0 1 1	f low interrup <u>Priority Leve</u> Lowest Highest	t Priority High 한	n bit						
4	PSH	Serial port P PSH PS 0 0 0 1 1 0 1 1	riority High b <u>Priority Leve</u> Lowest Highest								
3	PT1H	Timer 1 over PT1H PT1 0 0 0 1 1 0 1 1		t Priority High 키	n bit						
2	PX1H	External inte PX1H PX1 0 0 1 0 1 1 1 1	rrupt 1 Priori Priority Leve Lowest Highest								
1	РТОН	Timer 0 over PT0H PT0 0 0 1 0 1 1		t Priority High 한	n bit						
0	РХОН	External inte PX0H PX0 0 0 1 1 1 1	rrupt 0 Priori <u>Priority Leve</u> Lowest Highest	ty High bit <u>키</u>							

Reset Value = XX00 0000b Not bit addressable

ONCE[™] Mode (ON Chip Emulation)

The ONCE mode facilitates testing and debugging of systems using TS80C52X2 without removing the circuit from the board. The ONCE mode is invoked by driving certain pins of the TS80C52X2; the following sequence must be exercised:

- Pull ALE low while the device is in reset (RST high) and PSEN is high.
- Hold ALE low as RST is deactivated.

While the TS80C52X2 is in ONCE mode, an emulator or test CPU can be used to drive the circuit Table 26. shows the status of the port pins during ONCE mode.

Normal operation is restored when normal reset is applied.

Table 16. External Pin Status during ONCE Mode

ALE	PSEN	Port 0	Port 1	Port 2	Port 3	XTAL1/2
Weak pull- up	Weak pull- up	Float	Weak pull- up	Weak pull- up	Weak pull- up	Active

Reduced EMI Mode

The ALE signal is used to demultiplex address and data buses on port 0 when used with external program or data memory. Nevertheless, during internal code execution, ALE signal is still generated. In order to reduce EMI, ALE signal can be disabled by setting AO bit.

The AO bit is located in AUXR register at bit location 0. As soon as AO is set, ALE is no longer output but remains active during MOVX and MOVC instructions and external fetches. During ALE disabling, ALE pin is weakly pulled high.

Table 18. AUXR Register

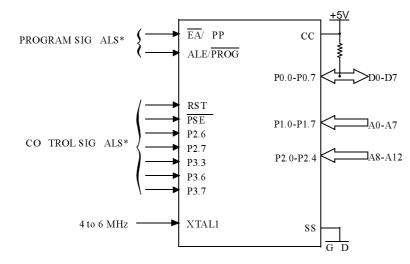
AUXR - Auxiliary Register (8Eh)

7	6	5	4	3	2	1	0					
-	-	-	-	-	-	-	AO					
Bit Number	Bit Mnemonic	Description	Description									
7	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.									
6	-	Reserved The value re	eserved he value read from this bit is indeterminate. Do not set this bit.									
5	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.									
4	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.						
3	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.						
2	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.						
1	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.						
0	AO		ore ALE opera	ation during in on during inte								

Reset Value = XXXX XXX0b Not bit addressable

TS8xCx2X2

Control and program signals must be held at the levels indicated in Table 35.


Definition of terms

Address Lines: P1.0-P1.7, P2.0-P2.4 respectively for A0-A12 Data Lines: P0.0-P0.7 for D0-D7 Control Signals: RST, PSEN, P2.6, P2.7, P3.3, P3.6, P3.7. Program Signals: ALE/PROG, EA/VPP.

Table 20. EPROM Set-up Modes

Mode	RST	PSEN	ALE/ PROG	EA/ VPP	P2.6	P2.7	P3.3	P3.6	P3.7
Program Code data	1	0	IJ	12.75V	0	1	1	1	1
Verify Code data	1	0	1	1	0		0	1	1
Program Encryption Array Address 0-3Fh	1	0	U	12.75V	0	1	1	0	1
Read Signature Bytes	1	0	1	1	0		0	0	0
Program Lock bit 1	1	0	ប	12.75V	1	1	1	1	1
Program Lock bit 2	1	0	ъ	12.75V	1	1	1	0	0
Program Lock bit 3	1	0	Ъ	12.75V	1	0	1	1	0

