

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	27
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	2.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21336mnfp-v2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

R8C/33M Group 1. Overview

1.1.2 Specifications

Tables 1.1 and 1.2 outline the Specifications for R8C/33M Group.

Table 1.1 Specifications for R8C/33M Group (1)

ts + 32 bits \rightarrow 32 bits
pace: 1 Mbyte)
roup.
detection 0 and voltage
r
_
,
equency adjustment function),
quericy adjustifient function),
atam data atian function
stop detection function
, 2, 4, 8, and 16
low-speed clock, high-speed
r), wait mode, stop mode
er selectable
``
9)
(output level inverted every
surement mode, pulse period
surement mode, pulse pendu
veform generation mode (PWM
ode, programmable wait one-
, p
mpare function), PWM mode
)
<u>-</u>
s, hours, days of week), output

R8C/33M Group 1. Overview

Table 1.4 Pin Name Information by Pin Number

				I/O	Pin Functions for	r Periphe	eral Mod	dules
Pin Number	Control Pin	Port	Interrupt	Timer	Serial Interface	SSU	I ² C bus	A/D Converter, D/A Converter, Comparator A, Comparator B
1		P4_2						VREF
2	MODE							
3	RESET							
4	XOUT(/XCOUT)	P4_7						
5	VSS/AVSS							
6	XIN(/XCIN)	P4_6						
7	VCC/AVCC							
8		P3_7		TRAO	(RXD2/SCL2/ TXD2/SDA2)	SSO	SDA	
9		P3_5		(TRCIOD)	(CLK2)	SSCK	SCL	
10		P3_4		(TRCIOC)	(RXD2/SCL2/ TXD2/SDA2)	SSI		IVREF3
11		P3_3	ĪNT3	(TRCCLK)	(CTS2/RTS2)	SCS		IVCMP3
12		P2_2		(TRCIOD)				
13		P2_1		(TRCIOC)				
14		P2_0	(INT1)	(TRCIOB)				
15		P3_1	,	(TRBO)				
16		P4_5	ĪNT0		(RXD2/SCL2)			ADTRG
17		P1_7	INT1	(TRAIO)				IVCMP1
18		P1_6			(CLK0)			LVCOUT2/IVREF1
19		P1_5	(INT1)	(TRAIO)	(RXD0)			
20		P1_4	(11411)	(TRCCLK)	(TXD0)			
21		P1_3	KI3	TRBO (/TRCIOC)	(17,26)			AN11/LVCOUT1
22		P1_2	KI2	(TRCIOB)				AN10/LVREF
23		P1_1	KI1	(TRCIOA/ TRCTRG)				AN9/LVCMP2
24		P1_0	KI0	(TRCIOD)				AN8/LVCMP1
25		P0_7	100	(TRCIOC)				AN0/DA1
26		P0_6		(TRCIOD)				AN1/DA0
27		P0_5		(TRCIOB)				AN2
28		P0_4		TREO (/TRCIOB)				AN3
29		P0_3		(TRCIOB)	(CLK1)			AN4
30		P0_2		(TRCIOA/ TRCTRG)	(RXD1)			AN5
31		P0_1		(TRCIOA/ TRCTRG)	(TXD1)			AN6
32		P0_0		(TRCIOA/ TRCTRG)				AN7

Note:

1. Can be assigned to the pin in parentheses by a program.

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. R0, R1, R2, R3, A0, A1, and FB configure a register bank. There are two sets of register bank.

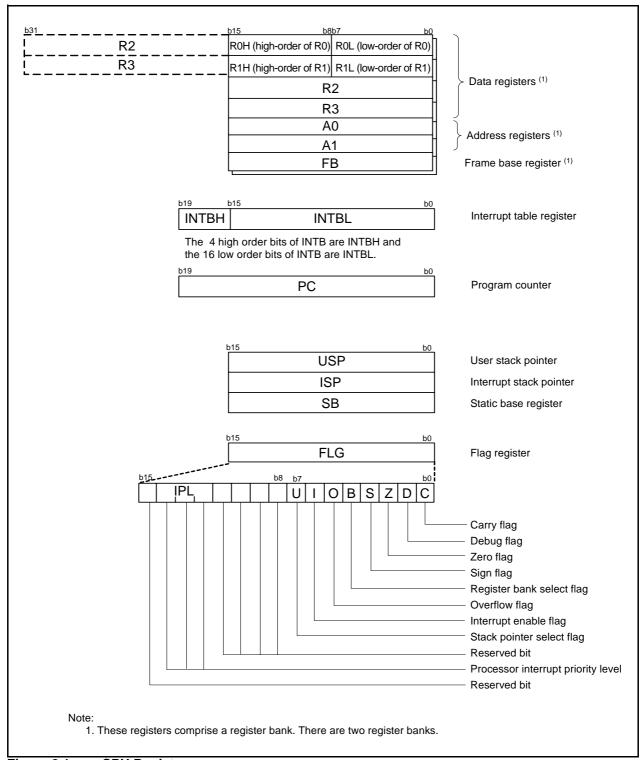


Figure 2.1 CPU Registers

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 and as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the starting address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 **Zero Flag (Z)**

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow; otherwise to 0.

