

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	AVR
Core Size	32-Bit Single-Core
Speed	66MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	123
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at32uc3c0256c-alur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

AT32UC3C

- One 4-Channel 20-bit Pulse Width Modulation Controller (PWM)
 - Complementary outputs, with Dead Time Insertion
 - Output Override and Fault Protection
- Two Quadrature Decoders
- One 16-channel 12-bit Pipelined Analog-To-Digital Converter (ADC)
 - Dual Sample and Hold Capability Allowing 2 Synchronous Conversions
 - Single-Ended and Differential Channels, Window Function
- Two 12-bit Digital-To-Analog Converters (DAC), with Dual Output Sample System
- Four Analog Comparators
- Six 16-bit Timer/Counter (TC) Channels
 - External Clock Inputs, PWM, Capture and Various Counting Capabilities
- One Peripheral Event Controller
 - Trigger Actions in Peripherals Depending on Events Generated from Peripherals or from Input Pins
 - Deterministic Trigger
 - 34 Events and 22 Event Actions
- Five Universal Synchronous/Asynchronous Receiver/Transmitters (USART)
 - Independent Baudrate Generator, Support for SPI, LIN, IrDA and ISO7816 interfaces
 - Support for Hardware Handshaking, RS485 Interfaces and Modem Line
- Two Master/Slave Serial Peripheral Interfaces (SPI) with Chip Select Signals
- One Inter-IC Sound (I2S) Controller
 - Compliant with I2S Bus Specification
 - Time Division Multiplexed mode
- Three Master and Three Slave Two-Wire Interfaces (TWI), 400kbit/s I²C-compatible
- QTouch[®] Library Support
 - Capacitive Touch Buttons, Sliders, and Wheels
 - QTouch[®] and QMatrix[®] Acquisition
- On-Chip Non-intrusive Debug System
 - Nexus Class 2+, Runtime Control, Non-Intrusive Data and Program Trace
 - aWire[™] single-pin programming trace and debug interface muxed with reset pin
 - NanoTrace[™] provides trace capabilities through JTAG or aWire interface
- 3 package options
 - 64-pin QFN/TQFP (45 GPIO pins)
 - 100-pin TQFP (81 GPIO pins)
 - 144-pin LQFP (123 GPIO pins)
- Two operating voltage ranges:
 - Single 5V Power Supply
 - Single 3.3V Power Supply

2. Overview

2.1 Block diagram

Figure 2-1. Block diagram

Table 2-1. Configuration Summar

Feature	AT32UC3C0512C/ AT32UC3C0256C/ AT32UC3C0128C/ AT32UC3C064C	AT32UC3C1512C/ AT32UC3C1256C/ AT32UC3C1128C/ AT32UC3C164C	AT32UC3C2512C/ AT32UC3C2256C/ AT32UC3C2128C/ AT32UC3C264C		
Analog Comparators	4	4	2		
JTAG	1				
aWire	1				
Max Frequency	66 MHz				
Package	LQFP144	TQFP100	TQFP64/QFN64		

AT32UC3C

Figure 3-2. TQFP100 Pinout

Table 3-7.Signal Description List

Signal Name	Function	Туре	Active Level	Comments
SDCK	SDRAM Clock	Output		
SDCKE	SDRAM Clock Enable	Output		
SDWE	SDRAM Write Enable	Output	Low	
	External Interrupt Con	troller - EIC		
EXTINT[8:1]	External Interrupt Pins	Input		
NMI_N = EXTINT[0]	Non-Maskable Interrupt Pin	Input	Low	
	General Purpose Input/Output - GPIC	A, GPIOB, C	GPIOC, GPI	D
PA[29:19] - PA[16:0]	Parallel I/O Controller GPIOA	I/O		
PB[31:0]	Parallel I/O Controller GPIOB	I/O		
PC[31:0]	Parallel I/O Controller GPIOC	I/O		
PD[30:0]	Parallel I/O Controller GPIOD	I/O		
	Inter-IC Sound (I2S) Cor	ntroller - IISC)	
IMCK	I2S Master Clock	Output		
ISCK	I2S Serial Clock	I/O		
ISDI	I2S Serial Data In	Input		
ISDO	I2S Serial Data Out	Output		
IWS	I2S Word Select	I/O		
	JTAG			
тск	Test Clock	Input		
TDI	Test Data In	Input		
TDO	Test Data Out	Output		
TMS	Test Mode Select	Input		
	Ethernet MAC - N	ЛАСВ		
COL	Collision Detect	Input		
CRS	Carrier Sense and Data Valid	Input		
MDC	Management Data Clock	Output		
MDIO	Management Data Input/Output	I/O		
RXD[3:0]	Receive Data	Input		

