

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	27
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	2.5К х 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21336mdfp-v2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.5 Pin Functions

Tables 1.5 and 1.6 list Pin Functions.

Table 1.5Pin Functions (1)

Item	Pin Name	I/O Type	Description
Power supply input	VCC, VSS	-	Apply 1.8 V to 5.5 V to the VCC pin. Apply 0 V to the VSS pin.
Analog power	AVCC, AVSS	-	Power supply for the A/D converter.
supply input			Connect a capacitor between AVCC and AVSS.
Reset input	RESET	I	Input "L" on this pin resets the MCU.
MODE	MODE	I	Connect this pin to VCC via a resistor.
XIN clock input	XIN	I	These pins are provided for XIN clock generation circuit I/O. Connect a ceramic resonator or a crystal oscillator between
XIN clock output	XOUT	I/O	the XIN and XOUT pins ⁽¹⁾ . To use an external clock, input it to the XOUT pin and leave the XIN pin open.
XCIN clock input	XCIN	I	These pins are provided for XCIN clock generation circuit I/O. Connect a crystal oscillator between the XCIN and XCOUT
XCIN clock output	XCOUT	0	pins ⁽¹⁾ . To use an external clock, input it to the XCIN pin and leave the XCOUT pin open.
INT interrupt input	INTO, INT1, INT3	I	INT interrupt input pins. INT0 is timer RB, and RC input pin.
Key input interrupt	KI0 to KI3	I	Key input interrupt input pins
Timer RA	TRAIO	I/O	Timer RA I/O pin
	TRAO	0	Timer RA output pin
Timer RB	TRBO	0	Timer RB output pin
Timer RC	TRCCLK	I	External clock input pin
	TRCTRG	I	External trigger input pin
	TRCIOA, TRCIOB, TRCIOC, TRCIOD	I/O	Timer RC I/O pins
Timer RE	TREO	0	Divided clock output pin
Serial interface	CLK0, CLK1, CLK2	I/O	Transfer clock I/O pins
	RXD0, RXD1, RXD2	I	Serial data input pins
	TXD0, TXD1, TXD2	0	Serial data output pins
	CTS2	I	Transmission control input pin
	RTS2	0	Reception control output pin
	SCL2	I/O	I ² C mode clock I/O pin
	SDA2	I/O	I ² C mode data I/O pin
I ² C bus	SCL	I/O	Clock I/O pin
	SDA	I/O	Data I/O pin
SSU	SSI	I/O	Data I/O pin
	SCS	I/O	Chip-select signal I/O pin
	SSCK	I/O	Clock I/O pin
	SSO	I/O	Data I/O pin

I: Input O: Output I/O: Input and output

Note:

1. Refer to the oscillator manufacturer for oscillation characteristics.

2.8.7 Interrupt Enable Flag (I)

The I flag enables maskable interrupts.

Interrupts are disabled when the I flag is set to 0, and are enabled when the I flag is set to 1. The I flag is set to 0 when an interrupt request is acknowledged.

2.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to 0; USP is selected when the U flag is set to 1. The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL is 3 bits wide and assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has higher priority than IPL, the interrupt is enabled.

2.8.10 Reserved Bit

If necessary, set to 0. When read, the content is undefined.

3. Memory

3.1 R8C/33M Group

Figure 3.1 is a Memory Map of R8C/33M Group. The R8C/33M Group has a 1-Mbyte address space from addresses 00000h to FFFFh. For example, a 32-Kbyte internal ROM area is allocated addresses 08000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. The starting address of each interrupt routine is stored here.

The internal ROM (data flash) is allocated addresses 03000h to 03FFFh.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 2.5-Kbyte internal RAM area is allocated addresses 00400h to 00DFFh. The internal RAM is used not only for data storage but also as a stack area when a subroutine is called or when an interrupt request is acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh and 02C00h to 02FFFh. Peripheral function control registers are allocated here. All unallocated spaces within the SFRs are reserved and cannot be accessed by users.