SFR Information (7) (1) Table 4.7

Table 4.7			
Address	Register	Symbol	After Reset
0180h	Timer RA Pin Select Register	TRASR	00h
0181h	Timer RB/RC Pin Select Register	TRBRCSR	00h
0182h	Timer RC Pin Select Register 0	TRCPSR0	00h
0183h	Timer RC Pin Select Register 1	TRCPSR1	00h
0184h			
0185h			
0186h			
0187h			
0188h	UART0 Pin Select Register	U0SR	00h
0189h	UART1 Pin Select Register	U1SR	00h
018Ah	UART2 Pin Select Register 0	U2SR0	00h
018Bh	UART2 Pin Select Register 1	U2SR1	00h
018Ch	SSU/IIC Pin Select Register	SSUIICSR	00h
018Dh			
018Eh	INT Interrupt Input Pin Select Register	INTSR	00h
018Fh	I/O Function Pin Select Register	PINSR	00h
0190h			
0191h			
0192h			
0193h	SS Bit Counter Register	SSBR	11111000b
0194h	SS Transmit Data Register L / IIC bus Transmit Data Register (2)	SSTDR / ICDRT	FFh
0195h	SS Transmit Data Register H (2)	SSTDRH	FFh
0196h	SS Receive Data Register L / IIC bus Receive Data Register (2)	SSRDR / ICDRR	FFh
		SSRDRH	FFh
0197h	SS Receive Data Register H (2)		
0198h	SS Control Register H / IIC bus Control Register 1 (2)	SSCRH / ICCR1	00h
0199h	SS Control Register L / IIC bus Control Register 2 (2)	SSCRL / ICCR2	01111101b
019Ah	SS Mode Register / IIC bus Mode Register (2)	SSMR / ICMR	00010000b / 00011000b
019Bh	SS Enable Register / IIC bus Interrupt Enable Register (2)	SSER / ICIER	00h
019Ch	SS Status Register / IIC bus Status Register (2)	SSSR / ICSR	00h / 0000X000b
019Dh	SS Mode Register 2 / Slave Address Register (2)	SSMR2 / SAR	00h
019Eh	- Communication 27 Grand Manager Magneton		
019Fh			
01A0h			
01A1h			
01A2h			
01A3h			
01A4h			
01A5h			
01A6h			
01A7h			
01A8h			
01A9h			
01AAh			
01/0/th			
01ACh			
01ADh			
01ADII			
01AFh			
01B0h			
01B0n			
01B1II	Flash Memory Status Register	FST	10000X00b
01B2h	i idon Memory Olalus Negislei	131	100000000
01B3h	Flash Memory Control Register 0	FMR0	00h
01B4n	Flash Memory Control Register 1	FMR1	00h
01B6h	Flash Memory Control Register 2	FMR2	00h
01B6n 01B7h	i iash wemory control register z	FIVIRZ	UUII
01B8h			
01B9h			
01BAh			
01BBh			
01BCh			
01BDh			
01BEh 01BFh			

X: Undefined

- Notes:

 1. The blank areas are reserved and cannot be accessed by users.
 2. Selectable by the IICSEL bit in the SSUIICSR register.

Table 4.12 SFR Information (12) (1)

Address	Register	Symbol	After Reset
2CF0h	DTC Control Data 22	DTCD22	XXh
2CF1h			XXh
2CF2h			XXh
2CF3h			XXh
2CF4h			XXh
2CF5h			XXh
2CF6h			XXh
2CF7h			XXh
2CF8h	DTC Control Data 23	DTCD23	XXh
2CF9h			XXh
2CFAh			XXh
2CFBh			XXh
2CFCh			XXh
2CFDh			XXh
2CFEh			XXh
2CFFh	1		XXh
2D00h			
:	•		
2FFFh			

X: Undefined

Note:

Table 4.13 ID Code Areas and Option Function Select Area

Address	Area Name	Symbol	After Reset
: FFDBh	Option Function Select Register 2	OFS2	(Note 1)
: FFDFh	ID1		(Note 2)
: FFE3h	ID2		(Note 2)
: FFEBh	ID3		(Note 2)
: FFEFh	ID4		(Note 2)
: FFF3h	ID5		(Note 2)
FFF7h	ID6		(Note 2)
FFFBh	ID7		(Note 2)
FFFFh	Option Function Select Register	OFS	(Note 1)

- The option function select area is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program.
 Do not write additions to the option function select area. If the block including the option function select area is erased, the option function select area is set to FFh.
 - When blank products are shipped, the option function select area is set to FFh. It is set to the written value after written by the user. When factory-programming products are shipped, the value of the option function select area is the value programmed by the user.
- 2. The ID code areas are allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the ID code areas. If the block including the ID code areas is erased, the ID code areas are set to FFh. When blank products are shipped, the ID code areas are set to FFh. They are set to the written value after written by the user. When factory-programming products are shipped, the value of the ID code areas is the value programmed by the user.

^{1.} The blank areas are reserved and cannot be accessed by users.

5. Electrical Characteristics

Table 5.1 Absolute Maximum Ratings

Symbol	Parameter	Condition	Rated Value	Unit
Vcc/AVcc	Supply voltage		-0.3 to 6.5	V
Vı	Input voltage		-0.3 to Vcc + 0.3	V
Vo	Output voltage		-0.3 to Vcc + 0.3	V
Pd	Power dissipation	$-40^{\circ}C \leq Topr \leq 85^{\circ}C$	500	mW
Topr	Operating ambient temperature		-20 to 85 (N version) / -40 to 85 (D version)	°C
Tstg	Storage temperature		-40 to 65 (D version) -65 to 150	°C

Table 5.3 A/D Converter Characteristics

Symbol	Parameter		Cono	litions		Standard		Unit
Symbol	Parameter		Cond	iilions	Min. Typ. M	Max.	Unit	
_	Resolution		Vref = AVCC		=	-	10	Bit
-	Absolute accuracy	10-bit mode	Vref = AVCC = 5.0 V	AN0 to AN7 input, AN8 to AN11 input	-	-	±3	LSB
			Vref = AVCC = 3.3 V	AN0 to AN7 input, AN8 to AN11 input	_	-	±5	LSB
			Vref = AVCC = 3.0 V	AN0 to AN7 input, AN8 to AN11 input	-	=	±5	LSB
			Vref = AVCC = 2.2 V	AN0 to AN7 input, AN8 to AN11 input	_	-	±5	LSB
		8-bit mode	Vref = AVCC = 5.0 V	AN0 to AN7 input, AN8 to AN11 input	_	-	±2	LSB
			Vref = AVCC = 3.3 V	AN0 to AN7 input, AN8 to AN11 input	-	=	±2	LSB
			Vref = AVCC = 3.0 V	AN0 to AN7 input, AN8 to AN11 input	-	_	±2	LSB
			Vref = AVCC = 2.2 V	AN0 to AN7 input, AN8 to AN11 input	-	=	±2	LSB
φAD	A/D conversion clock	A/D conversion clock		4.0 ≤ Vref = AVCC ≤ 5.5 V (2) 3.2 ≤ Vref = AVCC ≤ 5.5 V (2)		=	20	MHz
						=	16	MHz
			$2.7 \le V_{ref} = AV_{CC} \le 5.5 \text{ V } (2)$ $2.2 \le V_{ref} = AV_{CC} \le 5.5 \text{ V } (2)$		2	-	10	MHz
					2	-	5	MHz
_	Tolerance level impedance				-	3	_	kΩ
tconv	Conversion time	10-bit mode	Vref = AVCC = 5.0 V, ¢	AD = 20 MHz	2.2	ı	_	μS
		8-bit mode	Vref = AVCC = 5.0 V, ¢	AD = 20 MHz	2.2	_	_	μS
tsamp	Sampling time		φAD = 20 MHz		8.0	_	_	μS
lVref	Vref current		Vcc = 5 V, XIN = f1 = φAD = 20 MHz		-	45	_	μΑ
Vref	Reference voltage				2.2	-	AVcc	V
VIA	Analog input voltage (3)				0	-	Vref	V
OCVREF	On-chip reference voltage		$2 \text{ MHz} \le \phi \text{AD} \le 4 \text{ MH}$	z	1.19	1.34	1.49	V

- 1. Vcc/AVcc = Vref = 2.2 to 5.5 V, Vss = 0 V and $T_{opr} = -20$ to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.
- 2. The A/D conversion result will be undefined in wait mode, stop mode, when the flash memory stops, and in low-current-consumption mode. Do not perform A/D conversion in these states or transition to these states during A/D conversion.
- 3. When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode.

