
Microchip Technology - AT32UC3C0512C-ALUR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 32-Bit Single-Core

Speed 66MHz

Connectivity CANbus, EBI/EMI, Ethernet, I²C, IrDA, LINbus, SPI, UART/USART, USB

Peripherals Brown-out Detect/Reset, DMA, I²S, POR, PWM, WDT

Number of I/O 123

Program Memory Size 512KB (512K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 64K x 8

Voltage - Supply (Vcc/Vdd) 3V ~ 5.5V

Data Converters A/D 16x12b; D/A 4x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 144-LQFP

Supplier Device Package 144-LQFP (20x20)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/at32uc3c0512c-alur

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/at32uc3c0512c-alur-4386698
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

7
32117DS–AVR-01/12

AT32UC3C

Analog Comparators 4 4 2

JTAG 1

aWire 1

Max Frequency 66 MHz

Package LQFP144 TQFP100 TQFP64/QFN64

Table 2-1. Configuration Summary

Feature

AT32UC3C0512C/
AT32UC3C0256C/
AT32UC3C0128C/
AT32UC3C064C

AT32UC3C1512C/
AT32UC3C1256C/
AT32UC3C1128C/
AT32UC3C164C

AT32UC3C2512C/
AT32UC3C2256C/
AT32UC3C2128C/
AT32UC3C264C

27
32117DS–AVR-01/12

AT32UC3C

Figure 4-1. Overview of the AVR32UC CPU

4.3.1 Pipeline Overview
AVR32UC has three pipeline stages, Instruction Fetch (IF), Instruction Decode (ID), and Instruc-
tion Execute (EX). The EX stage is split into three parallel subsections, one arithmetic/logic
(ALU) section, one multiply (MUL) section, and one load/store (LS) section.

Instructions are issued and complete in order. Certain operations require several clock cycles to
complete, and in this case, the instruction resides in the ID and EX stages for the required num-
ber of clock cycles. Since there is only three pipeline stages, no internal data forwarding is
required, and no data dependencies can arise in the pipeline.

Figure 4-2 on page 28 shows an overview of the AVR32UC pipeline stages.

AVR32UC CPU pipeline

Instruction memory controller

MPU

H
ig

h
Sp

ee
d

Bu
s

H
ig

h
Sp

ee
d

Bu
s

OCD
system

O
C

D
 in

te
rfa

ce

In
te

rru
pt

 c
on

tro
lle

r i
nt

er
fa

ce

High
Speed

Bus slave

H
ig

h
Sp

ee
d

Bu
s

High Speed Bus master

Power/
Reset
control

R
es

et
 in

te
rfa

ce

CPU Local
Bus

master

C
P

U
 L

oc
al

 B
us

Data memory controller

CPU RAMHigh Speed
Bus master

34
32117DS–AVR-01/12

AT32UC3C

4.5 Exceptions and Interrupts
In the AVR32 architecture, events are used as a common term for exceptions and interrupts.
AVR32UC incorporates a powerful event handling scheme. The different event sources, like Ille-
gal Op-code and interrupt requests, have different priority levels, ensuring a well-defined
behavior when multiple events are received simultaneously. Additionally, pending events of a
higher priority class may preempt handling of ongoing events of a lower priority class.

When an event occurs, the execution of the instruction stream is halted, and execution is passed
to an event handler at an address specified in Table 4-4 on page 38. Most of the handlers are
placed sequentially in the code space starting at the address specified by EVBA, with four bytes
between each handler. This gives ample space for a jump instruction to be placed there, jump-
ing to the event routine itself. A few critical handlers have larger spacing between them, allowing
the entire event routine to be placed directly at the address specified by the EVBA-relative offset
generated by hardware. All interrupt sources have autovectored interrupt service routine (ISR)
addresses. This allows the interrupt controller to directly specify the ISR address as an address

