

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	AVR
Core Size	32-Bit Single-Core
Speed	66MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	123
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at32uc3c0512c-alut

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2-1. Configuration Summar

Feature	AT32UC3C0512C/ AT32UC3C0256C/ AT32UC3C0128C/ AT32UC3C064C	AT32UC3C1512C/ AT32UC3C1256C/ AT32UC3C1128C/ AT32UC3C164C	AT32UC3C2512C/ AT32UC3C2256C/ AT32UC3C2128C/ AT32UC3C264C			
Analog Comparators	4	4	2			
JTAG	1					
aWire	1					
Max Frequency	66 MHz					
Package	LQFP144	TQFP64/QFN64				

Figure 3-3. LQFP144 Pinout

Table 3-1.	GPIO Controller Function Multiplexing
------------	---------------------------------------

TQFP				G			GPIO function					
/ QFN	TQFP	LQFP		P I		Pin Type						
64	100	144	PIN	0	Supply	(1)	A	В	С	D	E	F
16	25	36	PA19	19	VDDANA	x1/x2	ADCIN8	EIC - EXTINT[1]				
19	28	39	PA20	20	VDDANA	x1/x2	ADCIN9	AC0AP0	AC0AP0 or DAC0A			
20	29	40	PA21	21	VDDANA	x1/x2	ADCIN10	AC0BN0	AC0BN0 or DAC0B			
21	30	41	PA22	22	VDDANA	x1/x2	ADCIN11	AC0AN0	PEVC - PAD_EVT [4]		MACB - SPEED	
22	31	42	PA23	23	VDDANA	x1/x2	ADCIN12	AC0BP0	PEVC - PAD_EVT [5]		MACB - WOL	
	32	43	PA24	24	VDDANA	x1/x2	ADCIN13	SPI1 - NPCS[2]				
	33	44	PA25	25	VDDANA	x1/x2	ADCIN14	SPI1 - NPCS[3]	EIC - EXTINT[0]			
		45	PA26	26	VDDANA	x1/x2	AC0AP1	EIC - EXTINT[1]				
		46	PA27	27	VDDANA	x1/x2	AC0AN1	EIC - EXTINT[2]				
		47	PA28	28	VDDANA	x1/x2	AC0BP1	EIC - EXTINT[3]				
		48	PA29	29	VDDANA	x1/x2	AC0BN1	EIC - EXTINT[0]				
62	96	140	PB00	32	VDDIO1	x1	USART0 - CLK	CANIF - RXLINE[1]	EIC - EXTINT[8]	PEVC - PAD_EVT [10]		
63	97	141	PB01	33	VDDIO1	x1		CANIF - TXLINE[1]		PEVC - PAD_EVT [11]		
	99	143	PB02	34	VDDIO1	x1		USBC - ID	PEVC - PAD_EVT [6]	TC1 - A1		
	100	144	PB03	35	VDDIO1	x1		USBC - VBOF	PEVC - PAD_EVT [7]			
	7	7	PB04	36	VDDIO1	x1/x2	SPI1 - MOSI	CANIF - RXLINE[0]	QDEC1 - QEPI		MACB - TXD[2]	
	8	8	PB05	37	VDDIO1	x1/x2	SPI1 - MISO	CANIF - TXLINE[0]	PEVC - PAD_EVT [12]	USART3- CLK	MACB - TXD[3]	
	9	9	PB06	38	VDDIO1	x2/x4	SPI1 - SCK		QDEC1 - QEPA	USART1- CLK	MACB - TX_ER	
		10	PB07	39	VDDIO1	x1/x2	SPI1 - NPCS[0]	EIC - EXTINT[2]	QDEC1 - QEPB		MACB - RX_DV	
		11	PB08	40	VDDIO1	x1/x2	SPI1 - NPCS[1]	PEVC - PAD_EVT [1]	PWM - PWML[0]		MACB - RXD[0]	
		12	PB09	41	VDDIO1	x1/x2	SPI1 - NPCS[2]		PWM - PWMH[0]		MACB - RXD[1]	
		13	PB10	42	VDDIO1	x1/x2	USART1 - DTR	SPI0 - MOSI	PWM - PWML[1]			