Table 5.7 Flash Memory (Program ROM) Electrical Characteristics

Cymphol	Parameter	Conditions		Unit			
Symbol	Parameter	Conditions	Min.	n. Typ. Max.		Unit	
_	Program/erase endurance (2)		1,000 (3)	-	-	times	
_	Byte program time		-	80	500	μS	
_	Block erase time		-	0.3	-	s	
td(SR-SUS)	Time delay from suspend request until suspend		-	_	5+CPU clock × 3 cycles	ms	
_	Interval from erase start/restart until following suspend request		0	_	_	μS	
=	Time from suspend until erase restart		=	=	30+CPU clock × 1 cycle	μS	
td(CMDRST- READY)	Time from when command is forcibly terminated until reading is enabled		=	=	30+CPU clock × 1 cycle	μS	
_	Program, erase voltage		2.7	_	5.5	V	
-	Read voltage		1.8	-	5.5	V	
=	Program, erase temperature		0	-	60	°C	
=	Data hold time (7)	Ambient temperature = 55°C	20	-	=	year	

- 1. Vcc = 2.7 to 5.5 V and Topr = 0 to 60°C, unless otherwise specified.
- 2. Definition of programming/erasure endurance
 - The programming and erasure endurance is defined on a per-block basis.
 - If the programming and erasure endurance is n (n = 1,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.
 - However, the same address must not be programmed more than once per erase operation (overwriting prohibited).
- 3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).
- 4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.
- 5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.
- 7. The data hold time includes time that the power supply is off or the clock is not supplied.

Table 5.11 Voltage Detection 2 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
	Parameter	Condition	Min.	Тур.	Max.	Unit
Vdet2	Voltage detection level Vdet2_0 (2)	At the falling of Vcc	3.70	4.00	4.30	V
	Voltage detection level Vdet2_EXT (2)	At the falling of LVCMP2	1.20	1.34	1.48	V
_	Hysteresis width at the rising of Vcc in voltage detection 2 circuit		-	0.10	-	V
_	Voltage detection 2 circuit response time (3)	At the falling of Vcc from 5 V to (Vdet2_0 - 0.1) V	-	20	150	μS
=	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0 V	=	1.7	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽⁴⁾		-	-	100	μS

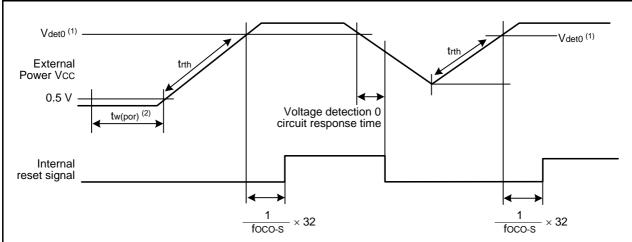

- 1. The measurement condition is Vcc = 1.8 V to 5.5 V and $T_{opr} = -20 \text{ to } 85^{\circ}C$ (N version) / $-40 \text{ to } 85^{\circ}C$ (D version).
- 2. The voltage detection level varies with detection targets. Select the level with the VCA24 bit in the VCA2 register.
- 3. Time until the voltage monitor 2 interrupt request is generated after the voltage passes Vdet2.
- 4. Necessary time until the voltage detection circuit operates after setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.

Table 5.12 Power-on Reset Circuit (2)

Symbol	Parameter	Condition		Unit		
	Falamete	Condition	Min.	Тур.	Max.	Offic
trth	External power Vcc rise gradient	(1)	0	-	50,000	mV/ms

Notes:

- 1. The measurement condition is Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.
- 2. To use the power-on reset function, enable voltage monitor 0 reset by setting the LVDAS bit in the OFS register to 0.

- Vdeto indicates the voltage detection level of the voltage detection 0 circuit. Refer to 6. Voltage Detection Circuit of User's Manual: Hardware for details.
- tw(por) indicates the duration the external power Vcc must be held below the valid voltage (0.5 V) to enable
 a power-on reset. When turning on the power after it falls with voltage monitor 0 reset disabled, maintain
 tw(por) for 1 ms or more.