90 360 MPUPSR2 MPU Privilege Select Register region 2

91 364 MPUPSR3 MPU Privilege Select Register region 3

92 368 MPUPSR4 MPU Privilege Select Register region 4

93 372 MPUPSR5 MPU Privilege Select Register region 5

94 376 MPUPSR6 MPU Privilege Select Register region 6

95 380 MPUPSR7 MPU Privilege Select Register region 7

96 384 MPUCRA Unused in this version of AVR32UC

97 388 MPUCRB Unused in this version of AVR32UC

98 392 MPUBRA Unused in this version of AVR32UC

99 396 MPUBRB Unused in this version of AVR32UC

100 400 MPUAPRA MPU Access Permission Register A

101 404 MPUAPRB MPU Access Permission Register B

102 408 MPUCR MPU Control Register

103 412 SS_STATUS Secure State Status Register

104 416 SS_ADRF Secure State Address Flash Register

105 420 SS_ADRR Secure State Address RAM Register

106 424 SS_ADR0 Secure State Address 0 Register

107 428 SS_ADR1 Secure State Address 1 Register

108 432 SS_SP_SYS Secure State Stack Pointer System Register

109 436 SS_SP_APP Secure State Stack Pointer Application Register

110 440 SS_RAR Secure State Return Address Register

111 444 SS_RSR Secure State Return Status Register

112-191 448-764 Reserved Reserved for future use

192-255 768-1020 IMPL IMPLEMENTATION DEFINED

Table 4-3. System Registers (Continued)

Reg # Address Name Function

35
32117DS–AVR-01/12

AT32UC3C

relative to EVBA. The autovector offset has 14 address bits, giving an offset of maximum 16384
bytes. The target address of the event handler is calculated as (EVBA | event_handler_offset),
not (EVBA + event_handler_offset), so EVBA and exception code segments must be set up
appropriately. The same mechanisms are used to service all different types of events, including
interrupt requests, yielding a uniform event handling scheme.

An interrupt controller does the priority handling of the interrupts and provides the autovector off-
set to the CPU.

4.5.1 System Stack Issues
Event handling in AVR32UC uses the system stack pointed to by the system stack pointer,
SP_SYS, for pushing and popping R8-R12, LR, status register, and return address. Since event
code may be timing-critical, SP_SYS should point to memory addresses in the IRAM section,
since the timing of accesses to this memory section is both fast and deterministic.

The user must also make sure that the system stack is large enough so that any event is able to
push the required registers to stack. If the system stack is full, and an event occurs, the system
will enter an UNDEFINED state.

4.5.2 Exceptions and Interrupt Requests
When an event other than scall or debug request is received by the core, the following actions
are performed atomically:

1. The pending event will not be accepted if it is masked. The I3M, I2M, I1M, I0M, EM, and
GM bits in the Status Register are used to mask different events. Not all events can be
masked. A few critical events (NMI, Unrecoverable Exception, TLB Multiple Hit, and
Bus Error) can not be masked. When an event is accepted, hardware automatically
sets the mask bits corresponding to all sources with equal or lower priority. This inhibits
acceptance of other events of the same or lower priority, except for the critical events
listed above. Software may choose to clear some or all of these bits after saving the
necessary state if other priority schemes are desired. It is the event source’s respons-
ability to ensure that their events are left pending until accepted by the CPU.

2. When a request is accepted, the Status Register and Program Counter of the current
context is stored to the system stack. If the event is an INT0, INT1, INT2, or INT3, reg-
isters R8-R12 and LR are also automatically stored to stack. Storing the Status
Register ensures that the core is returned to the previous execution mode when the
current event handling is completed. When exceptions occur, both the EM and GM bits
are set, and the application may manually enable nested exceptions if desired by clear-
ing the appropriate bit. Each exception handler has a dedicated handler address, and
this address uniquely identifies the exception source.

3. The Mode bits are set to reflect the priority of the accepted event, and the correct regis-
ter file bank is selected. The address of the event handler, as shown in Table 4-4 on
page 38, is loaded into the Program Counter.

The execution of the event handler routine then continues from the effective address calculated.

The rete instruction signals the end of the event. When encountered, the Return Status Register
and Return Address Register are popped from the system stack and restored to the Status Reg-
ister and Program Counter. If the rete instruction returns from INT0, INT1, INT2, or INT3,
registers R8-R12 and LR are also popped from the system stack. The restored Status Register
contains information allowing the core to resume operation in the previous execution mode. This
concludes the event handling.

36
32117DS–AVR-01/12

AT32UC3C

4.5.3 Supervisor Calls
The AVR32 instruction set provides a supervisor mode call instruction. The scall instruction is
designed so that privileged routines can be called from any context. This facilitates sharing of
code between different execution modes. The scall mechanism is designed so that a minimal
execution cycle overhead is experienced when performing supervisor routine calls from time-
critical event handlers.

The scall instruction behaves differently depending on which mode it is called from. The behav-
iour is detailed in the instruction set reference. In order to allow the scall routine to return to the
correct context, a return from supervisor call instruction, rets, is implemented. In the AVR32UC
CPU, scall and rets uses the system stack to store the return address and the status register.