 Table 3-1.
 GPIO Controller Function Multiplexing

TQFP				G			GPIO function					
/ QFN	TQFP	LQFP		P I		Pin Type			_			_
64	100	144	PIN	0	Supply	(1)	Α	В	C	D	E	F
33	51	73	PC02	66	VDDIO2	x1	TWIMS0 - TWD	SPI0 - NPCS[3]	USART2 - RXD	TC1 - CLK1	MACB - MDC	
34	52	74	PC03	67	VDDIO2	x1	TWIMS0 - TWCK	EIC - EXTINT[1]	USART2 - TXD	TC1 - B1	MACB - MDIO	
37	55	77	PC04	68	VDDIO2	x1	TWIMS1 - TWD	EIC - EXTINT[3]	USART2 - TXD	TC0 - B1		
38	56	78	PC05	69	VDDIO2	x1	TWIMS1 - TWCK	EIC - EXTINT[4]	USART2 - RXD	TC0 - A2		
	57	79	PC06	70	VDDIO2	x1	PEVC - PAD_EVT [15]	USART2 - CLK	USART2 - CTS	TC0 - CLK2	TWIMS2 - TWD	TWIMS0 - TWALM
	58	80	PC07	71	VDDIO2	x1	PEVC - PAD_EVT [2]	EBI - NCS[3]	USART2 - RTS	TC0 - B2	TWIMS2 - TWCK	TWIMS1 - TWALM
		81	PC08	72	VDDIO2	x1/x2	PEVC - PAD_EVT [13]	SPI1 - NPCS[1]	EBI - NCS[0]		USART4 - TXD	
		82	PC09	73	VDDIO2	x1/x2	PEVC - PAD_EVT [14]	SPI1 - NPCS[2]	EBI - ADDR[23]		USART4 - RXD	
		83	PC10	74	VDDIO2	x1/x2	PEVC - PAD_EVT [15]	SPI1 - NPCS[3]	EBI - ADDR[22]			
	59	84	PC11	75	VDDIO2	x1/x2	PWM - PWMH[3]	CANIF - RXLINE[1]	EBI - ADDR[21]	TC0 - CLK0		
	60	85	PC12	76	VDDIO2	x1/x2	PWM - PWML[3]	CANIF - TXLINE[1]	EBI - ADDR[20]	USART2- CLK		
	61	86	PC13	77	VDDIO2	x1/x2	PWM - PWMH[2]	EIC - EXTINT[7]		USART0- RTS		
	62	87	PC14	78	VDDIO2	x1/x2	PWM - PWML[2]	USART0 - CLK	EBI - SDCKE	USART0- CTS		
39	63	88	PC15	79	VDDIO2	x1/x2	PWM - PWMH[1]	SPI0 - NPCS[0]	EBI - SDWE	USART0- RXD	CANIF - RXLINE[1]	
40	64	89	PC16	80	VDDIO2	x1/x2	PWM - PWML[1]	SPI0 - NPCS[1]	EBI - CAS	USART0- TXD	CANIF - TXLINE[1]	
41	65	90	PC17	81	VDDIO2	x1/x2	PWM - PWMH[0]	SPI0 - NPCS[2]	EBI - RAS	IISC - ISDO		USART3 - TXD
42	66	91	PC18	82	VDDIO2	x1/x2	PWM - PWML[0]	EIC - EXTINT[5]	EBI - SDA10	IISC - ISDI		USART3 - RXD
43	67	92	PC19	83	VDDIO3	x1/x2	PWM - PWML[2]	SCIF - GCLK[0]	EBI - DATA[0]	IISC - IMCK		USART3 - CTS
44	68	93	PC20	84	VDDIO3	x1/x2	PWM - PWMH[2]	SCIF - GCLK[1]	EBI - DATA[1]	IISC - ISCK		USART3 - RTS
45	69	94	PC21	85	VDDIO3	x1/x2	PWM - EXT_ FAULTS[0]	CANIF - RXLINE[0]	EBI - DATA[2]	IISC - IWS		
46	70	95	PC22	86	VDDIO3	x1/x2	PWM - EXT_ FAULTS[1]	CANIF - TXLINE[0]	EBI - DATA[3]		USART3 - CLK	
	71	96	PC23	87	VDDIO3	x1/x2	QDEC1 - QEPB	CANIF - RXLINE[1]	EBI - DATA[4]	PEVC - PAD_EVT [3]		

depending on the configuration of the OCD AXS register. For details, see the AVR32UC Technical Reference Manual.