Figure 5.3 Power-on Reset Circuit Electrical Characteristics

Table 5.16 Timing Requirements of Synchronous Serial Communication Unit (SSU) (1)

Cumbal	Parameter		Conditions		Standard			
Symbol			Parameter Conditions -		Тур.	Max.	Unit	
tsucyc	SSCK clock cycle time	Э		4	-	=	tcyc (2)	
tHI	SSCK clock "H" width			0.4	_	0.6	tsucyc	
tLO	SSCK clock "L" width			0.4	_	0.6	tsucyc	
trise	SSCK clock rising	Master		=	=	1	tcyc (2)	
	time	Slave		=	-	1	μS	
tfall	SSCK clock falling	Master		=	-	1	tcyc (2)	
	time	Slave		-	-	1	μS	
tsu	SSO, SSI data input setup time			100	-	=	ns	
tH	SSO, SSI data input h	old time		1	=	=	tcyc (2)	
tLEAD	SCS setup time	Slave		1tcyc + 50	-	-	ns	
tLAG	SCS hold time	Slave		1tcyc + 50	-	-	ns	
top	SSO, SSI data output	delay time		=	-	1	tcyc (2)	
tsa	SSI slave access time)	2.7 V ≤ Vcc ≤ 5.5 V	-	-	1.5tcyc + 100	ns	
			1.8 V ≤ Vcc < 2.7 V	=	_	1.5tcyc + 200	ns	
tor	SSI slave out open tin	ne	2.7 V ≤ Vcc ≤ 5.5 V	=	-	1.5tcyc + 100	ns	
			1.8 V ≤ Vcc < 2.7 V	-	-	1.5tcyc + 200	ns	

Vcc = 1.8 to 5.5 V, Vss = 0 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.
 1tcyc = 1/f1(s)

Table 5.18 Electrical Characteristics (1) [4.2 V \leq Vcc \leq 5.5 V]

Symbol		Parameter	Condition	Condition —		Standard		
Symbol		Parameter	Condition			Тур.	Max.	Unit
Voн	Output	Other than XOUT	Drive capacity High Vcc = 5 V	Iон = −20 mA	Vcc - 2.0	_	Vcc	V
	"H" voltage		Drive capacity Low Vcc = 5 V	Iон = −5 mA	Vcc - 2.0	-	Vcc	V
		XOUT	Vcc = 5 V	IoH = -200 μA	1.0	-	Vcc	V
Vol	Output	Other than XOUT	Drive capacity High Vcc = 5 V	IoL = 20 mA	=	-	2.0	V
	"L" voltage		Drive capacity Low Vcc = 5 V	IoL = 5 mA	-	_	2.0	V
		XOUT	Vcc = 5 V	IoL = 200 μA	=	-	0.5	V
VT+-VT-	Hysteresis	INTO, INT1, INT3, KIO, KI1, KI2, KI3, TRAIO, TRCIOA, TRCIOB, TRCICC, TRCIOD, TRCTRG, TRCCLK, ADTRG, RXDO, RXD1, RXD2, CLK0, CLK1, CLK2, SSI, SCL, SDA, SSO RESET	Vcc = 5.0 V		0.1	1.2	_	V V
lін	Input "H" cur	rent	VI = 5 V, Vcc = 5.0 V		=	-	5.0	μΑ
lı∟	Input "L" cur	rent	VI = 0 V, Vcc = 5.0 V		-	-	-5.0	μА
RPULLUP	Pull-up resis	tance	VI = 0 V, Vcc = 5.0 V		25	50	100	kΩ
RfXIN	Feedback resistance	XIN			-	0.3	-	ΜΩ
RfXCIN	Feedback resistance	XCIN			_	8	-	ΜΩ
VRAM	RAM hold vo	oltage	During stop mode		1.8	-	_	V

^{1.} $4.2 \text{ V} \le \text{Vcc} \le 5.5 \text{ V}$ and $\text{Topr} = -20 \text{ to } 85^{\circ}\text{C}$ (N version) $/ -40 \text{ to } 85^{\circ}\text{C}$ (D version), f(XIN) = 20 MHz, unless otherwise specified.

Table 5.19 Electrical Characteristics (2) [3.3 V \leq Vcc \leq 5.5 V] (Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Symbol	Parameter		Condition		Standard		Unit
				Min.	Тур.	Max.	
lcc	Power supply current (Vcc = 3.3 to 5.5 V)	High-speed clock mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	6.5	15	mA
	Single-chip mode, output pins are open, other pins		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	5.3	12.5	mA
	are Vss		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	3.6	_	mA
			XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	3.0	_	mA
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	2.2	=	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5	_	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	7.0	15	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	=	3.0	=	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16	-	1	_	mA
		1	MSTIIC = MSTTRD = MSTTRC = 1 XIN clock off		00	400	Λ
		Low-speed on-chip oscillator mode	High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	_	90	400	μА
		Low-speed clock mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division FMR27 = 1, VCA20 = 0	_	85	400	μА
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division Program operation on RAM Flash memory off, FMSTP = 1, VCA20 = 0	_	47	_	μА
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator of = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	15	100	μА
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	4	90	μА
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (peripheral clock off) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	3.5	_	μА
		Stop mode	XIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	2.0	5.0	μА
			XIIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	5.0	=	μА

