

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	AVR
Core Size	32-Bit Single-Core
Speed	66MHz
Connectivity	CANbus, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	81
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at32uc3c1128c-aur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The Full-Speed USB 2.0 Device interface supports several USB Classes at the same time thanks to the rich End-Point configuration. The On-The-GO (OTG) Host interface allows device like a USB Flash disk or a USB printer to be directly connected to the processor.

The media-independent interface (MII) and reduced MII (RMII) 10/100 Ethernet MAC module provides on-chip solutions for network-connected devices.

The Peripheral Event Controller (PEVC) allows to redirect events from one peripheral or from input pins to another peripheral. It can then trigger, in a deterministic time, an action inside a peripheral without the need of CPU. For instance a PWM waveform can directly trigger an ADC capture, hence avoiding delays due to software interrupt processing.

The AT32UC3C features analog functions like ADC, DAC, Analog comparators. The ADC interface is built around a 12-bit pipelined ADC core and is able to control two independent 8-channel or one 16-channel. The ADC block is able to measure two different voltages sampled at the same time. The analog comparators can be paired to detect when the sensing voltage is within or outside the defined reference window.

Atmel offers the QTouch library for embedding capacitive touch buttons, sliders, and wheels functionality into AVR microcontrollers. The patented charge-transfer signal acquisition offers robust sensing and included fully debounced reporting of touch keys and includes Adjacent Key Suppression[®] (AKS[®]) technology for unambiguous detection of key events. The easy-to-use QTouch Suite toolchain allows you to explore, develop, and debug your own touch applications.

AT32UC3C integrates a class 2+ Nexus 2.0 On-Chip Debug (OCD) System, with non-intrusive real-time trace, full-speed read/write memory access in addition to basic runtime control. The Nanotrace interface enables trace feature for aWire- or JTAG-based debuggers. The single-pin aWire interface allows all features available through the JTAG interface to be accessed through the RESET pin, allowing the JTAG pins to be used for GPIO or peripherals.

Table 3-1.	GPIO Controller Function Multiplexing
------------	---------------------------------------

TQFP				G					GPIO fu	unction		
/ QFN 64	TQFP 100	LQFP 144	PIN	P I O	Supply	Pin Type (1)	А	В	С	D	E	F
16	25	36	PA19	19	VDDANA	x1/x2	ADCIN8	EIC - EXTINT[1]				
19	28	39	PA20	20	VDDANA	x1/x2	ADCIN9	AC0AP0	AC0AP0 or DAC0A			
20	29	40	PA21	21	VDDANA	x1/x2	ADCIN10	AC0BN0	AC0BN0 or DAC0B			
21	30	41	PA22	22	VDDANA	x1/x2	ADCIN11	AC0AN0	PEVC - PAD_EVT [4]		MACB - SPEED	
22	31	42	PA23	23	VDDANA	x1/x2	ADCIN12	AC0BP0	PEVC - PAD_EVT [5]		MACB - WOL	
	32	43	PA24	24	VDDANA	x1/x2	ADCIN13	SPI1 - NPCS[2]				
	33	44	PA25	25	VDDANA	x1/x2	ADCIN14	SPI1 - NPCS[3]	EIC - EXTINT[0]			
		45	PA26	26	VDDANA	x1/x2	AC0AP1	EIC - EXTINT[1]				
		46	PA27	27	VDDANA	x1/x2	AC0AN1	EIC - EXTINT[2]				
		47	PA28	28	VDDANA	x1/x2	AC0BP1	EIC - EXTINT[3]				
		48	PA29	29	VDDANA	x1/x2	AC0BN1	EIC - EXTINT[0]				
62	96	140	PB00	32	VDDIO1	x1	USART0 - CLK	CANIF - RXLINE[1]	EIC - EXTINT[8]	PEVC - PAD_EVT [10]		
63	97	141	PB01	33	VDDIO1	x1		CANIF - TXLINE[1]		PEVC - PAD_EVT [11]		
	99	143	PB02	34	VDDIO1	x1		USBC - ID	PEVC - PAD_EVT [6]	TC1 - A1		
	100	144	PB03	35	VDDIO1	x1		USBC - VBOF	PEVC - PAD_EVT [7]			
	7	7	PB04	36	VDDIO1	x1/x2	SPI1 - MOSI	CANIF - RXLINE[0]	QDEC1 - QEPI		MACB - TXD[2]	
	8	8	PB05	37	VDDIO1	x1/x2	SPI1 - MISO	CANIF - TXLINE[0]	PEVC - PAD_EVT [12]	USART3 - CLK	MACB - TXD[3]	
	9	9	PB06	38	VDDIO1	x2/x4	SPI1 - SCK		QDEC1 - QEPA	USART1- CLK	MACB - TX_ER	
		10	PB07	39	VDDIO1	x1/x2	SPI1 - NPCS[0]	EIC - EXTINT[2]	QDEC1 - QEPB		MACB - RX_DV	
		11	PB08	40	VDDIO1	x1/x2	SPI1 - NPCS[1]	PEVC - PAD_EVT [1]	PWM - PWML[0]		MACB - RXD[0]	
		12	PB09	41	VDDIO1	x1/x2	SPI1 - NPCS[2]		PWM - PWMH[0]		MACB - RXD[1]	
		13	PB10	42	VDDIO1	x1/x2	USART1 - DTR	SPI0 - MOSI	PWM - PWML[1]			