Table 3-7.Signal Description List

Signal Name	Function	Туре	Active Level	Comments			
NPCS[3:0]	SPI Peripheral Chip Select	I/O	Low				
SCK	Clock	Output					
	Timer/Counter - TC0, TC1						
A0	Channel 0 Line A	I/O					
A1	Channel 1 Line A	I/O					
A2	Channel 2 Line A	I/O					
B0	Channel 0 Line B	I/O					
B1	Channel 1 Line B	I/O					
B2	Channel 2 Line B	I/O					
CLK0	Channel 0 External Clock Input	Input					
CLK1	Channel 1 External Clock Input	Input					
CLK2	Channel 2 External Clock Input	Input					
	Two-wire Interface - TWIMS0,	TWIMS1, T	WIMS2				
TWALM	SMBus SMBALERT	I/O	Low	Only on TWIMS0, TWIMS1			
ТѠСК	Serial Clock	I/O					
TWD	Serial Data	I/O					
Universal Syn	chronous Asynchronous Receiver Transmitter	- USARTO,	USART1, U	SART2, USART3, USART4			
CLK	Clock	I/O					
СТЅ	Clear To Send	Input	Low				
DCD	Data Carrier Detect	Input	Low	Only USART1			
DSR	Data Set Ready	Input	Low	Only USART1			
DTR	Data Terminal Ready	Output	Low	Only USART1			
RI	Ring Indicator	Input	Low	Only USART1			
RTS	Request To Send	Output	Low				
RXD	Receive Data	Input					
TXD	Transmit Data	Output					
	Universal Serial Bus D	evice - USB					
DM	USB Device Port Data -	Analog					

Table 5-3.Peripheral Address Mapping

0xFFFE0000	HFLASHC	Flash Controller - HFLASHC
0xFFFE1000	USBC	USB 2.0 OTG Interface - USBC
0xFFFE2000	HMATRIX	HSB Matrix - HMATRIX
0xFFFE2400	SAU	Secure Access Unit - SAU
0xFFFE2800	SMC	Static Memory Controller - SMC
0xFFFE2C00	SDRAMC	SDRAM Controller - SDRAMC
0xFFFE3000	MACB	Ethernet MAC - MACB
0xFFFF0000	INTC	Interrupt controller - INTC
0xFFFF0400	PM	Power Manager - PM
0xFFFF0800	SCIF	System Control Interface - SCIF
0xFFFF0C00	AST	Asynchronous Timer - AST
0xFFFF1000	WDT	Watchdog Timer - WDT
0xFFFF1400	EIC	External Interrupt Controller - EIC
0xFFFF1800	FREQM	Frequency Meter - FREQM
0xFFFF2000	GPIO	General Purpose Input/Output Controller - GPIO
0xFFFF2800	USART0	Universal Synchronous/Asynchronous Receiver/Transmitter - USART0
0xFFFF2C00	USART2	Universal Synchronous/Asynchronous Receiver/Transmitter - USART2
0xFFFF3000	USART3	Universal Synchronous/Asynchronous Receiver/Transmitter - USART3
0xFFFF3400	SPI1	Serial Peripheral Interface - SPI1

The 3.3V regulator is connected to the 5V source (VDDIN_5 pin) and its output feeds the USB pads. If the USB is not used, the 3.3V regulator can be disabled through the VREG33CTL field of the VREGCTRL SCIF register.