Timing Requirements

(Unless Otherwise Specified: Vcc = 5 V, Vss = 0 V at Topr = 25°C)

Table 5.20 External Clock Input (XOUT, XCIN)

Symbol	Parameter		Standard		
			Max.	Unit	
tc(XOUT)	XOUT input cycle time	50	=	ns	
twh(xout)	XOUT input "H" width	24	-	ns	
twl(xout)	XOUT input "L" width	24	-	ns	
tc(XCIN)	XCIN input cycle time	14	-	μS	
twh(xcin)	XCIN input "H" width	7	-	μS	
twl(xcin)	XCIN input "L" width	7	-	μS	

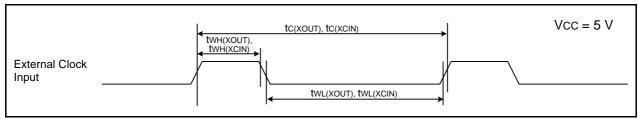


Figure 5.8 External Clock Input Timing Diagram when Vcc = 5 V

Table 5.21 TRAIO Input

Symbol	Parameter		Standard		
Symbol			Max.	Unit	
tc(TRAIO)	TRAIO input cycle time	100	=	ns	
twh(traio)	TRAIO input "H" width	40	=	ns	
twl(traio)	TRAIO input "L" width	40	-	ns	

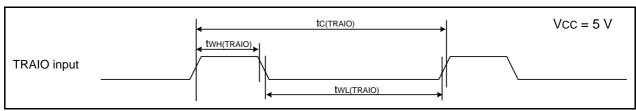


Figure 5.9 TRAIO Input Timing Diagram when Vcc = 5 V

Table 5.25 Electrical Characteristics (4) [2.7 V \leq Vcc < 3.3 V] (Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Parameter	Condition			Standard		Unit
			Min.		Max.	
(Vcc = 2.7 to 3.3 V) Single-chip mode,	High-speed clock mode	High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-			mA
other pins are Vss		High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_		7.5	mA
	High-speed on-chip oscillator	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	7.0	15	mA
	mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	3.0	ı	mA
		XIN clock off High-speed on-chip oscillator on fOCO-F = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	=	4.0	=	mA
		XIN clock off High-speed on-chip oscillator on fOCO-F = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	1.5	-	mA
		XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16 MSTIIC = MSTTRD = MSTTRC = 1	_	1	-	mA
	Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	-	90	390	μА
	Low-speed clock mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division FMR27 = 1, VCA20 = 0	-	80	400	μА
		XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division Program operation on RAM Flash memory off, FMSTP = 1, VCA20 = 0	=	40	-	μА
	Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation	=	15	90	μА
		XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	-	4	80	μА
		XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (peripheral clock off) While a WAIT instruction is executed	-	3.5	-	μА
	Stop mode	XIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off	-	2.0	5.0	μА
		XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1	_	5.0	_	μА
	Single-chip mode, output pins are open,	Power supply current (Vcc = 2.7 to 3.3 V) Single-chip mode, output pins are Vss High-speed on-chip oscillator mode Low-speed on-chip oscillator mode Low-speed clock mode Wait mode Wait mode	Power supply current (Vcc = 2.7 to 3.3 v) Single-chip mode, output pins are open, other pins are vss High-speed on-chip oscillator of the pins are open, other pins are vss	Perareneter Power supply current (Vcc = 2.7 to 3.3 V) Single-chip mode, Will = 10 MHz (square wave) High-speed on-chip oscillator of = 125 kHz No division VINI = 10 MHz (square wave) High-speed on-chip oscillator of = 125 kHz Divide-by-8 High-speed on-chip oscillator on = 125 kHz Divide-by-8 VINI clock off High-speed on-chip oscillator on 10CO-F = 20 MHz Low-speed on-chip oscillator on 125 kHz Divide-by-8 VINI clock off High-speed on-chip oscillator on 125 kHz Divide-by-8 VINI clock off High-speed on-chip oscillator on 125 kHz Low-speed on-chip oscillator on 125 kHz Divide-by-18 VINI clock off High-speed on-chip oscillator on 125 kHz Divide-by-18 VINI clock off High-speed on-chip oscillator on 125 kHz Divide-by-18 VINI clock off High-speed on-chip oscillator on 125 kHz Divide-by-18 VINI clock off High-speed on-chip oscillator on 125 kHz Divide-by-18 VINI clock off High-speed on-chip oscillator on 125 kHz Divide-by-18 VINI clock off High-speed on-chip oscillator on 125 kHz Divide-by-18 VINI clock off High-speed on-chip oscillator on 125 kHz Divide-by-18 VINI clock off High-speed on-chip oscillator on 125 kHz Divide-by-18 VINI clock off High-speed on-chip oscillator off Low-speed division on 125 kHz Vinite at Vinite	Power supply current Nigh-speed XIN = 10 MHz (square wave) High-speed Clock mode High-speed on-chip oscillator of 1.5 Clock words High-speed on-chip oscillator on 1.25 kHz Clock words High-speed on-chip oscillator on 1.5 Clock words High-speed on-chip oscillator of 1.5 Clock words High-speed on-chip osci	Power supply current (Noce 22 7 to 3.3 V) Single-chip model of clock model output pins are open, other pins are Vss High-speed on-chip oscillator on = 125 kHz