4.5.4 Debug Requests
The AVR32 architecture defines a dedicated Debug mode. When a debug request is received by
the core, Debug mode is entered. Entry into Debug mode can be masked by the DM bit in the
status register. Upon entry into Debug mode, hardware sets the SR.D bit and jumps to the
Debug Exception handler. By default, Debug mode executes in the exception context, but with
dedicated Return Address Register and Return Status Register. These dedicated registers
remove the need for storing this data to the system stack, thereby improving debuggability. The
Mode bits in the Status Register can freely be manipulated in Debug mode, to observe registers
in all contexts, while retaining full privileges.

Debug mode is exited by executing the retd instruction. This returns to the previous context.

4.5.5 Entry Points for Events
Several different event handler entry points exist. In AVR32UC, the reset address is
0x80000000. This places the reset address in the boot flash memory area.

TLB miss exceptions and scall have a dedicated space relative to EVBA where their event han-
dler can be placed. This speeds up execution by removing the need for a jump instruction placed
at the program address jumped to by the event hardware. All other exceptions have a dedicated
event routine entry point located relative to EVBA. The handler routine address identifies the
exception source directly.

AVR32UC uses the ITLB and DTLB protection exceptions to signal a MPU protection violation.
ITLB and DTLB miss exceptions are used to signal that an access address did not map to any of
the entries in the MPU. TLB multiple hit exception indicates that an access address did map to
multiple TLB entries, signalling an error.

All interrupt requests have entry points located at an offset relative to EVBA. This autovector off-
set is specified by an interrupt controller. The programmer must make sure that none of the
autovector offsets interfere with the placement of other code. The autovector offset has 14
address bits, giving an offset of maximum 16384 bytes.

Special considerations should be made when loading EVBA with a pointer. Due to security con-
siderations, the event handlers should be located in non-writeable flash memory, or optionally in
a privileged memory protection region if an MPU is present.

If several events occur on the same instruction, they are handled in a prioritized way. The priority
ordering is presented in Table 4-4 on page 38. If events occur on several instructions at different
locations in the pipeline, the events on the oldest instruction are always handled before any
events on any younger instruction, even if the younger instruction has events of higher priority

38
32117DS–AVR-01/12

AT32UC3C

Table 4-4. Priority and Handler Addresses for Events

Priority Handler Address Name Event source Stored Return Address

1 0x80000000 Reset External input Undefined

2 Provided by OCD system OCD Stop CPU OCD system First non-completed instruction

3 EVBA+0x00 Unrecoverable exception Internal PC of offending instruction

4 EVBA+0x04 TLB multiple hit MPU PC of offending instruction

5 EVBA+0x08 Bus error data fetch Data bus First non-completed instruction

6 EVBA+0x0C Bus error instruction fetch Data bus First non-completed instruction

7 EVBA+0x10 NMI External input First non-completed instruction

8 Autovectored Interrupt 3 request External input First non-completed instruction

9 Autovectored Interrupt 2 request External input First non-completed instruction

10 Autovectored Interrupt 1 request External input First non-completed instruction

11 Autovectored Interrupt 0 request External input First non-completed instruction

12 EVBA+0x14 Instruction Address CPU PC of offending instruction

13 EVBA+0x50 ITLB Miss MPU PC of offending instruction

14 EVBA+0x18 ITLB Protection MPU PC of offending instruction

15 EVBA+0x1C Breakpoint OCD system First non-completed instruction

16 EVBA+0x20 Illegal Opcode Instruction PC of offending instruction

17 EVBA+0x24 Unimplemented instruction Instruction PC of offending instruction

18 EVBA+0x28 Privilege violation Instruction PC of offending instruction

19 EVBA+0x2C Floating-point UNUSED

20 EVBA+0x30 Coprocessor absent Instruction PC of offending instruction

21 EVBA+0x100 Supervisor call Instruction PC(Supervisor Call) +2

22 EVBA+0x34 Data Address (Read) CPU PC of offending instruction

23 EVBA+0x38 Data Address (Write) CPU PC of offending instruction

24 EVBA+0x60 DTLB Miss (Read) MPU PC of offending instruction

25 EVBA+0x70 DTLB Miss (Write) MPU PC of offending instruction

26 EVBA+0x3C DTLB Protection (Read) MPU PC of offending instruction

27 EVBA+0x40 DTLB Protection (Write) MPU PC of offending instruction

28 EVBA+0x44 DTLB Modified UNUSED

44
32117DS–AVR-01/12

AT32UC3C

The following GPIO registers are mapped on the local bus:

Table 5-4. Local bus mapped GPIO registers

Port Register Mode
Local Bus
Address Access

A Output Driver Enable Register (ODER) WRITE 0x40000040 Write-only

SET 0x40000044 Write-only

CLEAR 0x40000048 Write-only

TOGGLE 0x4000004C Write-only

Output Value Register (OVR) WRITE 0x40000050 Write-only

SET 0x40000054 Write-only

CLEAR 0x40000058 Write-only

TOGGLE 0x4000005C Write-only

Pin Value Register (PVR) - 0x40000060 Read-only

B Output Driver Enable Register (ODER) WRITE 0x40000140 Write-only

SET 0x40000144 Write-only

CLEAR 0x40000148 Write-only

TOGGLE 0x4000014C Write-only

Output Value Register (OVR) WRITE 0x40000150 Write-only

SET 0x40000154 Write-only

CLEAR 0x40000158 Write-only

TOGGLE 0x4000015C Write-only

Pin Value Register (PVR) - 0x40000160 Read-only

C Output Driver Enable Register (ODER) WRITE 0x40000240 Write-only

SET 0x40000244 Write-only

CLEAR 0x40000248 Write-only

TOGGLE 0x4000024C Write-only

Output Value Register (OVR) WRITE 0x40000250 Write-only

SET 0x40000254 Write-only

CLEAR 0x40000258 Write-only

TOGGLE 0x4000025C Write-only

Pin Value Register (PVR) - 0x40000260 Read-only

46
32117DS–AVR-01/12

AT32UC3C

6. Supply and Startup Considerations

6.1 Supply Considerations

6.1.1 Power Supplies
The AT32UC3C has several types of power supply pins:

• VDDIO pins (VDDIO1, VDDIO2, VDDIO3): Power I/O lines. Two voltage ranges are available: 5V or
3.3V nominal. The VDDIO pins should be connected together.

• VDDANA: Powers the Analog part of the device (Analog I/Os, ADC, ACs, DACs). 2 voltage ranges
available: 5V or 3.3V nominal.

• VDDIN_5: Input voltage for the 1.8V and 3.3V regulators. Two Voltage ranges are available: 5V or
3.3V nominal.

• VDDIN_33:
– USB I/O power supply
– if the device is 3.3V powered: Input voltage, voltage is 3.3V nominal.
– if the device is 5V powered: stabilization for the 3.3V voltage regulator, requires external

capacitors
• VDDCORE: Stabilization for the 1.8V voltage regulator, requires external capacitors.
• GNDCORE: Ground pins for the voltage regulators and the core.
• GNDANA: Ground pin for Analog part of the design
• GNDPLL: Ground pin for the PLLs
• GNDIO pins (GNDIO1, GNDIO2, GNDIO3): Ground pins for the I/O lines. The GNDIO pins should be

connected together.

See ”Electrical Characteristics” on page 50 for power consumption on the various supply pins.

For decoupling recommendations for the different power supplies, please refer to the schematic
checklist.

6.1.2 Voltage Regulators
The AT32UC3C embeds two voltage regulators:

• One 1.8V internal regulator that converts from VDDIN_5 to 1.8V. The regulator supplies the
output voltage on VDDCORE.

• One 3.3V internal regulator that converts from VDDIN_5 to 3.3V. The regulator supplies the
USB pads on VDDIN_33. If the USB is not used or if VDDIN_5 is within the 3V range, the
3.3V regulator can be disabled through the VREG33CTL field of the VREGCTRL SCIF
register.

6.1.3 Regulators Connection
The AT32UC3C supports two power supply configurations.

• 5V single supply mode

• 3.3V single supply mode

6.1.3.1 5V Single Supply Mode
In 5V single supply mode, the 1.8V internal regulator is connected to the 5V source (VDDIN_5
pin) and its output feeds VDDCORE.

49
32117DS–AVR-01/12

AT32UC3C

6.2 Startup Considerations
This chapter summarizes the boot sequence of the AT32UC3C. The behavior after power-up is
controlled by the Power Manager. For specific details, refer to the Power Manager chapter.

6.2.1 Starting of clocks
At power-up, the BOD33 and the BOD18 are enabled. The device will be held in a reset state by
the power-up circuitry, until the VDDIN_33 (resp. VDDCORE) has reached the reset threshold of
the BOD33 (resp BOD18). Refer to the Electrical Characteristics for the BOD thresholds. Once
the power has stabilized, the device will use the System RC Oscillator (RCSYS, 115KHz typical
frequency) as clock source. The BOD18 and BOD33 are kept enabled or are disabled according
to the fuse settings (See the Fuse Setting section in the Flash Controller chapter).