Table 3-7.Signal Description List

Signal Name	Function	Туре	Active Level	Comments
ADCVREFN	Analog negative reference connected to external capacitor	Analog		
	Auxiliary Por	rt - AUX	l	1
МСКО	Trace Data Output Clock	Output		
MDO[5:0]	Trace Data Output	Output		
MSEO[1:0]	Trace Frame Control	Output		
EVTI_N	Event In	Output	Low	
EVTO_N	Event Out	Output	Low	
	aWire - A	AW		
DATA	aWire data	I/O		
DATAOUT	aWire data output for 2-pin mode	I/O		
	Controller Area Network	<pre>< Interface - CA</pre>	NIF	
RXLINE[1:0]	CAN channel rxline	I/O		
TXLINE[1:0]	CAN channel txline	I/O		
	DAC Interface -	DACIFB0/1		
DAC0A, DAC0B	DAC0 output pins of S/H A	Analog		
DAC1A, DAC1B	DAC output pins of S/H B	Analog		
DACREF	Analog reference voltage input	Analog		
	External Bus Inte	erface - EBI	I	
ADDR[23:0]	Address Bus	Output		
CAS	Column Signal	Output	Low	
DATA[15:0]	Data Bus	I/O		
NCS[3:0]	Chip Select	Output	Low	
NRD	Read Signal	Output	Low	
NWAIT	External Wait Signal	Input	Low	
NWE0	Write Enable 0	Output	Low	
NWE1	Write Enable 1	Output	Low	
RAS	Row Signal	Output	Low	
SDA10	SDRAM Address 10 Line	Output		

Table 3-7.Signal Description List

Signal Name	Function	Туре	Active Level	Comments
DP	USB Device Port Data +	Analog		
VBUS	USB VBUS Monitor and OTG Negociation	Analog Input		
ID	ID Pin of the USB Bus	Input		
VBOF	USB VBUS On/off: bus power control port	output		

3.4 I/O Line Considerations

3.4.1 JTAG pins

The JTAG is enabled if TCK is low while the RESET_N pin is released. The TCK, TMS, and TDI pins have pull-up resistors when JTAG is enabled. The TCK pin always have pull-up enabled during reset. The TDO pin is an output, driven at VDDIO1, and has no pull-up resistor. The JTAG pins can be used as GPIO pins and muxed with peripherals when the JTAG is disabled. Please refer to Section 3.2.4 for the JTAG port connections.