Table 5.28 Serial Interface

Symbol	Parameter			Standard		
Symbol				Max.	Unit	
tc(CK)	CLKi input cycle time	When external clock is selected	300	-	ns	
tW(CKH)	CLKi input "H" width		150	=	ns	
tW(CKL)	CLKi Input "L" width		150	=	ns	
td(C-Q)	TXDi output delay time		=	120	ns	
th(C-Q)	TXDi hold time		0	=	ns	
tsu(D-C)	RXDi input setup time		30	=	ns	
th(C-D)	RXDi input hold time		90	=	ns	
td(C-Q)	TXDi output delay time	When internal clock is selected	=	30	ns	
tsu(D-C)	RXDi input setup time		120	-	ns	
th(C-D)	RXDi input hold time		90	=	ns	

i = 0 to 2Note:

1. Vcc = 3 V and Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.

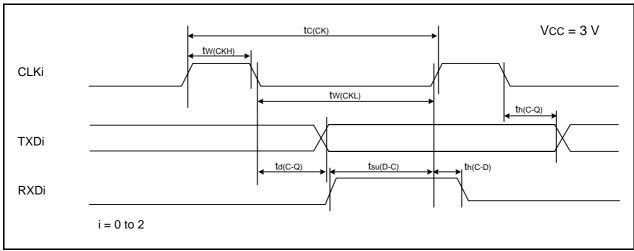


Figure 5.14 Serial Interface Timing Diagram when Vcc = 3 V

Table 5.29 External Interrupt $\overline{\text{INTi}}$ (i = 0, 1, 3) Input, Key Input Interrupt $\overline{\text{Kli}}$ (i = 0 to 3)

Symbol	Parameter		Standard		
			Max.	Unit	
tw(INH)	ĪNTi input "H" width, Kli input "H" width	380 (1)	-	ns	
tW(INL)	VTi input "L" width, Kli input "L" width		-	ns	

- 1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater.
- 2. When selecting the digital filter by the $\overline{\text{INTi}}$ input filter select bit, use an $\overline{\text{INTi}}$ input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

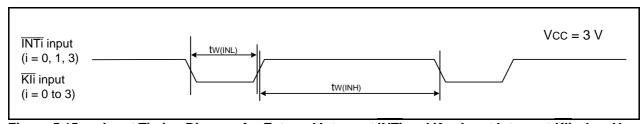


Figure 5.15 Input Timing Diagram for External Interrupt INTi and Key Input Interrupt Kli when Vcc = 3 V

Table 5.30 Electrical Characteristics (5) [1.8 V \leq Vcc < 2.7 V]

Symbol	Dor	ameter	Condition -		Standard			Unit
Symbol	Pai	ameter			Min.	Тур.	Max.	Unit
Vон	Output "H" voltage	Other than XOUT	Drive capacity High	Iон = −2 mA	Vcc - 0.5	=	Vcc	V
			Drive capacity Low	Iон = −1 mA	Vcc - 0.5	=	Vcc	V
		XOUT		IOH = -200 μA	1.0	-	Vcc	V
Vol	Output "L" voltage	Other than XOUT	Drive capacity High	IoL = 2 mA	_	-	0.5	V
			Drive capacity Low	IoL = 1 mA	_	-	0.5	V
		XOUT		IOL = 200 μA	_	-	0.5	V
VT+-VT-	Hysteresis	INTO, INT1, INT3, KIO, KI1, KI2, KI3, TRAIO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, TRCTRG, TRCCLK, ADTRG, RXD0, RXD1, RXD2, CLK0, CLK1, CLK2, SSI, SCL, SDA, SSO	Vcc = 2.2 V		0.05	0.20	-	V
		RESET		× 17	0.05	0.2	-	•
IIH	Input "H" current		VI = 2.2 V, Vcc = 2.2		_	-	4.0	μΑ
lı∟	Input "L" current		VI = 0 V, Vcc = 2.2 \		_	-	-4.0	μА
RPULLUP	Pull-up resistance		VI = 0 V, Vcc = 2.2 \	/	70	140	300	kΩ
RfXIN	Feedback resistance	XIN			-	0.3	-	МΩ
RfXCIN	Feedback resistance	XCIN			_	8	-	ΜΩ
VRAM	RAM hold voltage		During stop mode		1.8	-	_	V