On system start-up, the PLLs are disabled. All clocks to all modules are running. No clocks have
a divided frequency, all parts of the system receive a clock with the same frequency as the inter-
nal RC Oscillator.

6.2.2 Fetching of initial instructions
After reset has been released, the AVR32UC CPU starts fetching instructions from the reset
address, which is 0x8000_0000. This address points to the first address in the internal Flash.

The internal Flash uses VDDIO voltage during read and write operations. It is recommended to
use the BOD33 to monitor this voltage and make sure the VDDIO is above the minimum level
(3.0V).

The code read from the internal Flash is free to configure the system to use for example the
PLLs, to divide the frequency of the clock routed to some of the peripherals, and to gate the
clocks to unused peripherals.

57
32117DS–AVR-01/12

AT32UC3C

7.6 Oscillator Characteristics

7.6.1 Oscillator (OSC0 and OSC1) Characteristics

7.6.1.1 Digital Clock Characteristics

The following table describes the characteristics for the oscillator when a digital clock is applied
on XIN0 or XIN1.

7.6.1.2 Crystal Oscillator Characteristics

The following table describes the characteristics for the oscillator when a crystal is connected
between XIN and XOUT as shown in Figure 7-2. The user must choose a crystal oscillator
where the crystal load capacitance CL is within the range given in the table. The exact value of CL

can be found in the crystal datasheet. The capacitance of the external capacitors (CLEXT) can
then be computed as follows:

where CPCB is the capacitance of the PCB and Ci is the internal equivalent load capacitance.

Figure 7-2. Oscillator Connection

Table 7-7. Digital Clock Characteristics

Symbol Parameter Conditions Min Typ Max Units

fCPXIN XIN clock frequency 50 MHz

tCPXIN XIN clock period 20 ns

tCHXIN XIN clock high half-priod 0.4 x tCPXIN 0.6 x tCPXIN ns

tCLXIN XIN clock low half-priod 0.4 x tCPXIN 0.6 x tCPXIN ns

CIN XIN input capacitance 2 pF

CLEXT 2 CL Ci–() CPCB–=

XIN

XOUT
CLEXT

CLEXT

Ci

CL

UC3C

63
32117DS–AVR-01/12

AT32UC3C

7.8.6 Analog to Digital Converter (ADC) and sample and hold (S/H) Characteristics

Table 7-27. ADC and S/H characteristics

Symbol Parameter Conditions Min Typ Max Units

fADC
ADC clock
frequency

12-bit resolution mode, VVDDANA = 3V 1.2

MHz

10-bit resolution mode, VVDDANA = 3V 1.6

8-bit resolution mode, VVDDANA = 3V 2.2

12-bit resolution mode, VVDDANA = 4.5V 1.5

10-bit resolution mode, VVDDANA = 4.5V 2

8-bit resolution mode, VVDDANA = 4.5V 2.4

tSTARTUP Startup time

ADC cold start-up 1 ms

ADC hot start-up 24
ADC clock

cycles

tCONV
Conversion time
(latency)

(ADCIFA.SEQCFGn.SRES)/2 + 2,
ADCIFA.CFG.SHD = 1

6 8
ADC clock

cycles(ADCIFA.SEQCFGn.SRES)/2 + 3,
ADCIFA.CFG.SHD = 0

7 9

Throughput rate

12-bit resolution,

ADC clock = 1.2 MHz, VVDDANA = 3V
1.2

MSPS

10-bit resolution,

ADC clock = 1.6 MHz, VVDDANA = 3V
1.6

12-bit resolution,
ADC clock = 1.5 MHz, VVDDANA = 4.5V

1.5

10-bit resolution,

ADC clock = 2 MHz, VVDDANA = 4.5V
2

Table 7-28. ADC Reference Voltage

Symbol Parameter Conditions Min Typ Max
Unit

s

VADCREF0 ADCREF0 input voltage range
5V Range 1 3.5

V
3V Range 1 VVDDANA-0.7

VADCREF1 ADCREF1 input voltage range
5V Range 1 3.5

V
3V Range 1 VVDDANA-0.7

VADCREFP ADCREFP input voltage

5V Range - Voltage reference
applied on ADCREFP

1 3.5

V
3V Range - Voltage reference
applied on ADCREFP

1 VVDDANA-0.7

VADCREFN ADCREFN input voltage
Voltage reference applied on
ADCREFN

GNDANA V

Internal 1V reference 1.0 V

Internal 0.6*VDDANA reference 0.6*VVDDANA V

67
32117DS–AVR-01/12

AT32UC3C

Note: 1. The measures are done without any I/O activity on VDDANA/GNDANA power domain.