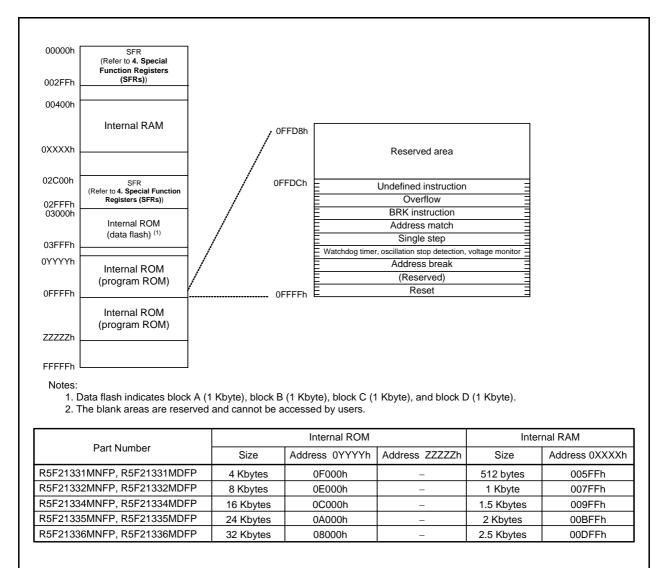


Figure 3.1

Memory Map of R8C/33M Group

		.	
Address	Register	Symbol	After Reset
0140h			
0141h			
0142h			
0143h			
0144h			
0145h			
0146h			
0147h			
0147h			
0149h			
014Ah			
014Bh			
014Ch			
014Dh			
014Eh			
014Fh			
0150h			
0151h			
0152h			
0153h			1
0153h 0154h			
0155h			
0156h			
0157h			
0158h			
0159h			
015Ah			
015Bh			
015Ch			
015Dh			
015Eh			
015Fh			
0160h	UART1 Transmit/Receive Mode Register	U1MR	00h
	OARTI Transmit/Receive mode Register		
01016	LIADTA Dit Data Dagistar		VVh
0161h	UART1 Bit Rate Register	U1BRG	XXh
0162h	UART1 Bit Rate Register UART1 Transmit Buffer Register	U1BRG U1TB	XXh
0162h 0163h	UART1 Transmit Buffer Register	U1TB	XXh XXh
0162h 0163h 0164h	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0	U1TB U1C0	XXh XXh 00001000b
0162h 0163h 0164h 0165h	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1	U1TB U1C0 U1C1	XXh XXh 00001000b 00000010b
0162h 0163h 0164h 0165h 0166h	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0	U1TB U1C0	XXh XXh 00001000b 00000010b XXh
0162h 0163h 0164h 0165h 0166h 0166h	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1	U1TB U1C0 U1C1	XXh XXh 00001000b 00000010b
0162h 0163h 0164h 0165h 0166h 0166h	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1	U1TB U1C0 U1C1	XXh XXh 00001000b 00000010b XXh
0162h 0163h 0164h 0165h 0166h 0167h 0168h	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1	U1TB U1C0 U1C1	XXh XXh 00001000b 00000010b XXh
0162h 0163h 0164h 0165h 0166h 0167h 0168h 0169h	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1	U1TB U1C0 U1C1	XXh XXh 00001000b 00000010b XXh
0162h 0163h 0164h 0165h 0166h 0167h 0168h 0168h 0169h	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1	U1TB U1C0 U1C1	XXh XXh 00001000b 00000010b XXh
0162h 0163h 0164h 0165h 0166h 0167h 0168h 0169h 0169h 016Bh	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1	U1TB U1C0 U1C1	XXh XXh 00001000b 00000010b XXh
0162h 0163h 0164h 0165h 0166h 0167h 0168h 0169h 016Bh 016Bh 016Ch	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1	U1TB U1C0 U1C1	XXh XXh 00001000b 00000010b XXh
0162h 0163h 0164h 0165h 0166h 0167h 0168h 0168h 0169h 016Ah 016Bh 016Ch	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1	U1TB U1C0 U1C1	XXh XXh 00001000b 00000010b XXh
0162h 0163h 0164h 0165h 0166h 0167h 0168h 0168h 0168h 016Bh 016Ch 016Dh 016Eh	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1	U1TB U1C0 U1C1	XXh XXh 00001000b 00000010b XXh
0162h 0163h 0164h 0165h 0166h 0167h 0168h 0169h 0168h 016Bh 016Bh 016Ch 016Eh 016Fh	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1	U1TB U1C0 U1C1	XXh XXh 00001000b 00000010b XXh
0162h 0163h 0164h 0165h 0166h 0167h 0168h 0168h 0168h 016Bh 016Ch 016Ch 016Eh 016Fh 0170h	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1	U1TB U1C0 U1C1	XXh XXh 00001000b 00000010b XXh
0162h 0163h 0164h 0166h 0166h 0168h 0168h 0168h 0168h 0168h 016Ch 016Ch 016Fh 016Fh 0170h	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1	U1TB U1C0 U1C1	XXh XXh 00001000b 00000010b XXh
0162h 0163h 0164h 0165h 0166h 0167h 0168h 0168h 0168h 016Bh 016Ch 016Ch 016Eh 016Fh 0170h	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1	U1TB U1C0 U1C1	XXh XXh 00001000b 00000010b XXh
0162h 0163h 0164h 0166h 0166h 0168h 0168h 0168h 0168h 0168h 016Ch 016Ch 016Fh 016Fh 0170h	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1	U1TB U1C0 U1C1	XXh XXh 00001000b 00000010b XXh
0162h 0163h 0164h 0165h 0166h 0167h 0168h 0168h 016Bh 016Ch 016Ch 016Ch 016Ch 016Fh 0177h 0177h	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1	U1TB U1C0 U1C1	XXh XXh 00001000b 00000010b XXh
0162h 0163h 0164h 0165h 0166h 0167h 0168h 0168h 0168h 016Ch 016Ch 016Ch 016Ch 016Ch 016Ch 016Fh 0176 0173h 0173h	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1	U1TB U1C0 U1C1	XXh XXh 00001000b 00000010b XXh
0162h 0163h 0164h 0165h 0166h 0167h 0168h 0169h 0168h 016Bh 016Dh 016Dh 016Dh 016Eh 016Fh 0170h 0171h 0172h 0173h 0173h	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1	U1TB U1C0 U1C1	XXh XXh 00001000b 00000010b XXh
0162h 0163h 0164h 0165h 0166h 0167h 0168h 0168h 0168h 016Bh 016Bh 016Ch 016Ch 016Ch 016Fh 0170h 0177h 0177h 0177h 0177h	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1	U1TB U1C0 U1C1	XXh XXh 00001000b 00000010b XXh
0162h 0163h 0166h 0166h 0167h 0168h 0168h 0168h 016Bh 016Ch 016Ch 016Ch 016Ch 016Ch 0170h 0177h 0172h 0177h	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1	U1TB U1C0 U1C1	XXh XXh 00001000b 00000010b XXh
0162h 0163h 0166h 0166h 0167h 0168h 0168h 0168h 016Bh 016Bh 016Ch 016Ch 016Ch 016Fh 016Fh 0170h 0177h 0173h 0174h 0175h 0177h	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1	U1TB U1C0 U1C1	XXh XXh 00001000b 00000010b XXh
0162h 0163h 0165h 0166h 0167h 0168h 0168h 0168h 0168h 016Ch 016Ch 016Ch 016Ch 016Ch 016Ch 0170h 0177h 0177h 0177h 0177h 0177h 0177h	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1	U1TB U1C0 U1C1	XXh XXh 00001000b 00000010b XXh
0162h 0163h 0164h 0165h 0166h 0167h 0168h 0168h 0168h 016Ah 016Ch 016Ch 016Ch 016Ch 016Ch 016Ch 0176h 0177h 0177h 0177h 0178h 0178h 0179h	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1	U1TB U1C0 U1C1	XXh XXh 00001000b 00000010b XXh
0162h 0163h 0164h 0165h 0166h 0167h 0168h 0168h 0168h 016Bh 016Ch 016Ch 016Ch 016Ch 016Ch 016Ch 0176h 0177h 0173h 0177h 0177h 0177h 0177h 0178h	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1	U1TB U1C0 U1C1	XXh XXh 00001000b 00000010b XXh
0162h 0163h 0164h 0165h 0166h 0167h 0168h 0168h 0168h 016Ch 016Ch 016Ch 016Ch 016Ch 016Ch 0170h 0177h 0177h 0177h 0177h 0177h 0178h 0179h	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1	U1TB U1C0 U1C1	XXh XXh 00001000b 00000010b XXh
0162h 0163h 0164h 0165h 0166h 0167h 0168h 0168h 0168h 016Bh 016Ch 016Ch 016Ch 016Ch 016Ch 016Ch 0176h 0177h 0173h 0177h 0177h 0177h 0177h 0178h	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1	U1TB U1C0 U1C1	XXh XXh 00001000b 00000010b XXh
0162h 0163h 0166h 0166h 0167h 0168h 0168h 0168h 016Bh 016Bh 016Ch 016Ch 016Ch 016Ch 016Fh 0176Fh 0177h 0177h 0177h 0177h 0177h 0177h 0177h 0177h 0177h 0177h 0177h 0177h	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1	U1TB U1C0 U1C1	XXh XXh 00001000b 00000010b XXh
0162h 0163h 0164h 0166h 0166h 0167h 0168h 0168h 0168h 0168h 0168h 0168h 0168h 0168h 0168h 0170h 0177h 0177h 0177h 0177h 0177h 0177h 0177h 0178h 0178h 0178h	UART1 Transmit Buffer Register UART1 Transmit/Receive Control Register 0 UART1 Transmit/Receive Control Register 1	U1TB U1C0 U1C1	XXh XXh 00001000b 00000010b XXh