^{1.} $1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$ and $\text{Topr} = -20 \text{ to } 85^{\circ}\text{C}$ (N version) / -40 to 85°C (D version), f(XIN) = 5 MHz, unless otherwise specified.

Table 5.31 Electrical Characteristics (6) [1.8 V \leq Vcc < 2.7 V] (Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Symbol	Parameter	Condition		,	Unit		
	Faraillelei		Condition	Min.	Тур.	Max.	Utill
Icc	Power supply current (Vcc = 1.8 to 2.7 V) Single-chip mode, output pins are open, other pins are Vss	High-speed clock mode	XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division XIN = 5 MHz (square wave)	-	0.8	-	mA mA
	other pins are vss		High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8				
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 5 MHz Low-speed on-chip oscillator on = 125 kHz No division	I	2.5	10	mA
		mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 5 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	I	1.7	=	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16 MSTIIC = MSTTRD = MSTTRC = 1	-	1	-	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	I	90	300	μА
		Low-speed clock mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division FMR27 = 1, VCA20 = 0	-	80	350	μА
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division Program operation on RAM Flash memory off, FMSTP = 1, VCA20 = 0	I	40	_	μА
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	15	90	μА
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	4	80	μА
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (peripheral clock off) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	3.5	_	μА
		Stop mode	XIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	2.0	5	μА
			XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	5.0	-	μА

Table 5.34 Seria	al Interface
------------------	--------------

Symbol	Parameter			Standard		
Symbol				Max.	Unit	
tc(CK)	CLKi input cycle time	When external clock is selected	800	-	ns	
tW(CKH)	CLKi input "H" width		400	=	ns	
tW(CKL)	CLKi input "L" width		400	=	ns	
td(C-Q)	TXDi output delay time		=	200	ns	
th(C-Q)	TXDi hold time		0	=	ns	
tsu(D-C)	RXDi input setup time		150	=	ns	
th(C-D)	RXDi input hold time		90	=	ns	
td(C-Q)	TXDi output delay time	When internal clock is selected	=	200	ns	
tsu(D-C)	RXDi input setup time		150	-	ns	
th(C-D)	RXDi input hold time		90	=	ns	

i = 0 to 2

Note:

1. Vcc = 2.2 V and $Topr = -20 \text{ to } 85 \,^{\circ}\text{C}$ (N version)/ $-40 \text{ to } 85 \,^{\circ}\text{C}$ (D version), unless otherwise specified.

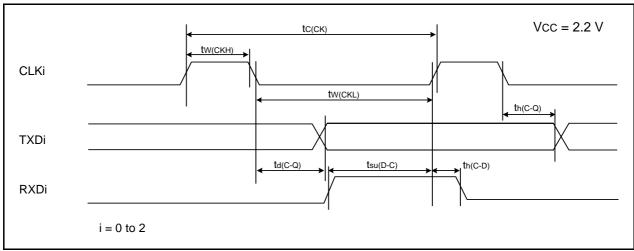


Figure 5.18 Serial Interface Timing Diagram when Vcc = 2.2 V

Table 5.35 External Interrupt $\overline{\text{INTi}}$ (i = 0, 1, 3) Input, Key Input Interrupt $\overline{\text{Kli}}$ (i = 0 to 3)

Symbol	Parameter	Standard		Unit
		Min.	Max.	Offic
tw(INH)	ĪNTi input "H" width, Kli input "H" width	1000 (1)	-	ns
tw(INL)	ĪNTi input "L" width, Kli input "L" width	1000 (2)	-	ns

- 1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater.
- 2. When selecting the digital filter by the $\overline{\text{INTi}}$ input filter select bit, use an $\overline{\text{INTi}}$ input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

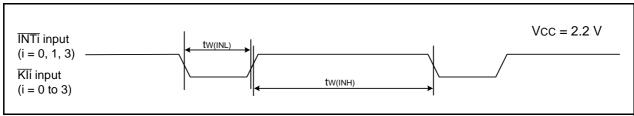


Figure 5.19 Input Timing Diagram for External Interrupt INTi and Key Input Interrupt Kli when Vcc = 2.2 V

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

 The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

— When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.