Figure 6-1 on page 47 shows the power schematics to be used for 5V single supply mode. All I/O lines and analog blocks will be powered by the same power (VDDIN_5 = VDDIO1 = VDDIO2 = VDDIO3 = VDDIO3 = VDDANA).

6.1.3.2 3.3 V Single Supply Mode

In 3.3V single supply mode, the VDDIN_5 and VDDIN_33 pins should be connected together externally. The 1.8V internal regulator is connected to the 3.3V source (VDDIN_5 pin) and its output feeds VDDCORE.

The 3.3V regulator should be disabled once the circuit is running through the VREG33CTL field of the VREGCTRL SCIF register.

Figure 6-2 on page 48 shows the power schematics to be used for 3.3V single supply mode. All I/O lines and analog blocks will be powered by the same power (VDDIN_5 = VDDIN_33 = VDDIO1 = VDDIO2 = VDDIO3 = VDDANA).

Table 7-2. Supply Rise Rates and Order

		Rise Rate				
Symbol	Parameter	Min	Мах	Comment		
V _{VDDIN_5}	DC supply internal 3.3V regulator	0.01 V/ms	1.25 V/us			
V _{VDDIN_33}	DC supply internal 1.8V regulator	0.01 V/ms	1.25 V/us			
V _{VDDI01} V _{VDDI02} V _{VDDI03}	DC supply peripheral I/O	0.01 V/ms	1.25 V/us	Rise after or at the same time as VDDIN_5, VDDIN_33		
V _{VDDANA}	DC supply peripheral I/O and analog part	0.01 V/ms	1.25 V/us	Rise after or at the same time as VDDIN_5, VDDIN_33		

7.3 Maximum Clock Frequencies

These parameters are given in the following conditions:

- V_{VDDCORE} > 1.85V
- Temperature = -40°C to 85°C

Table 7-3.	Clock Frequencies
------------	-------------------

Symbol	Parameter	Conditions	Min	Max	Units
f _{CPU}	CPU clock frequency			66	MHz
f _{PBA}	PBA clock frequency			66	MHz
f _{PBB}	PBB clock frequency			66	MHz
f _{PBC}	PBC clock frequency			66	MHz
f _{GCLK0}	GCLK0 clock frequency	Generic clock for USBC		50 ⁽¹⁾	MHz
f _{GCLK1}	GCLK1 clock frequency	Generic clock for CANIF		66 ⁽¹⁾	MHz
f _{GCLK2}	GCLK2 clock frequency	Generic clock for AST		80 ⁽¹⁾	MHz
f _{GCLK4}	GCLK4 clock frequency	Generic clock for PWM		133 ⁽¹⁾	MHz
f _{GCLK11}	GCLK11 clock frequency	Generic clock for IISC		50 ⁽¹⁾	MHz

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

7.4 Power Consumption

The values in Table 7-4 are measured values of power consumption under the following conditions, except where noted:

- Operating conditions core supply (Figure 7-1)
 - $-V_{VDDIN_5} = V_{VDDIN_{33}} = 3.3V$
 - $V_{VDDCORE} = 1.85V$, supplied by the internal regulator
 - V_{VDDIO1} = V_{VDDIO2} = V_{VDDIO3} = 3.3V
 - $-V_{VDDANA} = 3.3V$

- PLL1 stopped
- Clocks
 - External clock on XIN0 as main clock source.
 - CPU, HSB, and PB clocks undivided

Consumption active is the added current consumption when the module clock is turned on and when the module is doing a typical set of operations.