SFR Information (6)⁽¹⁾ Table 4.6

X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users.

Address	Register	Symbol	After Reset
2C00h	DTC Transfer Vector Area		XXh
2C01h	DTC Transfer Vector Area		XXh
2C02h	DTC Transfer Vector Area		XXh
2C03h	DTC Transfer Vector Area		XXh
2C04h	DTC Transfer Vector Area		XXh
2C05h	DTC Transfer Vector Area		XXh
2C06h	DTC Transfer Vector Area		XXh
2C07h	DTC Transfer Vector Area		XXh
2C08h	DTC Transfer Vector Area		XXh
2C09h	DTC Transfer Vector Area		XXh
2C0Ah	DTC Transfer Vector Area		XXh
:	DTC Transfer Vector Area		XXh
:	DTC Transfer Vector Area		XXh
2C3Ah	DTC Transfer Vector Area		XXh
2C3Bh	DTC Transfer Vector Area		XXh
2C3Ch	DTC Transfer Vector Area		XXh
2C3Dh	DTC Transfer Vector Area		XXh
2C3Eh	DTC Transfer Vector Area		XXh
2C3Fh	DTC Transfer Vector Area	DTODO	XXh
2C40h	DTC Control Data 0	DTCD0	XXh
2C41h	4		XXh
2C42h 2C43h	4		XXh XXh
2C43h 2C44h	4		XXh
2C4411 2C45h	4		XXh
2C45h	4		XXh
2C4011 2C47h	4		XXh
2C48h	DTC Control Data 1	DTCD1	XXh
2C49h		DICDI	XXh
2C43h	-		XXh
2C4Bh	-		XXh
2C4Ch	4		XXh
2C4Dh	4		XXh
2C4Eh	4		XXh
2C4Fh	4		XXh
2C50h	DTC Control Data 2	DTCD2	XXh
2C51h		-	XXh
2C52h	1		XXh
2C53h	1		XXh
2C54h	1		XXh
2C55h			XXh
2C56h			XXh
2C57h	1		XXh
2C58h	DTC Control Data 3	DTCD3	XXh
2C59h			XXh
2C5Ah			XXh
2C5Bh			XXh
2C5Ch			XXh
2C5Dh			XXh
2C5Eh]		XXh
2C5Fh]		XXh
2C60h	DTC Control Data 4	DTCD4	XXh
2C61h]		XXh
2C62h]		XXh
2C63h]		XXh
2C64h			XXh
2C65h			XXh
2C66h			XXh
2C67h			XXh
2C68h	DTC Control Data 5	DTCD5	XXh
2C69h]		XXh
2C6Ah]		XXh
2C6Bh]		XXh
2C6Ch]		XXh
2C6Dh]		XXh
2C6Eh]		XXh
			XXh

SFR Information (9)⁽¹⁾ Table 4.9

X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users.

Table 4.12 SFR Information (12)⁽¹⁾

Address	Register	Symbol	After Reset
2CF0h	DTC Control Data 22	DTCD22	XXh
2CF1h	1		XXh
2CF2h			XXh
2CF3h			XXh
2CF4h			XXh
2CF5h]		XXh
2CF6h			XXh
2CF7h			XXh
2CF8h	DTC Control Data 23	DTCD23	XXh
2CF9h			XXh
2CFAh			XXh
2CFBh]		XXh
2CFCh			XXh
2CFDh			XXh
2CFEh			XXh
2CFFh]		XXh
2D00h			

X: Undefined Note:

1. The blank areas are reserved and cannot be accessed by users.

Table 4.13 ID Code Areas and Option Function Select Area

Address	Area Name	Symbol	After Reset
:			•
FFDBh	Option Function Select Register 2	OFS2	(Note 1)
:			
FFDFh	ID1		(Note 2)
:			
FFE3h	ID2		(Note 2)
:	1=-		
FFEBh	ID3		(Note 2)
			(NI=4= 0)
FFEFh	ID4		(Note 2)
FFF3h	ID5		(Note 2)
	105		
FFF7h	ID6		(Note 2)
:			(
FFFBh	ID7		(Note 2)
:			· · · /
FFFFh	Option Function Select Register	OFS	(Note 1)

Notes:

The option function select area is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. 1 Do not write additions to the option function select area. If the block including the option function select area is erased, the option function select area is set to FFh.

When blank products are shipped, the option function select area is set to FFh. It is set to the written value after written by the user. When factory-programming products are shipped, the value of the option function select area is the value programmed by the user. The ID code areas are allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. 2.

Do not write additions to the ID code areas. If the block including the ID code areas is erased, the ID code areas are set to FFh. When blank products are shipped, the ID code areas are set to FFh. They are set to the written value after written by the user. When factory-programming products are shipped, the value of the ID code areas is the value programmed by the user.