Pin	AXS=0	AXS=1	AXS=2
EVTI_N	PA08	PB19	PA10
MDO[5]	PC05	PC31	PB06
MDO[4]	PC04	PC12	PB15
MDO[3]	PA23	PC11	PB14
MDO[2]	PA22	PB23	PA27
MDO[1]	PA19	PB22	PA26
MDO[0]	PA09	PB20	PA19
EVTO_N	PD29	PD29	PD29
МСКО	PD13	PB21	PB26
MSEO[1]	PD30	PD08	PB25
MSEO[0]	PD14	PD07	PB18

Table 3-5. Nexus OCD AUX port connections

3.2.6 Other Functions

The functions listed in Table 3-6 are not mapped to the normal GPIO functions. The aWire DATA pin will only be active after the aWire is enabled. The aWire DATAOUT pin will only be active after the aWire is enabled and the 2_PIN_MODE command has been sent.

Table 3-0. Other Functions	Table 3-6.	Other Functions
----------------------------	------------	-----------------

QFN64/ TQFP64 pin	TQFP100 pin	LQFP144 pin	Pad	Oscillator pin
64	98	142	RESET_N	aWire DATA
3	3	3	PA02	aWire DATAOUT

3.3 Signals Description

The following table give details on the signal name classified by peripherals.

Table 3-7. Signal Description List

Signal Name	Function	Туре	Active Level	Comments	
Power					
VDDIO1 VDDIO2 VDDIO3	I/O Power Supply	Power Input		4.5V to 5.5V or 3.0V to 3.6 V	
VDDANA	Analog Power Supply	Power Input		4.5V to 5.5V or 3.0V to 3.6 V	

Table 3-7.Signal Description List

Signal Name	Function	Туре	Active Level	Comments				
ADCVREFN	Analog negative reference connected to external capacitor	Analog						
Auxiliary Port - AUX								
МСКО	Trace Data Output Clock	Output						
MDO[5:0]	Trace Data Output	Output						
MSEO[1:0]	Trace Frame Control	Output						
EVTI_N	Event In	Output	Low					
EVTO_N	Event Out	Output	Low					
	aWire - AW							
DATA	aWire data	I/O						
DATAOUT	aWire data output for 2-pin mode	I/O						
	Controller Area Network Interface - CANIF							
RXLINE[1:0]	CAN channel rxline	I/O						
TXLINE[1:0]	CAN channel txline	I/O						
	DAC Interface - DA	CIFB0/1						
DAC0A, DAC0B	DAC0 output pins of S/H A	Analog						
DAC1A, DAC1B	DAC output pins of S/H B	Analog						
DACREF	Analog reference voltage input	Analog						
	External Bus Interfa	ace - EBI						
ADDR[23:0]	Address Bus	Output						
CAS	Column Signal	Output	Low					
DATA[15:0]	Data Bus	I/O						
NCS[3:0]	Chip Select	Output	Low					
NRD	Read Signal	Output	Low					
NWAIT	External Wait Signal	Input	Low					
NWE0	Write Enable 0	Output	Low					
NWE1	Write Enable 1	Output	Low					
RAS	Row Signal	Output	Low					
SDA10	SDRAM Address 10 Line	Output						

Table 3-7.Signal Description List

Signal Name	Function	Туре	Active Level	Comments				
SDCK	SDRAM Clock	Output						
SDCKE	SDRAM Clock Enable	Output						
SDWE	SDRAM Write Enable	Output	Low					
	External Interrupt Con	troller - EIC						
EXTINT[8:1]	External Interrupt Pins	Input						
NMI_N = EXTINT[0]	Non-Maskable Interrupt Pin	Input	Low					
	General Purpose Input/Output - GPIC	A, GPIOB, C	GPIOC, GPI	D				
PA[29:19] - PA[16:0]	Parallel I/O Controller GPIOA	I/O						
PB[31:0]	Parallel I/O Controller GPIOB	I/O						
PC[31:0]	Parallel I/O Controller GPIOC	I/O						
PD[30:0]	Parallel I/O Controller GPIOD	I/O						
	Inter-IC Sound (I2S) Controller - IISC							
IMCK	I2S Master Clock	Output						
ISCK	I2S Serial Clock	I/O						
ISDI	I2S Serial Data In	Input						
ISDO	I2S Serial Data Out	Output						
IWS	I2S Word Select	I/O						
	JTAG							
тск	Test Clock	Input						
TDI	Test Data In	Input						
TDO	Test Data Out	Output						
TMS	Test Mode Select	Input						
Ethernet MAC - MACB								
COL	Collision Detect	Input						
CRS	Carrier Sense and Data Valid	Input						
MDC	Management Data Clock	Output						
MDIO	Management Data Input/Output	I/O						
RXD[3:0]	Receive Data	Input						

Figure 4-5. The Status Register Low Halfword

4.4.3 Processor States

4.4.3.1 Normal RISC State

The AVR32 processor supports several different execution contexts as shown in Table 4-2.