Peripheral	Typ Consumption Active	Unit
ACIFA ⁽¹⁾	3	
ADCIFA ⁽¹⁾	7	
AST	3	
CANIF	25	
DACIFB ⁽¹⁾	3	
EBI	23	
EIC	0.5	
FREQM	0.5	
GPIO	37	
INTC	3	
MDMA	4	
PDCA	24	
PEVC	15	
PWM	40	
QDEC	3	µA/MHz
SAU	3	
SDRAMC	2	
SMC	9	
SPI	5	
ТС	8	
TWIM	2	
TWIS	2	
USART	10	
USBC	5	
WDT	2	

 Table 7-5.
 Typical Current Consumption by Peripheral⁽²⁾

Notes: 1. Includes the current consumption on VDDANA.

2. These numbers are valid for the measured condition only and must not be extrapolated to other frequencies.

7.7 Flash Characteristics

Table 7-15 gives the device maximum operating frequency depending on the number of flash wait states. The FSW bit in the FLASHC FSR register controls the number of wait states used when accessing the flash memory.

Table 7-15. Maximum Operating Frequency

Flash Wait States	Read Mode	Maximum Operating Frequency
0	1 cycle	33MHz
1	2 cycles	66MHz

Table 7-16. Flash Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{FPP}	Page programming time	f _{CLK_HSB} = 66MHz		4.3		
t _{FPE}	Page erase time			4.3		
t _{FFP}	Fuse programming time			0.6		ms
t _{FEA}	Full chip erase time (EA)			4.9		
t _{FCE}	JTAG chip erase time (CHIP_ERASE)	f _{CLK_HSB} = 115kHz		640		

Table 7-17. Flash Endurance and Data Retention

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
N _{FARRAY}	Array endurance (write/page)		100k			cycles
N _{FFUSE}	General Purpose fuses endurance (write/bit)		1k			cycles
t _{RET}	Data retention		15			years

7.8 Analog Characteristics

7.8.1 1.8V Voltage Regulator Characteristics

 Table 7-18.
 1.8V Voltage Regulator Electrical Characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Units
V_{VDDIN_5}	Input voltage range	5V range	4.5		5.5	V
		3V range	3.0		3.6	
V _{VDDCORE}	Output voltage, calibrated value			1.85		V
I _{OUT}	DC output current				80	mA

Table 7-19. Decoupling Requirements

Symbol	Parameter	Condition	Тур	Techno.	Units
C _{IN1}	Input regulator capacitor 1		1	NPO	nF
C _{IN2}	Input regulator capacitor 2		4.7	X7R	uF
C _{OUT1}	Output regulator capacitor 1		470	NPO	pf
C _{OUT2}	Output regulator capacitor 2		2.2	X7R	uF

7.8.2 3.3V Voltage Regulator Characteristics

 Table 7-20.
 3.3V Voltage Regulator Electrical Characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{VDDIN_5}	Input voltage range		4.5		5.5	V
V _{VDDIN_33}	Output voltage, calibrated value			3.4		V
I _{OUT}	DC output current				35	mA
I _{VREG}	Static current of regulator	Low power mode		10		μA

7.8.3 1.8V Brown Out Detector (BOD18) Characteristics

The values in Table 7-21 describe the values of the BOD.LEVEL in the SCIF module.

Table 7-21.	BODLEVEL	Values
-------------	----------	--------

BODLEVEL Value	Parameter	Min	Max	Units
0		1.29	1.58	
20		1.36	1.63	
26	threshold at power-up sequence	1.42	1.69	
28		1.43	1.72	V
32		1.48	1.77	
36		1.53	1.82	
40		1.56	1.88	

Symbol	Parameter	Conditions	Min	Тур	Max	Units
RES	Resolution	Differential mode,			10	Bit
INL	Integral Non-Linearity	$V_{VDDANA} = 5V,$			1.5	LSB
DNL	Differential Non-Linearity	$V_{ADCREF0} = 3V,$			1.5	LSB
	Offset error		-25		25	mV
	Gain error	$(F_{adc} = 1.5 MHz)$	-15		15	mV

Table 7-36. ADC and S/H Transfer Characteristics (Continued)10-bit Resolution Mode and S/H gain from 1 to 16⁽¹⁾

Note: 1. The measures are done without any I/O activity on VDDANA/GNDANA power domain.