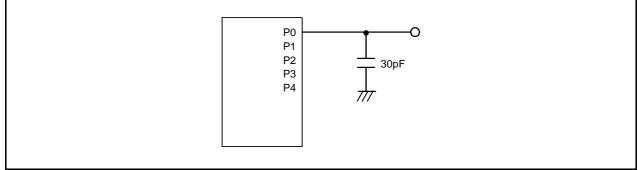


Figure 5.1 Ports P0 to P4 Timing Measurement Circuit

Symbol	Parameter	Condition	Standard			Unit
Symbol	Falameter	Condition	Min.	Тур.	Max.	Unit
-	Resolution		-	-	8	Bit
-	Absolute accuracy		-	-	2.5	LSB
tsu	Setup time		-	-	3	μS
Ro	Output resistor		-	6	-	kΩ
IVref	Reference power input current	(Note 2)	-	_	1.5	mA

Table 5.4 D/A Converter Characteristics

Notes:

- 1. Vcc/AVcc = Vref = 2.7 to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.
- 2. This applies when one D/A converter is used and the value of the DAi register (i = 0 or 1) for the unused D/A converter is 00h. The resistor ladder of the A/D converter is not included.

Table 5.5 Comparator A Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Falameter	Condition	Min.	Тур.	Max.	Unit
LVREF	External reference voltage input range		1.4	-	Vcc	V
LVCMP1, LVCMP2	External comparison voltage input range		-0.3	-	Vcc + 0.3	V
-	Offset		-	50	200	mV
-	Comparator output delay time (2)	At falling, VI = Vref – 100 mV	-	3	-	μS
		At falling, $VI = Vref - 1 V$ or below	_	1.5	-	μS
		At rising, VI = Vref + 100 mV	I	2	-	μS
		At rising, VI = Vref + 1 V or above	=	0.5	-	μS
-	Comparator operating current	Vcc = 5.0 V	1	0.5	-	μA

Notes:

1. Vcc = 2.7 to 5.5 V, $T_{opr} = -20$ to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. When the digital filter is disabled.

Table 5.6 Comparator B Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Farameter	Condition	Min.	Тур.	Max.	Unit
Vref	IVREF1, IVREF3 input reference voltage		0	-	Vcc - 1.4	V
Vi	IVCMP1, IVCMP3 input voltage		-0.3	-	Vcc + 0.3	V
-	Offset		-	5	100	mV
td	Comparator output delay time (2)	VI = Vref ± 100 mV	-	0.1	-	μs
Ісмр	Comparator operating current	Vcc = 5.0 V	-	17.5	-	μΑ

Notes:

1. Vcc = 2.7 to 5.5 V, Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. When the digital filter is disabled.

Cumhal	Parameter	Condition		Standard	1	Unit
Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Vdet0	Voltage detection level Vdet0_0 ⁽²⁾		1.80	1.90	2.05	V
	Voltage detection level Vdet0_1 (2)		2.15	2.35	2.50	V
	Voltage detection level Vdet0_2 (2)		2.70	2.85	3.05	V
	Voltage detection level Vdet0_3 ⁽²⁾		3.55	3.80	4.05	V
-	Voltage detection 0 circuit response time ⁽⁴⁾	At the falling of Vcc from 5 V to (Vdet0_0 – 0.1) V	-	6	150	μS
-	Voltage detection circuit self power consumption	VCA25 = 1, Vcc = 5.0 V	-	1.5	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts $^{\rm (3)}$		-	-	100	μS

Table 5.9 **Voltage Detection 0 Circuit Electrical Characteristics**

Notes:

1. The measurement condition is Vcc = 1.8 V to 5.5 V and $T_{opr} = -20$ to $85^{\circ}C$ (N version) / -40 to $85^{\circ}C$ (D version). 2. Select the voltage detection level with bits VDSEL0 and VDSEL1 in the OFS register.

3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA25 bit in the VCA2 register to 0.

4. Time until the voltage monitor 0 reset is generated after the voltage passes Vdet0.

Table 5.10 Voltage Detection 1 Circuit Electrical Characteri
--

Cumbed.	Parameter	Condition		Standard	1	Unit
Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Vdet1	Voltage detection level Vdet1_0 ⁽²⁾	At the falling of Vcc	2.00	2.20	2.40	V
	Voltage detection level Vdet1_1 ⁽²⁾	At the falling of Vcc	2.15	2.35	2.55	V
	Voltage detection level Vdet1_2 ⁽²⁾	At the falling of Vcc	2.30	2.50	2.70	V
	Voltage detection level Vdet1_3 (2)	At the falling of Vcc	2.45	2.65	2.85	V
	Voltage detection level Vdet1_4 (2)	At the falling of Vcc	2.60	2.80	3.00	V
	Voltage detection level Vdet1_5 ⁽²⁾	At the falling of Vcc	2.75	2.95	3.15	V
	Voltage detection level Vdet1_6 ⁽²⁾	At the falling of Vcc	2.85	3.10	3.40	V
	Voltage detection level Vdet1_7 (2)	At the falling of Vcc	3.00	3.25	3.55	V
	Voltage detection level Vdet1_8 (2)	At the falling of Vcc	3.15	3.40	3.70	V
	Voltage detection level Vdet1_9 ⁽²⁾	At the falling of Vcc	3.30	3.55	3.85	V
	Voltage detection level Vdet1_A (2)	At the falling of Vcc	3.45	3.70	4.00	V
	Voltage detection level Vdet1_B (2)	At the falling of Vcc	3.60	3.85	4.15	V
	Voltage detection level Vdet1_C ⁽²⁾	At the falling of Vcc	3.75	4.00	4.30	V
	Voltage detection level Vdet1_D (2)	At the falling of Vcc	3.90	4.15	4.45	V
	Voltage detection level Vdet1_E ⁽²⁾	At the falling of Vcc	4.05	4.30	4.60	V
	Voltage detection level Vdet1_F (2)	At the falling of Vcc	4.20	4.45	4.75	V
-	Hysteresis width at the rising of Vcc in voltage detection 1 circuit	Vdet1_0 to Vdet1_5 selected	-	0.07	-	V
		Vdet1_6 to Vdet1_F selected	-	0.10	-	V
_	Voltage detection 1 circuit response time ⁽³⁾	At the falling of Vcc from 5 V to (Vdet1_0 - 0.1) V	-	60	150	μS
-	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	-	1.7	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽⁴⁾		-	-	100	μS

Notes:

1. The measurement condition is Vcc = 1.8 V to 5.5 V and T_{opr} = -20 to 85°C (N version) / -40 to 85°C (D version).

2. Select the voltage detection level with bits VD1S0 to VD1S3 in the VD1LS register.

3. Time until the voltage monitor 1 interrupt request is generated after the voltage passes Vdet1.

4. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.