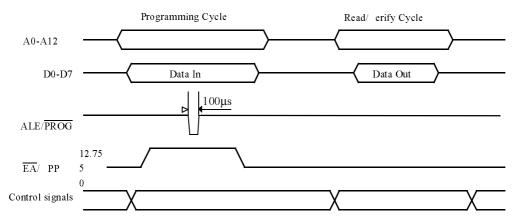
Figure 11. Set-Up Modes Configuration

* See Table 31. for proper value on these inputs

Programming Algorithm	The Improved Quick Pulse algorithm is based on the Quick Pulse algorithm and decreases the number of pulses applied during byte programming from 25 to 1.
	 To program the TS87C52X2 the following sequence must be exercised: Step 1: Activate the combination of control signals. Step 2: Input the valid address on the address lines. Step 3: Input the appropriate data on the data lines. Step 4: Raise EA/VPP from VCC to VPP (typical 12.75V). Step 5: Pulse ALE/PROG once. Step 6: Lower EA/VPP from VPP to VCC Repeat step 2 through 6 changing the address and data for the entire array or until the end of the object file is reached (See Figure 12.).

Verify Algorithm Code array verify must be done after each byte or block of bytes is programmed. In either case, a complete verify of the programmed array will ensure reliable programming of the TS87C52X2.

P 2.7 is used to enable data output.

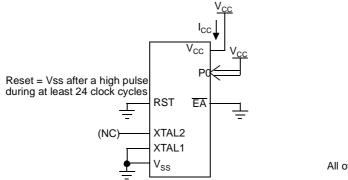

To verify the TS87C52X2 code the following sequence must be exercised:

- Step 1: Activate the combination of program and control signals.
- Step 2: Input the valid address on the address lines.
- Step 3: Read data on the data lines.

Repeat step 2 through 3 changing the address for the entire array verification (See Figure 12.)

The encryption array cannot be directly verified. Verification of the encryption array is done by observing that the code array is well encrypted.

Figure 12. Programming and Verification Signal's Waveform


EPROM Erasure (Windowed Packages Only) Erasing the EPROM erases the code array, the encryption array and the lock bits returning the parts to full functionality.

Erasure leaves all the EPROM cells in a 1's state (FF).

Erasure Characteristics The recommended erasure procedure is exposure to ultraviolet light (at 2537 Å) to an integrated dose at least 15 W-sec/cm². Exposing the EPROM to an ultraviolet lamp of

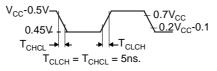


Figure 16. I_{CC} Test Condition, Power-down Mode

All other pins are disconnected.

Figure 17. Clock Signal Waveform for I_{CC} Tests in Active and Idle Modes

AC Parameters

Explanation of the AC Symbols	Each timing symbol has 5 characters. The first character is always a "T" (stand time). The other characters, depending on their positions, stand for the name of a or the logical status of that signal. The following is a list of all the characters and they stand for.						
		_{_L} = Time for Addr <u>ess V</u> al e for ALE Low to PSEN L					
	TA = 0 to +70°C (commercial temperature range); $V_{SS} = 0$ V; $V_{CC} = 5V \pm 10\%$; -M and -V ranges. TA = -40°C to +85°C (industrial temperature range); $V_{SS} = 0$ V; $V_{CC} = 5V \pm 10\%$; -M and -V ranges. TA = 0 to +70°C (commercial temperature range); $V_{SS} = 0$ V; 2.7 V < $V_{CC} < 5.5$ V; -L range. TA = -40°C to +85°C (industrial temperature range); $V_{SS} = 0$ V; 2.7 V < $V_{CC} < 5.5$ V; -L range. TA = -40°C to +85°C (industrial temperature range); $V_{SS} = 0$ V; 2.7 V < $V_{CC} < 5.5$ V; -L range. Table 24. gives the maximum applicable load capacitance for Port 0, Port 1, 2 and 3, and ALE and PSEN signals. Timings will be guaranteed if these capacitances are						
	respected. Higher capacitance values can be used, but timings will then be degrad Table 24. Load Capacitance versus speed range, in pF						
	-M -V -L						
	Port 0 100 50 100						
	Port 1, 2, 3 80 50 80						
	ALE / PSEN 100 30 100						

Table 5., Table 29. and Table 32. give the description of each AC symbols.

Table 27., Table 30. and Table 33. give for each range the AC parameter.