7.8.7 Digital to Analog Converter (DAC) Characteristics

 Table 7-37.
 Channel Conversion Time and DAC Clock

Symbol	Parameter	Conditions	Min	Тур	Max	Units
f _{DAC}	DAC clock frequency				1	MHz
t _{STARTUP}	Startup time				3	μs
		No S/H enabled, internal DAC			1	μs
t _{CONV}	Conversion time (latency)	One S/H			1.5	μs
		Two S/H			2	μs
	Throughput rate				1/t _{CONV}	MSPS

Table 7-38. External Voltage Reference Input

Symbol	Parameter	Conditions	Min	Тур	Мах	Units
V _{DACREF}	DACREF input voltage range		1.2		V _{VDDANA} -0.7	V

Table 7-39. DAC Outputs

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Output range		with external DAC reference	0.2		VDACREF	V
	Output lange	with internal DAC reference	0.2		V _{VDDANA} -0.7	v
C _{LOAD}	Output capacitance		0		100	pF
R _{LOAD}	Output resitance		2			kΩ

7.9 Timing Characteristics

7.9.1 Startup, Reset, and Wake-up Timing

The startup, reset, and wake-up timings are calculated using the following formula:

$$t = t_{CONST} + N_{CPU} \times t_{CPU}$$

Where t_{CONST} and N_{CPU} are found in Table 7-44. t_{CONST} is the delay relative to RCSYS, t_{CPU} is the period of the CPU clock. If another clock source than RCSYS is selected as CPU clock the startup time of the oscillator, $t_{OSCSTART}$, must be added to the wake-up time in the stop, deepstop, and static sleep modes. Please refer to the source for the CPU clock in the "Oscillator Characteristics" on page 57 for more details about oscillator startup times.

Table 7-44. Maximum Reset and Wake-up Timing

Parameter		Measuring	Max <i>t_{CONST}</i> (in µs)	$\mathbf{Max}\; N_{CPU}$
Startup time from power-up, using regulator		VDDIN_5 rising (10 mV/ms) Time from V_{VDDIN_5} =0 to the first instruction entering the decode stage of CPU. VDDCORE is supplied by the internal regulator.	2600	0
Startup time from reset release		Time from releasing a reset source (except POR, BOD18, and BOD33) to the first instruction entering the decode stage of CPU.	1240	0
	Idle		0	19
	Frozen		268	209
	Standby	From wake-up event to the first instruction entering	268	209
vvаке-up	Stop	the decode stage of the CPU.	268+ t _{OSCSTART}	212
	Deepstop		268+ t _{OSCSTART}	212
	Static		268+ t _{OSCSTART}	212

Maximum SPI Frequency, Slave Input Mode

The maximum SPI slave input frequency is given by the following formula:

$$f_{SPCKMAX} = MIN(\frac{f_{CLKSPI} \times 2}{9}, \frac{1}{SPIn})$$

Where *SPIn* is the MOSI setup and hold time, USPI7 + USPI8 or USPI10 + USPI11 depending on CPOL and NCPHA. f_{CLKSPI} is the maximum frequency of the CLK_SPI. Refer to the SPI chapter for a description of this clock.

Maximum SPI Frequency, Slave Output Mode

The maximum SPI slave output frequency is given by the following formula:

$$f_{SPCKMAX} = MIN(\frac{f_{CLKSPI} \times 2}{9}, f_{PINMAX}, \frac{1}{SPIn + t_{SETUP}})$$

Where *SPIn* is the MISO delay, USPI6 or USPI9 depending on CPOL and NCPHA. T_{SETUP} is the SPI master setup time. Please refer to the SPI masterdatasheet for T_{SETUP} . f_{CLKSPI} is the maximum frequency of the CLK_SPI. Refer to the SPI chapter for a description of this clock. f_{PINMAX} is the maximum frequency of the SPI pins. Please refer to the I/O Pin Characteristics section for the maximum frequency of the pins.