Priority	Mode	Security	Description
1	Non Maskable Interrupt	Privileged	Non Maskable high priority interrupt mode
2	Exception	Privileged	Execute exceptions
3	Interrupt 3	Privileged	General purpose interrupt mode
4	Interrupt 2	Privileged	General purpose interrupt mode
5	Interrupt 1	Privileged	General purpose interrupt mode
6	Interrupt 0	Privileged	General purpose interrupt mode
N/A	Supervisor	Privileged	Runs supervisor calls
N/A	Application	Unprivileged	Normal program execution mode

 Table 4-2.
 Overview of Execution Modes, their Priorities and Privilege Levels.

Mode changes can be made under software control, or can be caused by external interrupts or exception processing. A mode can be interrupted by a higher priority mode, but never by one with lower priority. Nested exceptions can be supported with a minimal software overhead.

When running an operating system on the AVR32, user processes will typically execute in the application mode. The programs executed in this mode are restricted from executing certain instructions. Furthermore, most system registers together with the upper halfword of the status register cannot be accessed. Protected memory areas are also not available. All other operating modes are privileged and are collectively called System Modes. They have full access to all privileged and unprivileged resources. After a reset, the processor will be in supervisor mode.

4.4.3.2 Debug State

The AVR32 can be set in a debug state, which allows implementation of software monitor routines that can read out and alter system information for use during application development. This implies that all system and application registers, including the status registers and program counters, are accessible in debug state. The privileged instructions are also available.

All interrupt levels are by default disabled when debug state is entered, but they can individually be switched on by the monitor routine by clearing the respective mask bit in the status register.

Table 5-3.Peripheral Address Mapping

0xFFFF3800	TWIMO	Two-wire Master Interface - TWIM0
0xFFFF3C00	TWIM1	Two-wire Master Interface - TWIM1
0xFFFF4000	TWIS0	Two-wire Slave Interface - TWIS0
0xFFFF4400	TWIS1	Two-wire Slave Interface - TWIS1
0xFFFF4800	IISC	Inter-IC Sound (I2S) Controller - IISC
0xFFFF4C00	PWM	Pulse Width Modulation Controller - PWM
0xFFFF5000	QDEC0	Quadrature Decoder - QDEC0
0xFFFF5400	QDEC1	Quadrature Decoder - QDEC1
0xFFFF5800	TC1	Timer/Counter - TC1
0xFFFF5C00	PEVC	Peripheral Event Controller - PEVC
0xFFFF6000	ACIFA0	Analog Comparators Interface - ACIFA0
0xFFFF6400	ACIFA1	Analog Comparators Interface - ACIFA1
0xFFFF6800	DACIFB0	DAC interface - DACIFB0
0xFFFF6C00	DACIFB1	DAC interface - DACIFB1
0xFFFF7000	AW	aWire - AW

5.4 CPU Local Bus Mapping

Some of the registers in the GPIO module are mapped onto the CPU local bus, in addition to being mapped on the Peripheral Bus. These registers can therefore be reached both by accesses on the Peripheral Bus, and by accesses on the local bus.

Mapping these registers on the local bus allows cycle-deterministic toggling of GPIO pins since the CPU and GPIO are the only modules connected to this bus. Also, since the local bus runs at CPU speed, one write or read operation can be performed per clock cycle to the local busmapped GPIO registers.

The following GPIO registers are mapped on the local bus:

 Table 5-4.
 Local bus mapped GPIO registers

Port	Register	Mode	Local Bus Address	Access
А	Output Driver Enable Register (ODER)	WRITE	0x40000040	Write-only
		SET	0x40000044	Write-only
		CLEAR	0x40000048	Write-only
		TOGGLE	0x4000004C	Write-only
	Output Value Register (OVR)	WRITE	0x40000050	Write-only
		SET	0x40000054	Write-only
		CLEAR	0x40000058	Write-only
		TOGGLE	0x4000005C	Write-only
	Pin Value Register (PVR)	-	0x40000060	Read-only
В	Output Driver Enable Register (ODER)	WRITE	0x40000140	Write-only
		SET	0x40000144	Write-only
		CLEAR	0x40000148	Write-only
		TOGGLE	0x4000014C	Write-only
	Output Value Register (OVR)	WRITE	0x40000150	Write-only
		SET	0x40000154	Write-only
		CLEAR	0x40000158	Write-only
		TOGGLE	0x4000015C	Write-only
·	Pin Value Register (PVR)	-	0x40000160	Read-only
С	Output Driver Enable Register (ODER)	WRITE	0x40000240	Write-only
		SET	0x40000244	Write-only
		CLEAR	0x40000248	Write-only
		TOGGLE	0x4000024C	Write-only
	Output Value Register (OVR)	WRITE	0x40000250	Write-only
		SET	0x40000254	Write-only
		CLEAR	0x40000258	Write-only
		TOGGLE	0x4000025C	Write-only
	Pin Value Register (PVR)	-	0x40000260	Read-only