Table 30.	AC Parameters for a Fix Clock
-----------	-------------------------------

Speed	-I 40 I		X2 n 30 l 60 l	V node MHz MHz uiv.	stan mod	V dard le 40 Hz	X2 n 20 l 40 l	L node MHz MHz uiv.	stan mo	L dard ode MHz	Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
T _{RLRH}	130		85		135		125		175		ns
T _{WLWH}	130		85		135		125		175		ns
T _{RLDV}		100		60		102		95		137	ns
T _{RHDX}	0		0		0		0		0		ns
T _{RHDZ}		30		18		35		25		42	ns
T _{LLDV}		160		98		165		155		222	ns
T _{AVDV}		165		100		175		160		235	ns
T _{LLWL}	50	100	30	70	55	95	45	105	70	130	ns
T _{AVWL}	75		47		80		70		103		ns
T _{QVWX}	10		7		15		5		13		ns
T _{QVWH}	160		107		165		155		213		ns
T _{WHQX}	15		9		17		10		18		ns
T _{RLAZ}		0		0		0		0		0	ns
T _{WHLH}	10	40	7	27	15	35	5	45	13	53	ns

External Data Memory Read Cycle

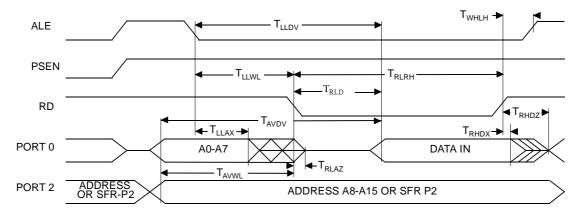
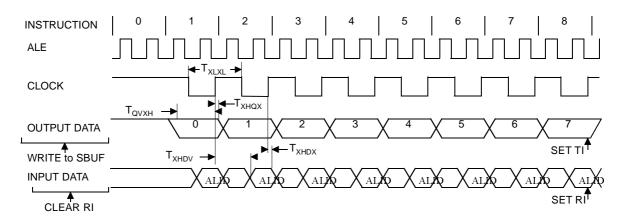


Figure 20. External Data Memory Read Cycle

Serial Port Timing - Shift Register Mode

Table 32. Symbol Description

Symbol	Parameter
T _{XLXL}	Serial port clock cycle time
T _{QVHX}	Output data set-up to clock rising edge
T _{XHQX}	Output data hold after clock rising edge
T _{XHDX}	Input data hold after clock rising edge
T _{XHDV}	Clock rising edge to input data valid


Speed	-I 40 I	M MHz		ИНz	stan mod	V dard le 40 Hz		node MHz MHz	stan mo	L dard ode MHz	Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
T _{XLXL}	300		200		300		300		400		ns
T _{QVHX}	200		117		200		200		283		ns
T _{XHQX}	30		13		30		30		47		ns
T _{XHDX}	0		0		0		0		0		ns
T_{XHDV}		117		34		117		117		200	ns

Symbol	Туре	Standard Clock	X2 Clock	-М	-V	-L	Units
T _{XLXL}	Min	12 T	6 T				ns
T _{QVHX}	Min	10 T - x	5 T - x	50	50	50	ns
T _{XHQX}	Min	2 T - x	T - x	20	20	20	ns
T _{XHDX}	Min	х	х	0	0	0	ns
T _{XHDV}	Max	10 T - x	5 T- x	133	133	133	ns

Table 34. AC Parameters for a Variable Clock: Derating Formula

Shift Register Timing Waveforms

EPROM Programming and Verification Characteristics

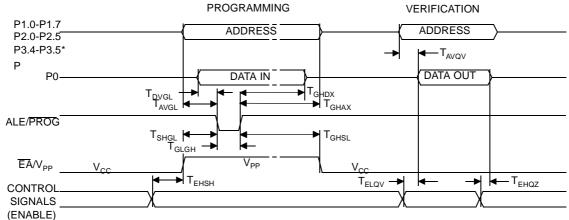

 T_A = 21°C to 27°C; V_{SS} = 0V; $~V_{CC}$ = 5V \pm 10% while programming. V_{CC} = operating range while verifying.