7.9.4 SPI Timing

7.9.4.1 Master mode

Figure 7-11. SPI Master Mode With (CPOL= NCPHA= 0) or (CPOL= NCPHA= 1)

7.9.9 MACB Characteristics

 Table 7-59.
 Ethernet MAC Signals⁽¹⁾

Symbol	Parameter	Conditions	Min.	Max.	Unit
MAC ₁	Setup for MDIO from MDC rising	$V_{VDD} = 3.0V,$	0	2.5	ns
MAC ₂	Hold for MDIO from MDC rising	drive strength of the pads set to the	0	0.7	ns
MAC ₃	MDIO toggling from MDC falling	external capacitor = 10pF on MACB pins	0	1.1	ns

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

 Table 7-60.
 Ethernet MAC MII Specific Signals⁽¹⁾

Symbol	Parameter	Conditions	Min.	Max.	Unit
MAC ₄	Setup for COL from TX_CLK rising	V _{VDD} = 3.0V, drive strength of the pads set to the highest, external capacitor = 10pF on MACB pins	0		ns
MAC ₅	Hold for COL from TX_CLK rising		0		ns
MAC ₆	Setup for CRS from TX_CLK rising		0.5		ns
MAC ₇	Hold for CRS from TX_CLK rising		0.5		ns
MAC ₈	TX_ER toggling from TX_CLK rising		16.4	18.6	ns
MAC ₉	TX_EN toggling from TX_CLK rising		14.5	15.3	ns
MAC ₁₀	TXD toggling from TX_CLK rising		13.9	18.2	ns
MAC ₁₁	Setup for RXD from RX_CLK		1.3		ns
MAC ₁₂	Hold for RXD from RX_CLK		1.8		ns
MAC ₁₃	Setup for RX_ER from RX_CLK		3.4		ns
MAC ₁₄	Hold for RX_ER from RX_CLK		0		ns
MAC ₁₅	Setup for RX_DV from RX_CLK		0.7		ns
MAC ₁₆	Hold for RX_DV from RX_CLK		1.3n		ns

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

Figure 8-3. TQFP-100 package drawing

SYMBOL	Min	Max	NDTES				
А		1. 20					
A1	0, 95	1. 05					
С	0, 09	0, 20					
D	16.00 BSC						
D 1	14.00 BSC						
E	16.00 BSC						
E1	14.00 BSC						
J	0. 05	0.15					
L	0.45	0, 75					
e	0, 50 BSC						
f	0.17	0. 27					

Table 8-8. Device and Package Maximum Weight

500	mg

Table 8-9. Package Characteristics

Moisture Sensitivity Level	Jdec J-STD0-20D - MSL 3
----------------------------	-------------------------

Table 8-10. Package Reference

JEDEC Drawing Reference	MS-026
JESD97 Classification	E3

10.2 rev D

10.2.1 ADCIFA

1 ADCREFP/ADCREFN can not be selected as an external ADC reference by setting the ADCIFA.CFG.EXREF bit to one Fix/Workaround

A voltage reference can be applied on ADCREFP/ADCREFN pins if the ADCIFA.CFG.EXREF bit is set to zero, the ADCIFA.CFG.RS bit is set to zero and the voltage reference applied on ADCREFP/ADCREFN pins is higher than the internal 1V reference.

10.2.2 AST

1 AST wake signal is released one AST clock cycle after the BUSY bit is cleared After writing to the Status Clear Register (SCR) the wake signal is released one AST clock cycle after the BUSY bit in the Status Register (SR.BUSY) is cleared. If entering sleep mode directly after the BUSY bit is cleared the part will wake up immediately. Fix/Workaround Read the Wake Enable Register (WER) and write this value back to the same register. Wait

Read the Wake Enable Register (WER) and write this value back to the same register. Wait for BUSY to clear before entering sleep mode.

10.2.3 aWire

1 aWire MEMORY_SPEED_REQUEST command does not return correct CV The aWire MEMORY_SPEED_REQUEST command does not return a CV corresponding to

the formula in the aWire Debug Interface chapter.