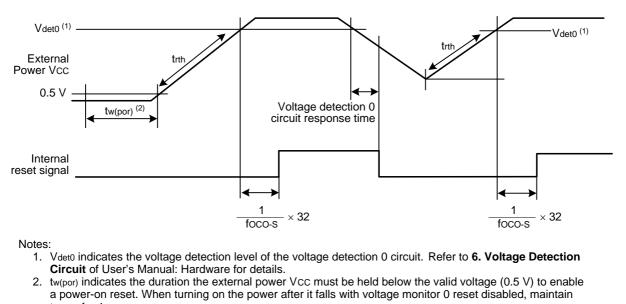
Sumbol	Parameter	Condition		Unit		
Symbol	Faranteler	Condition	Min.	Тур.	Max.	Unit
Vdet2	Voltage detection level Vdet2_0 ⁽²⁾	At the falling of Vcc	3.70	4.00	4.30	V
	Voltage detection level Vdet2_EXT (2)	At the falling of LVCMP2	1.20	1.34	1.48	V
-	Hysteresis width at the rising of Vcc in voltage detection 2 circuit		-	0.10	-	V
-	Voltage detection 2 circuit response time ⁽³⁾	At the falling of Vcc from $5 \text{ V to } (\text{Vdet2}_0 - 0.1) \text{ V}$	-	20	150	μS
-	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0 V	-	1.7	-	μA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽⁴⁾		-	-	100	μS

Table 5.11 Voltage Detection 2 Circuit Electrical Characteristics

Notes:

- 1. The measurement condition is Vcc = 1.8 V to 5.5 V and Topr = -20 to $85^{\circ}C$ (N version) / -40 to $85^{\circ}C$ (D version).
- 2. The voltage detection level varies with detection targets. Select the level with the VCA24 bit in the VCA2 register.
- 3. Time until the voltage monitor 2 interrupt request is generated after the voltage passes Vdet2.

4. Necessary time until the voltage detection circuit operates after setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.


Table 5.12 Power-on Reset Circuit ⁽²⁾

Symbol	Parameter	Condition		Unit		
	Falameter	Condition	Min.	Тур.	Max.	Unit
trth	External power Vcc rise gradient	(1)	0	Ì	50,000	mV/ms

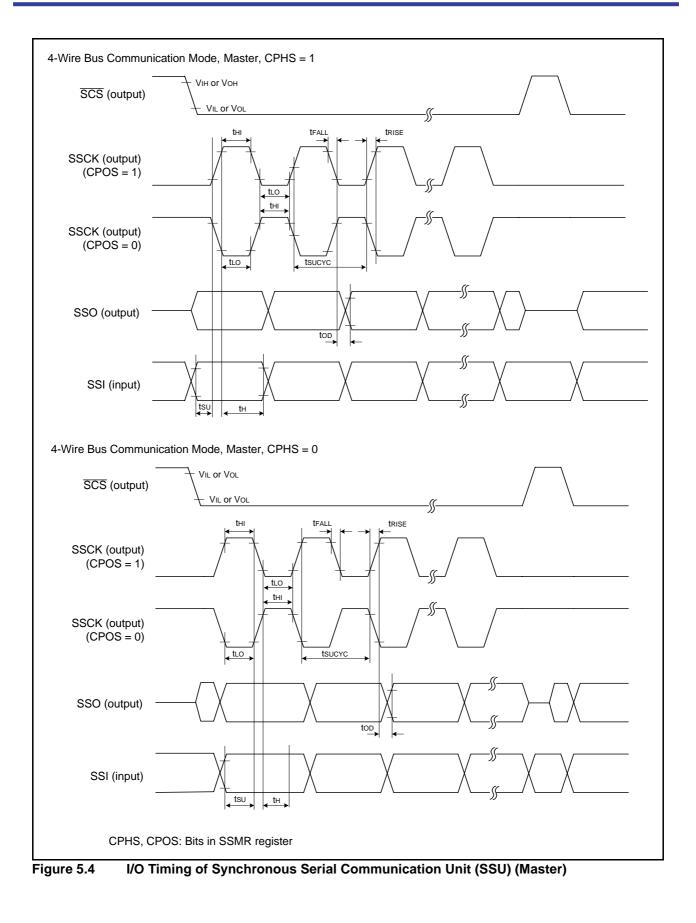
Notes:

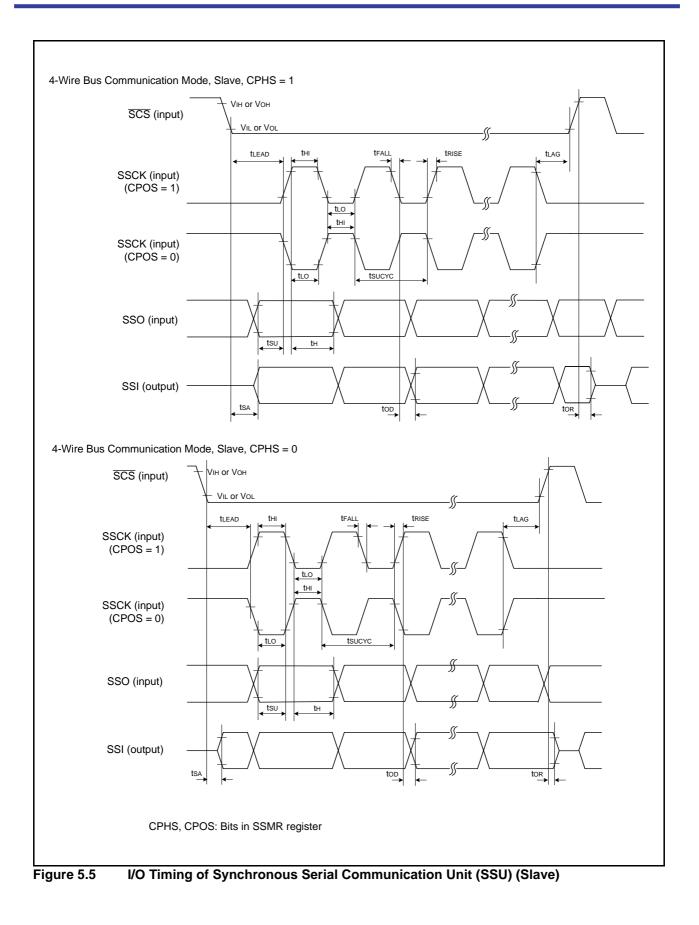
1. The measurement condition is $T_{opr} = -20$ to $85^{\circ}C$ (N version) / -40 to $85^{\circ}C$ (D version), unless otherwise specified.