 Table 35.
 EPROM Programming Parameters

Symbol	Parameter	Min	Мах	Units
V _{PP}	Programming Supply Voltage	12.5	13	V
I _{PP}	Programming Supply Current		75	mA
1/T _{CLCL}	Oscillator Frquency	4	6	MHz
T _{AVGL}	Address Setup to PROG Low	48 T _{CLCL}		
T _{GHAX}	Adress Hold after PROG	48 T _{CLCL}		
T _{DVGL}	Data Setup to PROG Low	48 T _{CLCL}		
T _{GHDX}	Data Hold after PROG	48 T _{CLCL}		
T _{EHSH}	(Enable) High to V _{PP}	48 T _{CLCL}		
T _{SHGL}	V _{PP} Setup to PROG Low	10		μs
T _{GHSL}	V _{PP} Hold after PROG	10		μs
T _{GLGH}	PROG Width	90	110	μs
T _{AVQV}	Address to Valid Data		48 T _{CLCL}	
T _{ELQV}	ENABLE Low to Data Valid		48 T _{CLCL}	
T _{EHQZ}	Data Float after ENABLE	0	48 T _{CLCL}	

EPROM Programming and Verification Waveforms

Figure 22. EPROM Programming and Verification Waveforms

* 8KB: up to P2.4, 16KB: up to P2.5, 32KB: up to P3.4, 64KB: up to P3.5

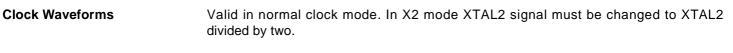
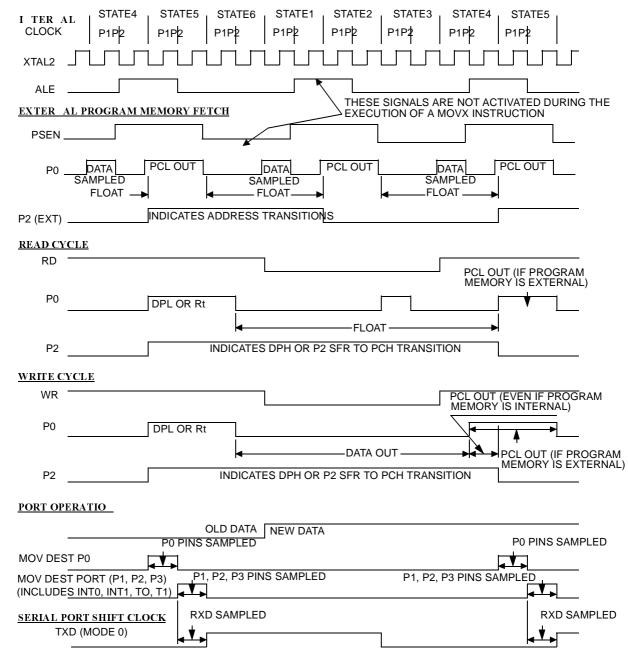



Figure 26. Clock Waveforms

This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins, however, ranges from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pin loading. Propagation also varies from output to output and component. Typically though ($T_A = 25^{\circ}C$ fully loaded) RD and WR propagation delays are approximately 50ns. The other signals are typically 85 ns. Propagation delays are incorporated in the AC specifications.

Table 37. Possible Ordering Entries (Continued)

Part Number ⁽³⁾	Memory Size	Supply Voltage	Temperature Range	Max Frequency	Package	Packing
AT87C52X2-3CSUM	8K OTP	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	PDIL40	Stick
AT87C52X2-SLSUM	8K OTP	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	PLCC44	Stick
AT87C52X2-RLTUM	8K OTP	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	VQFP44	Tray
AT87C52X2-3CSUL	8K OTP	2.7 to 5.5V	Industrial & Green	30 MHz ⁽¹⁾	PDIL40	Stick
AT87C52X2-SLSUL	8K OTP	2.7 to 5.5V	Industrial & Green	30 MHz ⁽¹⁾	PLCC44	Stick
AT87C52X2-RLTUL	8K OTP	2.7 to 5.5V	Industrial & Green	30 MHz ⁽¹⁾	VQFP44	Tray
AT87C52X2-3CSUV	8K OTP	5V ±10%	Industrial & Green	60 MHz ⁽³⁾	PDIL40	Stick
AT87C52X2-SLSUV	8K OTP	5V ±10%	Industrial & Green	60 MHz ⁽³⁾	PLCC44	Stick
AT87C52X2-RLTUV	8K OTP	5V ±10%	Industrial & Green	60 MHz ⁽³⁾	VQFP44	Тгау

Notes: 1. 20 MHz in X2 Mode.

2. Tape and Reel available for SL, PQFP and RL packages

3. 30 MHz in X2 Mode.