7.8 Analog Characteristics

7.8.1 1.8V Voltage Regulator Characteristics

 Table 7-18.
 1.8V Voltage Regulator Electrical Characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{VDDIN_5}	Input voltage range	5V range	4.5		5.5	V
		3V range	3.0		3.6	
V _{VDDCORE}	Output voltage, calibrated value			1.85		V
I _{OUT}	DC output current				80	mA

Table 7-19. Decoupling Requirements

Symbol	Parameter	Condition	Тур	Techno.	Units
C _{IN1}	Input regulator capacitor 1		1	NPO	nF
C _{IN2}	Input regulator capacitor 2		4.7	X7R	uF
C _{OUT1}	Output regulator capacitor 1		470	NPO	pf
C _{OUT2}	Output regulator capacitor 2		2.2	X7R	uF

7.8.2 3.3V Voltage Regulator Characteristics

 Table 7-20.
 3.3V Voltage Regulator Electrical Characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{VDDIN_5}	Input voltage range		4.5		5.5	V
V _{VDDIN_33}	Output voltage, calibrated value			3.4		V
I _{OUT}	DC output current				35	mA
I _{VREG}	Static current of regulator	Low power mode		10		μA

7.8.3 1.8V Brown Out Detector (BOD18) Characteristics

The values in Table 7-21 describe the values of the BOD.LEVEL in the SCIF module.

Table 7-21.	BODLEVEL	Values
-------------	----------	--------

BODLEVEL Value	Parameter	Min	Max	Units
0		1.29	1.58	
20		1.36	1.63	
26	threshold at power-up sequence	1.42	1.69	
28		1.43	1.72	V
32		1.48	1.77	
36		1.53	1.82	
40		1.56	1.88	

Symbol	Parameter	Conditions	Min	Тур	Max	Units
RES	Resolution	Differential mode,			12	Bit
INL	Integral Non-Linearity	V _{VDDANA} = 3V,			5	LSB
DNL	Differential Non-Linearity	$V_{ADCREF0} = 1V,$			4	LSB
Offset error	= ADCFIA.SEQCFGn.SRES = 0,	-5		5	mV	
	Gain error (F _{adc} = 1.2MHz)	$(F_{adc} = 1.2MHz)$	-20		20	mV
RES	Resolution	Differential mode,			12	Bit
INL	Integral Non-Linearity	$V_{VDDANA} = 5V,$			5	LSB
DNL	Differential Non-Linearity	$V_{ADCREF0} = 3V,$			3	LSB
	Offset error	$\begin{array}{l} \hline \\ ADCFIA.SEQCFGn.SRES = 0, \\ \hline \\ S/H \text{ gain} = 1 \\ (F_{adc} = 1.5MHz) \end{array}$	-10		10	mV
	Gain error		-20		20	mV

Table 7-34. ADC and S/H Transfer Characteristics 12-bit Resolution Mode and S/H gain = $1^{(1)}$

Note: 1. The measures are done without any I/O activity on VDDANA/GNDANA power domain.

Table 7-35.	ADC and S/H Transfer Characteristics 12-b	it Resolution Mode and S/H gain from 1 to 8 ⁽¹⁾
-------------	---	--

Symbol	Parameter	Conditions	Min	Тур	Max	Units
RES	Resolution	Differential mode,			12	Bit
INL	Integral Non-Linearity	$V_{VDDANA} = 3V,$			25	LSB
DNL	Differential Non-Linearity	$V_{ADCREF0} = 1V,$			25	LSB
	Offset error	ADCFIA.SEQCFGn.SRES = 0, S/H gain from 1 to 8 $(F_{adc} = 1.2MHz)$	-10		10	mV
	Gain error		-20		20	mV
RES	Resolution	Differential mode,			12	Bit
INL	Integral Non-Linearity	$V_{VDDANA} = 5V,$			9	LSB
DNL	Differential Non-Linearity	$V_{ADCREF0} = 3V,$			10	LSB
	Offset error		-15		15	mV
	Gain error	$(F_{adc} = 1.5MHz)$	-20		20	mV