7.8.7 Digital to Analog Converter (DAC) Characteristics

RES Resolution Differential mode,

VVDDANA = 5V,

VADCREF0 = 3V,
ADCFIA.SEQCFGn.SRES = 1,

S/H gain from 1 to 16

(Fadc = 1.5MHz)

10 Bit

INL Integral Non-Linearity 1.5 LSB

DNL Differential Non-Linearity 1.5 LSB

Offset error -25 25 mV

Gain error -15 15 mV

Table 7-36. ADC and S/H Transfer Characteristics (Continued)10-bit Resolution Mode and S/H gain from 1 to 16(1)

Symbol Parameter Conditions Min Typ Max Units

Table 7-37. Channel Conversion Time and DAC Clock

Symbol Parameter Conditions Min Typ Max Units

fDAC DAC clock frequency 1 MHz

tSTARTUP Startup time 3 µs

tCONV Conversion time (latency)

No S/H enabled, internal DAC 1 µs

One S/H 1.5 µs

Two S/H 2 µs

Throughput rate 1/tCONV MSPS

Table 7-38. External Voltage Reference Input

Symbol Parameter Conditions Min Typ Max Units

VDACREF DACREF input voltage range 1.2 VVDDANA-0.7 V

Table 7-39. DAC Outputs

Symbol Parameter Conditions Min Typ Max Units

Output range
with external DAC reference 0.2 VDACREF

V
with internal DAC reference 0.2 VVDDANA-0.7

CLOAD Output capacitance 0 100 pF

RLOAD Output resitance 2 kΩ

70
32117DS–AVR-01/12

AT32UC3C

7.9 Timing Characteristics

7.9.1 Startup, Reset, and Wake-up Timing

The startup, reset, and wake-up timings are calculated using the following formula:

Where and are found in Table 7-44. is the delay relative to RCSYS,
 is the period of the CPU clock. If another clock source than RCSYS is selected as CPU

clock the startup time of the oscillator, , must be added to the wake-up time in the
stop, deepstop, and static sleep modes. Please refer to the source for the CPU clock in the
”Oscillator Characteristics” on page 57 for more details about oscillator startup times.

t tCONST NCPU tCPU×+=

tCONST NCPU tCONST
tCPU

tOSCSTART

Table 7-44. Maximum Reset and Wake-up Timing

Parameter Measuring Max (in µs) Max

Startup time from power-up, using
regulator

VDDIN_5 rising (10 mV/ms)
Time from VVDDIN_5=0 to the first instruction entering
the decode stage of CPU. VDDCORE is supplied by
the internal regulator.

2600 0

Startup time from reset release
Time from releasing a reset source (except POR,
BOD18, and BOD33) to the first instruction entering
the decode stage of CPU.

1240 0

Wake-up

Idle

From wake-up event to the first instruction entering
the decode stage of the CPU.

0 19

Frozen 268 209

Standby 268 209

Stop 268+ 212

Deepstop 268+ 212

Static 268+ 212

tCONST NCPU

tOSCSTART
tOSCSTART
tOSCSTART

71
32117DS–AVR-01/12

AT32UC3C

Figure 7-5. Startup and Reset Time

7.9.2 RESET_N characteristics

Internal
Reset Decoding Stage

Startup Time
from reset
Release

Reset Time

VDDIN_5, VDDIN_33

VDDCORE

BOD18 threshold at power-up

Voltage

Time

BOD33 threshold at power-up

Table 7-45. RESET_N Clock Waveform Parameters

Symbol Parameter Condition Min. Typ. Max. Units

tRESET RESET_N minimum pulse length 2 * TRCSYS clock cycles

76
32117DS–AVR-01/12

AT32UC3C

Figure 7-12. SPI Master Mode With (CPOL= 0 and NCPHA= 1) or (CPOL= 1 and NCPHA= 0)

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same pro-
cess technology. These values are not covered by test limits in production.

Maximum SPI Frequency, Master Output

The maximum SPI master output frequency is given by the following formula:

Where is the MOSI delay, SPI2 or SPI5 depending on CPOL and NCPHA. is the
maximum frequency of the SPI pins. Please refer to the I/O Pin Characteristics section for the
maximum frequency of the pins.