2. To use the power-on reset function, enable voltage monitor 0 reset by setting the LVDAS bit in the OFS register to 0.

tw(por) for 1 ms or more.

Figure 5.3 Power-on Reset Circuit Electrical Characteristics


Symbol	Doromoto		Conditions		Stand	ard	Unit
Symbol	Paramete	ſ	Min.		Тур.	Max.	Unit
tsucyc	SSCK clock cycle time	e		4	-	_	tCYC ⁽²⁾
tнı	SSCK clock "H" width			0.4	-	0.6	tsucyc
tlo	SSCK clock "L" width			0.4	-	0.6	tsucyc
trise	SSCK clock rising	Master		-	-	1	tCYC ⁽²⁾
	time	Slave		-	-	1	μs
TFALL	SSCK clock falling	Master		-	-	1	tcyc ⁽²⁾
	time	Slave		-		1	μs
ts∪	SSO, SSI data input s	etup time		100	-	_	ns
tн	SSO, SSI data input h	old time		1	-	-	tCYC (2)
tlead	SCS setup time	Slave		1tcyc + 50	-	_	ns
tlag	SCS hold time	Slave		1tcyc + 50	_	_	ns
tod	SSO, SSI data output	delay time		-		1	tCYC ⁽²⁾
tsa	SSI slave access time	;	$2.7~\text{V} \leq \text{Vcc} \leq 5.5~\text{V}$	-		1.5tcyc + 100	ns
			$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	-	-	1.5tcyc + 200	ns
tOR	SSI slave out open tin	ne	$2.7~V \leq Vcc \leq 5.5~V$	-	-	1.5tcyc + 100	ns
			$1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$	-	-	1.5tcyc + 200	ns


Table 5.16 Timing Requirements of Synchronous Serial Communication Unit (SSU)⁽¹⁾

Notes:

1. Vcc = 1.8 to 5.5 V, Vss = 0 V and T_{opr} = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified. 2. 1tcyc = 1/f1(s)

RENESAS

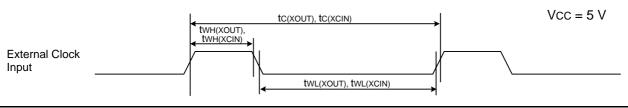
Symbol		Parameter	Condition		Sta	andard		Unit
Symbol		Parameter	Condition		Min.	Тур.	Max.	Unit
Vон	Output	Other than XOUT	Drive capacity High Vcc = $5 V$	Іон = -20 mA	Vcc - 2.0	_	Vcc	V
	"H" voltage		Drive capacity Low Vcc = 5 V	Iон = -5 mA	Vcc - 2.0	_	Vcc	V
		XOUT	Vcc = 5 V	Іон = -200 μА	1.0	_	Vcc	V
Vol	Output	Other than XOUT	Drive capacity High Vcc = $5 V$	IoL = 20 mA	-	_	2.0	V
	"L" voltage		Drive capacity Low Vcc = 5 V	lo∟ = 5 mA	-	_	2.0	V
		XOUT	Vcc = 5 V	IoL = 200 μA	-	_	0.5	V
VT+-VT-	Hysteresis	INTO, INT1, INT3, KIO, KI1, KI2, KI3, TRAIO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, TRCTRG, TRCCLK, ADTRG, RXD0, RXD1, RXD2, CLK0, CLK1, CLK2, SSI, SCL, SDA, SSO	Vcc = 5.0 V Vcc = 5.0 V		0.1	1.2	_	V
Ін	Input "H" cur	RESET	VI = 5 V, Vcc = 5.0 V		-		5.0	•
					-	-		μA
liL David	Input "L" cur		VI = 0 V, Vcc = 5.0 V		-	-	-5.0	μA
Rpullup		p resistance VI = 0 V, Vcc = 5.0 V		25	50	100	kΩ	
RfXIN	Feedback resistance	XIN			—	0.3	_	MΩ
RfXCIN	Feedback resistance	XCIN			-	8	-	MΩ
VRAM	RAM hold vo	bltage	During stop mode		1.8	-	-	V

Table 5.18 Electrical Characteristics (1) [4.2 V \leq Vcc \leq 5.5 V]

Note:

1. $4.2 \text{ V} \le \text{Vcc} \le 5.5 \text{ V}$ and $\text{T}_{opr} = -20 \text{ to } 85^{\circ}\text{C}$ (N version) / -40 to 85°C (D version), f(XIN) = 20 MHz, unless otherwise specified.