Note: 1. The measures are done without any I/O activity on VDDANA/GNDANA power domain

Table 7-36.	ADC and S/H Transfer	Characteristics	10-bit Resolution	Mode and S/H gain from 1	to 16 ⁽¹⁾
-------------	----------------------	------------------------	-------------------	--------------------------	----------------------

Symbol	Parameter	Conditions	Min	Тур	Max	Units
RES	Resolution	Differential mode,			10	Bit
INL	Integral Non-Linearity	$V_{VDDANA} = 3V,$			3	LSB
DNL	Differential Non-Linearity	$V_{ADCREF0} = 1V,$ ADCFIA.SEQCFGn.SRES = 1, S/H gain from 1 to 16			3	LSB
	Offset error		-15		15	mV
	Gain error	$(F_{adc} = 1.5 MHz)$	-20		20	mV

Figure 7-4. DAC output

 Table 7-40.
 Transfer Characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Units
RES	Resolution				12	Bit
INL	Integral Non-Linearity	V _{VDDANA} = 3V, V _{DACREF} = 2V, One S/H		8		LSB
DNL	Differential Non-linearity			6		LSB
	Offset error		-30		30	mV
	Gain error		-30		30	mV
RES	Resolution				12	Bit
INL	Integral Non-Linearity	V _{VDDANA} = 5V,		12		LSB
DNL	Differential Non-linearity	V _{DACREF} = 3V,		6		LSB
	Offset error	One S/H	-30		30	mV
	Gain error		-30		30	mV

Note: 1. The measures are done without any I/O activity on VDDANA/GNDANA power domain.

7.9.3 USART in SPI Mode Timing

7.9.3.1 Master mode

SPCK

Figure 7-6. USART in SPI Master Mode With (CPOL= CPHA= 0) or (CPOL= CPHA= 1)

Table 7-46.	USART in S	SPI Mode	Timina.	Master	Mode ⁽¹⁾
-------------	------------	----------	---------	--------	---------------------

Symbol	Parameter	Conditions	Min	Max	Units
USPI0	MISO setup time before SPCK rises		26+ t _{SAMPLE} ⁽²⁾		ns
USPI1	MISO hold time after SPCK rises		0		ns
USPI2	SPCK rising to MOSI delay	external		11	ns
USPI3	MISO setup time before SPCK falls	40pF	26+ t _{SAMPLE} ⁽²⁾		ns
USPI4	MISO hold time after SPCK falls		0		ns
USPI5	SPCK falling to MOSI delay			11.5	ns

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

2. Where:
$$t_{SAMPLE} = t_{SPCK} - \left(\left[\frac{t_{SPCK}}{2 \times t_{CLKUSART}} \right] \frac{1}{2} \right) \times t_{CLKUSART} \right)$$

Maximum SPI Frequency, Slave Input Mode

The maximum SPI slave input frequency is given by the following formula:

$$f_{SPCKMAX} = MIN(\frac{f_{CLKSPI} \times 2}{9}, \frac{1}{SPIn})$$

Where *SPIn* is the MOSI setup and hold time, USPI7 + USPI8 or USPI10 + USPI11 depending on CPOL and NCPHA. f_{CLKSPI} is the maximum frequency of the CLK_SPI. Refer to the SPI chapter for a description of this clock.

Maximum SPI Frequency, Slave Output Mode

The maximum SPI slave output frequency is given by the following formula:

$$f_{SPCKMAX} = MIN(\frac{f_{CLKSPI} \times 2}{9}, f_{PINMAX}, \frac{1}{SPIn + t_{SETUP}})$$

Where *SPIn* is the MISO delay, USPI6 or USPI9 depending on CPOL and NCPHA. T_{SETUP} is the SPI master setup time. Please refer to the SPI masterdatasheet for T_{SETUP} . f_{CLKSPI} is the maximum frequency of the CLK_SPI. Refer to the SPI chapter for a description of this clock. f_{PINMAX} is the maximum frequency of the SPI pins. Please refer to the I/O Pin Characteristics section for the maximum frequency of the pins.