Fix/Workaround

Issue a dummy read to address 0x10000000 before issuing the MEMORY_SPEED_REQUEST command and use this formula instead:

$$f_{sab} = \frac{7f_{aw}}{CV-3}$$

10.2.4 GPIO

1 Clearing Interrupt flags can mask other interrupts

When clearing interrupt flags in a GPIO port, interrupts on other pins of that port, happening in the same clock cycle will not be registered.

Fix/Workaround

Read the PVR register of the port before and after clearing the interrupt to see if any pin change has happened while clearing the interrupt. If any change occurred in the PVR between the reads, they must be treated as an interrupt.

10.2.5 Power Manager

1 Clock Failure Detector (CFD) can be issued while turning off the CFD

While turning off the CFD, the CFD bit in the Status Register (SR) can be set. This will change the main clock source to RCSYS.

Fix/Workaround

Solution 1: Enable CFD interrupt. If CFD interrupt is issues after turning off the CFD, switch back to original main clock source.

Solution 2: Only turn off the CFD while running the main clock on RCSYS.

10.2.10 TWIS

10.2.11 USBC

1 Clearing the NAK bit before the BTF bit is set locks up the TWI bus

When the TWIS is in transmit mode, clearing the NAK Received (NAK) bit of the Status Register (SR) before the end of the Acknowledge/Not Acknowledge cycle will cause the TWIS to attempt to continue transmitting data, thus locking up the bus. **Fix/Workaround**

Clear SR.NAK only after the Byte Transfer Finished (BTF) bit of the same register has been set.

2 TWIS stretch on Address match error

When the TWIS stretches TWCK due to a slave address match, it also holds TWD low for the same duration if it is to be receiving data. When TWIS releases TWCK, it releases TWD at the same time. This can cause a TWI timing violation. **Fix/Workaround**

None.

3 TWALM forced to GND

The TWALM pin is forced to GND when the alternate function is selected and the TWIS module is enabled.

Fix/Workaround

None.

1 UPINRQx.INRQ field is limited to 8-bits

In Host mode, when using the UPINRQx.INRQ feature together with the multi-packet mode to launch a finite number of packet among multi-packet, the multi-packet size (located in the descriptor table) is limited to the UPINRQx.INRQ value multiply by the pipe size. **Fix/Workaround**

UPINRQx.INRQ value shall be less than the number of configured multi-packet.

2 In USB host mode, downstream resume feature does not work (UHCON.RESUME=1). Fix/Workaround

None.

3 In host mode, the disconnection during OUT transition is not supported In USB host mode, a pipe can not work if the previous USB device disconnection has occurred during a USB transfer. Fix/Workaround

Reset the USBC (USBCON.USB=0 and =1) after a device disconnection (UHINT.DDISCI).

4 In USB host mode, entering suspend mode can fail

In USB host mode, entering suspend mode can fail when UHCON.SOFE=0 is done just after a SOF reception (UHINT.HSOFI).

Fix/Workaround

Check that UHNUM.FLENHIGH is below 185 in Full speed and below 21 in Low speed before clearing UHCON.SOFE.

5 In USB host mode, entering suspend mode for low speed device can fail when the USB freeze (USBCON.FRZCLK=1) is done just after UHCON.SOFE=0. Fix/Workaround

When entering suspend mode (UHCON.SOFE is cleared), check that USBFSM.DRDSTATE is not equal to three before freezing the clock (USBCON.FRZCLK=1).

Headquarters

Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

International

Atmel Asia Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon Hong Kong Tel: (852) 2245-6100 Fax: (852) 2722-1369 Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-Yvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site www.atmel.com Technical Support avr32@atmel.com Sales Contact www.atmel.com/contacts

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, or warranted for use as components in applications intended to support or sustain life.

© 2012 Atmel Corporation. All rights reserved. Atmel[®], Atmel logo and combinations thereof, AVR[®] and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.