Table 5.19Electrical Characteristics (2) [3.3 V \leq Vcc \leq 5.5 V]
(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)


Symbol	Parameter		Condition		Standard	4	Unit
_				Min.	Тур.	Max.	
Icc	Power supply current (Vcc = 3.3 to 5.5 V)	High-speed clock mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	6.5	15	mA
	Single-chip mode, output pins are open, other pins		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	5.3	12.5	mA
	are Vss		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	3.6	-	mA
			XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	3.0	-	mA
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	2.2	_	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	1.5	_	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	7.0	15	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	3.0	_	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16 MSTIIC = MSTTRD = MSTTRC = 1	-	1	-	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	-	90	400	μA
		Low-speed clock mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division FMR27 = 1, VCA20 = 0	_	85	400	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division Program operation on RAM Flash memory off, FMSTP = 1, VCA20 = 0	_	47	_	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	15	100	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	4	90	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (peripheral clock off) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	3.5	-	μΑ
		Stop mode	XIN clock off, Topr = 25° C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	2.0	5.0	μA
			XIN clock off, Topr = 85° C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	5.0	-	μA

Timing Requirements (Unless Otherwise Specified: Vcc = 5 V, Vss = 0 V at Topr = 25°C)

Table 5.20 External Clock Input (XOUT, XCIN)

Symbol	Parameter		Standard		
Symbol	Falanielei	Min.	Max.	Unit	
tc(XOUT)	XOUT input cycle time	50	-	ns	
twh(xout)	XOUT input "H" width	24	-	ns	
twl(xout)	XOUT input "L" width	24	-	ns	
tc(XCIN)	XCIN input cycle time	14	-	μS	
twh(xcin)	XCIN input "H" width	7	-	μS	
twl(xcin)	XCIN input "L" width 7 –				

Figure 5.8 External Clock Input Timing Diagram when Vcc = 5 V

Table 5.21 TRAIO Input

Symbol	Parameter		Standard	
Symbol			Max.	Unit
tc(TRAIO)	TRAIO input cycle time	100	-	ns
twh(traio)	TRAIO input "H" width	40	-	ns
twl(traio)	TRAIO input "L" width	40	Ι	ns

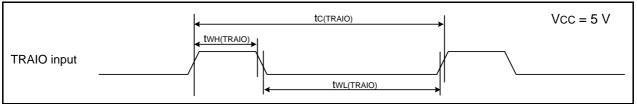


Figure 5.9 TRAIO Input Timing Diagram when Vcc = 5 V

Table 5.25Electrical Characteristics (4) [2.7 V \leq Vcc < 3.3 V]
(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Parameter		Condition				Unit
	High-speed		iviin.			mA
(Vcc = 2.7 to 3.3 V) Single-chip mode,	clock mode	High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division		0.0	10	ША
output pins are open, other pins are Vss		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	1.5	7.5	mA
	High-speed on-chip oscillator	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	7.0	15	mA
	mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	3.0	-	mA
		XIN clock off High-speed on-chip oscillator on fOCO-F = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	4.0	-	mA
		XIN clock off High-speed on-chip oscillator on fOCO-F = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5	-	mA
		XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16 MSTIIC = MSTTRD = MSTTRC = 1	-	1	_	mA
	Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	_	90	390	μΑ
	Low-speed clock mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division FMR27 = 1. VCA20 = 0	-	80	400	μΑ
		XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division Program operation on RAM	_	40	_	μA
	Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation	-	15	90	μΑ
		XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off	_	4	80	μΑ
		XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (peripheral clock off)	-	3.5	-	μA
		VCA27 = VCA26 = VCA25 = 0, VCA20 = 1				
	Stop mode	XIN clock off, $T_{OPT} = 25^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	2.0	5.0	μA
		XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off	_	5.0	_	μA
	Power supply current (Vcc = 2.7 to 3.3 V) Single-chip mode, output pins are open,	Power supply current (Vcc = 2.7 to 3.3 V) Single-chip mode, output pins are open, other pins are Vss High-speed on-chip oscillator mode Low-speed clock mode Low-speed clock mode	Power supply current (Vcc = 2.7 to 3.3 V) XIN = 10 MHz (square wave) High-speed on-chip oscillator of = 125 kHz No division Single-chip mode, other pins are open, other pins are vss XIN = 10 MHz (square wave) High-speed on-chip oscillator on = 125 kHz Divide by-8 High-speed on-chip oscillator XIN clock off High-speed on-chip oscillator on = 125 kHz Divide by-8 High-speed on-chip oscillator XIN clock off High-speed on-chip oscillator on OCO-F = 20 MHz Divide by-8 XIN clock off High-speed on-chip oscillator on OCO-F = 10 MHz Low-speed on-chip oscillator on IOCO-F = 10 MHz Divide by-8 XIN clock off High-speed on-chip oscillator on IOCO-F = 10 MHz Low-speed on-chip oscillator on IOCO-F = 10 MHz Low-speed on-chip oscillator on IOCO-F = 10 MHz Divide-by-8 XIN clock off High-speed on-chip oscillator on IOCO-F = 10 MHz Low-speed on-chip oscillator on IOCO-F = 4 MHz Divide-by-8 XIN clock off High-speed on-chip oscillator on IOCO-F = 4 MHz Divide-by-8 XIN clock off High-speed on-chip oscillator on IOCO-F = 4 MHz Divide-by-8 XIN clock off High-speed on-chip oscillator on IOCO-F = 4 MHz Divide-by-8 XIN clock off High-speed on-chip oscillator on IOCO-F = 4 MHz Divide-by-8 XIN clock off High-speed on-chip oscillator on IOCO-F = 4 MHz Divide-by-8 XIN clock off High-speed on-chip oscillator off XCIN clock oscillator on = 125 kHz Divide-by-8 XIN clock off High-speed on-chip oscillator off XCIN clock oscillator off Low-speed on-chip oscillator off Low-speed on-chip oscillator off Low-speed on-chip oscillat	Parameter Condition Min. Power supply current (lock mode, output prins are open, other prins are Vss Imp-speed in the print of the post of the post of the post of the post in the print of the post of the post of the post of the post in the print of the post of the post of the post of the post in the print of the post of the post of the post of the post in the post of the post of the post of the post of the post in the post of the post of the post of the post of the post in the post of the post of the post of the post of the post in the post of the post of the post of the post of the post in the post of the post of the post of the post of the post in the post of the post of the post of the post of the post in the post of the post of the post of the post of the post in the post of the post of the post of the post of the post in the post of the post of the post of the post of the post in the post of the post of the post of the post of the post in the post of the post of the post of the post of the post in the post of the post of the post of the post of the post in the post of the post of the post of the post of the post in the post of the po	Parameter Condition Min. Typ. Power supply current (Vcc = 2.7 to 3.3 V) Single-chip mode, output pins are open, other pins are Vss INI = for MHz (square wave) High-speed on-chip oscillator of Low-speed on-chip oscillator on = 125 kHz - 1.5 With provide and the possibility on a = 125 kHz on-chip oscillator on = 125 kHz - 1.5 High-speed on-chip oscillator on = 125 kHz No division - 7.0 With clock off mode XIN clock off High-speed on-chip oscillator on 10CO-F = 20 MHz Low-speed on-chip oscillator on 10CO-F = 10 MHz Low-speed on-chip oscillator on = 125 kHz - 1.5 XIN clock off High-speed on-chip oscillator on 10CO-F = 10 MHz Low-speed on-chip oscillator on = 125 kHz - 1.5 XIN clock off High-speed on-chip oscillator on 10CO-F = 10 MHz Low-speed on-chip oscillator on = 125 kHz - 1.5 XIN clock off High-speed on-chip oscillator on = 125 kHz - 1.5 XIN clock off High-speed on-chip oscillator off Low-speed on-chip	Power supply currentHigh-speed (Vcc = 2.7 to 3.3 V) Single-chip model address of the speed on-chip oscillator on = 125 kHz No division other pins are vostNot.IVD. = 10 MHz (square wave) the speed on-chip oscillator on = 125 kHz No division-3.510inter pins are vostHigh-speed on-chip oscillator on the speed on-chip oscillator on the 25 kHz Low-speed to the poscillator on the 26 kHz Low-speed to the poscillator on the 26 kHz No division mode the speed on-chip oscillator on the 26 kHz No division to water on-thip oscillator on the 26 kHz No division No division to water on-thip oscillator of the the speed on-chip oscillator of the the speed on-thip oscillator of the the speed on-thip oscillator of the the speed on-the speed the the speed on-the speed the the speed on-the speed the the spe