7.9.4 SPI Timing

7.9.4.1 Master mode

Figure 7-11. SPI Master Mode With (CPOL= NCPHA= 0) or (CPOL= NCPHA= 1)

Figure 7-18. SMC Signals for NRD and NRW Controlled Accesses⁽¹⁾

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

7.9.8 SDRAM Signals

Table 7-57	SDRAM	Clock Signal
		CIUCK Olyriai

Symbol	Parameter	Max ⁽¹⁾	Units
1/(t _{CPSDCK})	SDRAM Controller clock frequency	f _{cpu}	MHz

Note: 1. The maximum frequency of the SDRAMC interface is the same as the max frequency for the HSB.

7.9.9 MACB Characteristics

 Table 7-59.
 Ethernet MAC Signals⁽¹⁾

Symbol	Parameter	Conditions	Min.	Max.	Unit
MAC ₁	Setup for MDIO from MDC rising	$V_{VDD} = 3.0V,$	0	2.5	ns
MAC ₂	Hold for MDIO from MDC rising	drive strength of the pads set to the	0	0.7	ns
MAC ₃	MDIO toggling from MDC falling	external capacitor = 10pF on MACB pins	0	1.1	ns

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

 Table 7-60.
 Ethernet MAC MII Specific Signals⁽¹⁾

Symbol	Parameter	Conditions	Min.	Max.	Unit
MAC ₄	Setup for COL from TX_CLK rising		0		ns
MAC ₅	Hold for COL from TX_CLK rising		0		ns
MAC ₆	Setup for CRS from TX_CLK rising		0.5		ns
MAC ₇	Hold for CRS from TX_CLK rising		0.5		ns
MAC ₈	TX_ER toggling from TX_CLK rising		16.4	18.6	ns
MAC ₉	TX_EN toggling from TX_CLK rising	$V_{VDD} = 3.0V,$ drive strength of the pads set to the highest,	14.5	15.3	ns
MAC ₁₀	TXD toggling from TX_CLK rising		13.9	18.2	ns
MAC ₁₁	Setup for RXD from RX_CLK	external capacitor = 10pF on MACB	1.3		ns
MAC ₁₂	Hold for RXD from RX_CLK	pins —	1.8		ns
MAC ₁₃	Setup for RX_ER from RX_CLK		3.4		ns
MAC ₁₄	Hold for RX_ER from RX_CLK	-	0		ns
MAC ₁₅	Setup for RX_DV from RX_CLK		0.7		ns
MAC ₁₆	Hold for RX_DV from RX_CLK		1.3n		ns

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

10.1.5 SCIF

1 PLLCOUNT value larger than zero can cause PLLEN glitch

Initializing the PLLCOUNT with a value greater than zero creates a glitch on the PLLEN signal during asynchronous wake up.

Fix/Workaround

The lock-masking mechanism for the PLL should not be used.

The PLLCOUNT field of the PLL Control Register should always be written to zero.

2 PLL lock might not clear after disable

Under certain circumstances, the lock signal from the Phase Locked Loop (PLL) oscillator may not go back to zero after the PLL oscillator has been disabled. This can cause the propagation of clock signals with the wrong frequency to parts of the system that use the PLL clock.

Fix/Workaround

PLL must be turned off before entering STOP, DEEPSTOP or STATIC sleep modes. If PLL has been turned off, a delay of 30us must be observed after the PLL has been enabled again before the SCIF.PLL0LOCK bit can be used as a valid indication that the PLL is locked.

3 BOD33 reset locks the device

If BOD33 is enabled as a reset source (SCIF.BOD33.CTRL=0x1) and when VDDIN_33 power supply voltage falls below the BOD33 voltage (SCIF.BOD33.LEVEL), the device is locked permanently under reset even if the power supply goes back above BOD33 reset level. In order to unlock the device, an external reset event should be applied on RESET_N. **Fix/Workaround**

Use an external BOD on VDDIN_33 or an external reset source.

10.1.6 SPI

1 SPI data transfer hangs with CSR0.CSAAT==1 and MR.MODFDIS==0

When CSR0.CSAAT==1 and mode fault detection is enabled (MR.MODFDIS==0), the SPI module will not start a data transfer. **Fix/Workaround**

Fix/Workaround

Disable mode fault detection by writing a one to MR.MODFDIS.

2 Disabling SPI has no effect on the SR.TDRE bit

Disabling SPI has no effect on the SR.TDRE bit whereas the write data command is filtered when SPI is disabled. Writing to TDR when SPI is disabled will not clear SR.TDRE. If SPI is disabled during a PDCA transfer, the PDCA will continue to write data to TDR until its buffer is empty, and this data will be lost.