Maximum SPI Frequency, Master Input

The maximum SPI master input frequency is given by the following formula:

Where is the MISO setup and hold time, SPI0 + SPI1 or SPI3 + SPI4 depending on
CPOL and NCPHA. is the SPI slave response time. Please refer to the SPI slave
datasheet for .

SPI3 SPI4

MISO

SPCK

MOSI

SPI5

Table 7-48. SPI Timing, Master Mode(1)

Symbol Parameter Conditions Min Max Units

SPI0 MISO setup time before SPCK rises

external
capacitor =

40pF

28.5+ (tCLK_SPI)/2 ns

SPI1 MISO hold time after SPCK rises 0 ns

SPI2 SPCK rising to MOSI delay 10.5 ns

SPI3 MISO setup time before SPCK falls 28.5 + (tCLK_SPI)/2 ns

SPI4 MISO hold time after SPCK falls 0 ns

SPI5 SPCK falling to MOSI delay 10.5 ns

fSPCKMAX MIN fPINMAX
1

SPIn
------------(,)=

SPIn fPINMAX

fSPCKMAX
1

SPIn tVALID+
------------------------------------=

SPIn
tVALID

tVALID

79
32117DS–AVR-01/12

AT32UC3C

TWIM and TWIS user interface registers. Please refer to the TWIM and TWIS sections for more
information.

Notes: 1. Standard mode: ; fast mode: .
2. A device must internally provide a hold time of at least 300 ns for TWD with reference to the falling edge of TWCK.

Notations:

Cb = total capacitance of one bus line in pF
tclkpb = period of TWI peripheral bus clock
tprescaled = period of TWI internal prescaled clock (see chapters on TWIM and TWIS)
The maximum tHD;DAT has only to be met if the device does not stretch the LOW period (tLOW-I2C) of TWCK.

Table 7-50. TWI-Bus Timing Requirements

Symbol Parameter Mode

Minimum Maximum

UnitRequirement Device Requirement Device

tr TWCK and TWD rise time
Standard(1) - 1000

ns
Fast(1) 20 + 0.1 Cb 300

tf TWCK and TWD fall time
Standard(1) - 300

ns
Fast(1) 20 + 0.1 Cb 300

tHD-STA (Repeated) START hold time
Standard(1) 4.0

tclkpb - μs
Fast(1) 0.6

tSU-STA (Repeated) START set-up time
Standard(1) 4.7

tclkpb - μs
Fast(1) 0.6

tSU-STO STOP set-up time
Standard(1) 4.0

4tclkpb - μs
Fast(1) 0.6

tHD-DAT Data hold time
Standard(1)

0.3(2) 2tclkpb

3.45
?? μs

Fast(1) 0.9

tSU-DAT-I2C Data set-up time
Standard(1) 250

2tclkpb - ns
Fast(1) 100

tSU-DAT - - tclkpb - -

tLOW-I2C TWCK LOW period
Standard(1) 4.7

4tclkpb - μs
Fast(1) 1.3

tLOW - - tclkpb - -

tHIGH TWCK HIGH period
Standard(1) 4.0

8tclkpb - μs
Fast(1) 0.6

fTWCK TWCK frequency
Standard(1)

-
100

kHz
Fast(1) 400

1
12tclkpb

fTWCK 100 kHz≤ fTWCK 100 kHz>

80
32117DS–AVR-01/12

AT32UC3C

7.9.6 JTAG Timing

Figure 7-16. JTAG Interface Signals

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same pro-
cess technology. These values are not covered by test limits in production.

JTAG2

JTAG3

JTAG1

JTAG4

JTAG0

TMS/TDI

TCK

TDO

JTAG5

JTAG6

JTAG7 JTAG8

JTAG9

JTAG10

Boundary
Scan Inputs

Boundary
Scan Outputs

Table 7-51. JTAG Timings(1)

Symbol Parameter Conditions Min Max Units

JTAG0 TCK Low Half-period

external
capacitor =

40pF

21.5 ns

JTAG1 TCK High Half-period 8.5 ns

JTAG2 TCK Period 29 ns

JTAG3 TDI, TMS Setup before TCK High 6.5 ns

JTAG4 TDI, TMS Hold after TCK High 0 ns

JTAG5 TDO Hold Time 12.5 ns

JTAG6 TCK Low to TDO Valid 21.5 ns

JTAG7 Boundary Scan Inputs Setup Time 0 ns

JTAG8 Boundary Scan Inputs Hold Time 4.5 ns

JTAG9 Boundary Scan Outputs Hold Time 11 ns

JTAG10 TCK to Boundary Scan Outputs Valid 18 ns

83
32117DS–AVR-01/12

AT32UC3C

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same pro-
cess technology. These values are not covered by test limits in production.