Table 5.34 Serial Interface

Cumbal		Parameter		Standard		
Symbol	Parameter			Min. Max.		
tc(CK)	CLKi input cycle time	When external clock is selected	800	-	ns	
tW(CKH)	CLKi input "H" width		400	-	ns	
tW(CKL)	CLKi input "L" width		400	-	ns	
td(C-Q)	TXDi output delay time	TXDi output delay time		200	ns	
th(C-Q)	TXDi hold time		0	-	ns	
tsu(D-C)	RXDi input setup time		150	-	ns	
th(C-D)	RXDi input hold time		90	-	ns	
td(C-Q)	TXDi output delay time	When internal clock is selected	-	200	ns	
tsu(D-C)	RXDi input setup time		150	-	ns	
th(C-D)	RXDi input hold time		90	-	ns	

i = 0 to 2

Note: 1. Vcc = 2.2 V and Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.

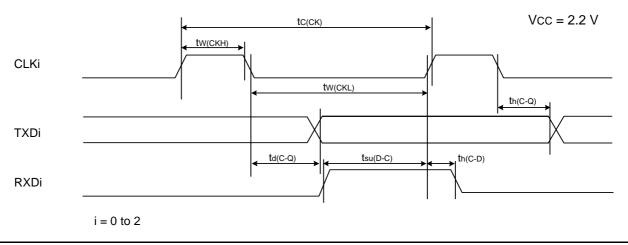
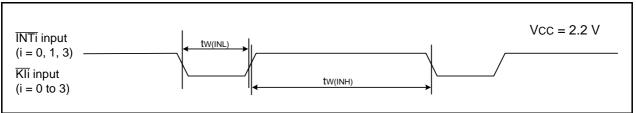


Figure 5.18 Serial Interface Timing Diagram when Vcc = 2.2 V


Table 5.35External Interrupt INTi (i = 0, 1, 3) Input, Key Input Interrupt Kli (i = 0 to 3)

Symbol	Parameter		Standard		
Symbol	Falameter	Min.	Max.	Unit	
tw(INH)	INTi input "H" width, Kli input "H" width	1000 (1)	-	ns	
tw(INL)	INTi input "L" width, Kli input "L" width	1000 (2)	-	ns	

Notes:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

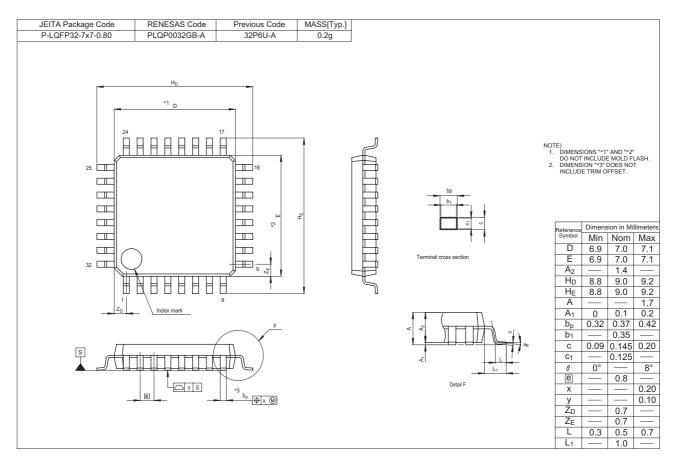

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

Figure 5.19 Input Timing Diagram for External Interrupt INTi and Key Input Interrupt Kli when Vcc = 2.2 V

Package Dimensions

Diagrams showing the latest package dimensions and mounting information are available in the "Packages" section of the Renesas Electronics website.

REVISION HISTORY	R8C/33M Group Datasheet
-------------------------	-------------------------

Rev.	Date		Description
Rev.	Dale	Page	Summary
0.10	Sep 28, 2010	-	First Edition issued
0.20	Feb 15, 2011	34	Table 5.11 revised, Note 2 added
		35	Table 5.13 and Table 5.14 revised
		41	Table 5.18 revised
		49	Table 5.30 revised
1.00	Jun 27, 2011	All pages	"Preliminary", "Under development" deleted
		4	Table 1.3 "(D): Under development" deleted
		27	Table 5.2 revised
		34	Table 5.11 revised
		35	Table 5.13 revised
		43	Table 5.20 revised
		44	Table 5.22 Note 1 added
		47	Table 5.26 revised
		48	Table 5.28 Note 1 added
		51	Table 5.32 revised
		52	Table 5.34 Note 1 added

All trademarks and registered trademarks are the property of their respective owners.