Fix/Workaround

Disable the PDCA, add two NOPs, and disable the SPI. To continue the transfer, enable the SPI and PDCA.

3 SPI disable does not work in SLAVE mode

SPI disable does not work in SLAVE mode.

Fix/Workaround

Read the last received data, then perform a software reset by writing a one to the Software Reset bit in the Control Register (CR.SWRST).

Fix/Workaround

None.

3 In host mode, the disconnection during OUT transition is not supported

In USB host mode, a pipe can not work if the previous USB device disconnection has occurred during a USB transfer.

Fix/Workaround

Reset the USBC (USBCON.USB=0 and =1) after a device disconnection (UHINT.DDISCI).

4 In USB host mode, entering suspend mode can fail

In USB host mode, entering suspend mode can fail when UHCON.SOFE=0 is done just after a SOF reception (UHINT.HSOFI).

Fix/Workaround

Check that UHNUM.FLENHIGH is below 185 in Full speed and below 21 in Low speed before clearing UHCON.SOFE.

5 In USB host mode, entering suspend mode for low speed device can fail when the USB freeze (USBCON.FRZCLK=1) is done just after UHCON.SOFE=0. Fix/Workaround

When entering suspend mode (UHCON.SOFE is cleared), check that USBFSM.DRDSTATE is not equal to three before freezing the clock (USBCON.FRZCLK=1).

10.1.11 WDT

1 WDT Control Register does not have synchronization feedback

When writing to the Timeout Prescale Select (PSEL), Time Ban Prescale Select (TBAN), Enable (EN), or WDT Mode (MODE) fieldss of the WDT Control Register (CTRL), a synchronizer is started to propagate the values to the WDT clcok domain. This synchronization takes a finite amount of time, but only the status of the synchronization of the EN bit is reflected back to the user. Writing to the synchronized fields during synchronization can lead to undefined behavior.

Fix/Workaround

-When writing to the affected fields, the user must ensure a wait corresponding to 2 clock cycles of both the WDT peripheral bus clock and the selected WDT clock source.

-When doing writes that changes the EN bit, the EN bit can be read back until it reflects the written value.

10.2 rev D

10.2.1 ADCIFA

1 ADCREFP/ADCREFN can not be selected as an external ADC reference by setting the ADCIFA.CFG.EXREF bit to one Fix/Workaround

A voltage reference can be applied on ADCREFP/ADCREFN pins if the ADCIFA.CFG.EXREF bit is set to zero, the ADCIFA.CFG.RS bit is set to zero and the voltage reference applied on ADCREFP/ADCREFN pins is higher than the internal 1V reference.

10.2.2 AST

1 AST wake signal is released one AST clock cycle after the BUSY bit is cleared After writing to the Status Clear Register (SCR) the wake signal is released one AST clock cycle after the BUSY bit in the Status Register (SR.BUSY) is cleared. If entering sleep mode directly after the BUSY bit is cleared the part will wake up immediately. Fix/Workaround Read the Wake Enable Register (WER) and write this value back to the same register. Wait

Read the Wake Enable Register (WER) and write this value back to the same register. Wait for BUSY to clear before entering sleep mode.

10.2.3 aWire

1 aWire MEMORY_SPEED_REQUEST command does not return correct CV The aWire MEMORY_SPEED_REQUEST command does not return a CV corresponding to

the formula in the aWire Debug Interface chapter.

Fix/Workaround

Issue a dummy read to address 0x10000000 before issuing the MEMORY_SPEED_REQUEST command and use this formula instead:

$$f_{sab} = \frac{7f_{aw}}{CV-3}$$

10.2.4 GPIO

1 Clearing Interrupt flags can mask other interrupts

When clearing interrupt flags in a GPIO port, interrupts on other pins of that port, happening in the same clock cycle will not be registered.

Fix/Workaround

Read the PVR register of the port before and after clearing the interrupt to see if any pin change has happened while clearing the interrupt. If any change occurred in the PVR between the reads, they must be treated as an interrupt.

10.2.5 Power Manager

1 Clock Failure Detector (CFD) can be issued while turning off the CFD

While turning off the CFD, the CFD bit in the Status Register (SR) can be set. This will change the main clock source to RCSYS.

Fix/Workaround

Solution 1: Enable CFD interrupt. If CFD interrupt is issues after turning off the CFD, switch back to original main clock source.

Solution 2: Only turn off the CFD while running the main clock on RCSYS.