Figure 7-17. SMC Signals for NCS Controlled Accesses

Table 7-56. SMC Write Signals with No Hold Settings (NWE Controlled only)(1)

Symbol Parameter Conditions Min Units

SMC37 NWE rising to A2-A25 valid

VVDD = 3.0V,
drive strength of the pads

set to the lowest,
external capacitor = 40pF

8.7

ns

SMC38 NWE rising to NBS0/A0 valid 7.6

SMC40 NWE rising to A1/NBS2 change 8.7

SMC42 NWE rising to NCS rising 8.4

SMC43 Data Out valid before NWE rising (nwe pulse length - 1) * tCPSMC - 1.2

SMC44 Data Out valid after NWE rising 8.4

SMC45 NWE pulse width nwe pulse length * tCPSMC - 0

NRD

NCS

D0 - D15

NWE

A2-A25

A0/A1/NBS[3:0]

SMC34 SMC35SMC10 SMC11

SMC16

SMC15

SMC22SMC21

SMC17

SMC18

SMC14
SMC13
SMC12

SMC18

SMC17

SMC16

SMC15
SMC14
SMC13
SMC12

SMC18

SMC36

SMC16

SMC15
SMC14
SMC13
SMC12

104
32117DS–AVR-01/12

AT32UC3C

10.2.10 TWIS

1 Clearing the NAK bit before the BTF bit is set locks up the TWI bus
When the TWIS is in transmit mode, clearing the NAK Received (NAK) bit of the Status Reg-
ister (SR) before the end of the Acknowledge/Not Acknowledge cycle will cause the TWIS to
attempt to continue transmitting data, thus locking up the bus.
Fix/Workaround
Clear SR.NAK only after the Byte Transfer Finished (BTF) bit of the same register has been
set.

2 TWIS stretch on Address match error
When the TWIS stretches TWCK due to a slave address match, it also holds TWD low for
the same duration if it is to be receiving data. When TWIS releases TWCK, it releases TWD
at the same time. This can cause a TWI timing violation.
Fix/Workaround
None.

3 TWALM forced to GND
The TWALM pin is forced to GND when the alternate function is selected and the TWIS
module is enabled.
Fix/Workaround
None.

10.2.11 USBC

1 UPINRQx.INRQ field is limited to 8-bits
In Host mode, when using the UPINRQx.INRQ feature together with the multi-packet mode
to launch a finite number of packet among multi-packet, the multi-packet size (located in the
descriptor table) is limited to the UPINRQx.INRQ value multiply by the pipe size.
Fix/Workaround
UPINRQx.INRQ value shall be less than the number of configured multi-packet.

2 In USB host mode, downstream resume feature does not work (UHCON.RESUME=1).
Fix/Workaround
None.

3 In host mode, the disconnection during OUT transition is not supported
In USB host mode, a pipe can not work if the previous USB device disconnection has
occurred during a USB transfer.
Fix/Workaround
Reset the USBC (USBCON.USB=0 and =1) after a device disconnection (UHINT.DDISCI).

4 In USB host mode, entering suspend mode can fail
In USB host mode, entering suspend mode can fail when UHCON.SOFE=0 is done just
after a SOF reception (UHINT.HSOFI).
Fix/Workaround
Check that UHNUM.FLENHIGH is below 185 in Full speed and below 21 in Low speed
before clearing UHCON.SOFE.

5 In USB host mode, entering suspend mode for low speed device can fail when the
USB freeze (USBCON.FRZCLK=1) is done just after UHCON.SOFE=0.
Fix/Workaround
When entering suspend mode (UHCON.SOFE is cleared), check that USBFSM.DRDSTATE
is not equal to three before freezing the clock (USBCON.FRZCLK=1).

32117DS-AVR–01/12

© 2012 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, AVR® and others are registered trademarks or
trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Atmel Asia
Unit 1-5 & 16, 19/F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
Hong Kong
Tel: (852) 2245-6100
Fax: (852) 2722-1369

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Product Contact

Web Site
www.atmel.com

Technical Support
avr32@atmel.com

Sales Contact
www.atmel.com/contacts

Literature Requests
www.atmel.com/literature

107486

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF
THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