3.4.2 RESET_N pin

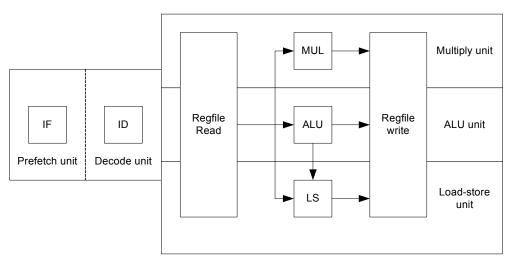
The RESET_N pin integrates a pull-up resistor to VDDIO1. As the product integrates a power-on reset cell, the RESET_N pin can be left unconnected in case no reset from the system needs to be applied to the product.

The RESET_N pin is also used for the aWire debug protocol. When the pin is used for debugging, it must not be driven by external circuitry.

3.4.3 TWI pins

When these pins are used for TWI, the pins are open-drain outputs with slew-rate limitation and inputs with inputs with spike-filtering. When used as GPIO-pins or used for other peripherals, the pins have the same characteristics as GPIO pins.

3.4.4 GPIO pins


All I/O lines integrate programmable pull-up and pull-down resistors. Most I/O lines integrate drive strength control, see Table 3-1. Programming of this pull-up and pull-down resistor or this drive strength is performed independently for each I/O line through the GPIO Controllers.

After reset, I/O lines default as inputs with pull-up/pull-down resistors disabled. After reset, output drive strength is configured to the lowest value to reduce global EMI of the device.

When the I/O line is configured as analog function (ADC I/O, AC inputs, DAC I/O), the pull-up and pull-down resistors are automatically disabled.

Figure 4-2. The AVR32UC Pipeline

4.3.2 AVR32A Microarchitecture Compliance

AVR32UC implements an AVR32A microarchitecture. The AVR32A microarchitecture is targeted at cost-sensitive, lower-end applications like smaller microcontrollers. This microarchitecture does not provide dedicated hardware registers for shadowing of register file registers in interrupt contexts. Additionally, it does not provide hardware registers for the return address registers and return status registers. Instead, all this information is stored on the system stack. This saves chip area at the expense of slower interrupt handling.

4.3.2.1 Interrupt Handling

Upon interrupt initiation, registers R8-R12 are automatically pushed to the system stack. These registers are pushed regardless of the priority level of the pending interrupt. The return address and status register are also automatically pushed to stack. The interrupt handler can therefore use R8-R12 freely. Upon interrupt completion, the old R8-R12 registers and status register are restored, and execution continues at the return address stored popped from stack.

The stack is also used to store the status register and return address for exceptions and *scall*. Executing the *rete* or *rets* instruction at the completion of an exception or system call will pop this status register and continue execution at the popped return address.

4.3.2.2 Java Support

AVR32UC does not provide Java hardware acceleration.

4.3.2.3 Floating Point Support

A fused multiply-accumulate Floating Point Unit (FPU), performing a multiply and accumulate as a single operation with no intermediate rounding, therby increasing precision is provided. The floating point hardware conforms to the requirements of the C standard, which is based on the IEEE 754 floating point standard.

4.3.2.4 Memory Protection

The MPU allows the user to check all memory accesses for privilege violations. If an access is attempted to an illegal memory address, the access is aborted and an exception is taken. The MPU in AVR32UC is specified in the AVR32UC Technical Reference manual.

AT32UC3C

Priority	Handler Address	Name	Event source	Stored Return Address
1	0x8000000	Reset	External input	Undefined
2	Provided by OCD system	OCD Stop CPU	OCD system	First non-completed instruction
3	EVBA+0x00	Unrecoverable exception	Internal	PC of offending instruction
4	EVBA+0x04	TLB multiple hit	MPU	PC of offending instruction
5	EVBA+0x08	Bus error data fetch	Data bus	First non-completed instruction
6	EVBA+0x0C	Bus error instruction fetch	Data bus	First non-completed instruction
7	EVBA+0x10	NMI	External input	First non-completed instruction
8	Autovectored	Interrupt 3 request	External input	First non-completed instruction
9	Autovectored	Interrupt 2 request	External input	First non-completed instruction
10	Autovectored	Interrupt 1 request	External input	First non-completed instruction
11	Autovectored	Interrupt 0 request	External input	First non-completed instruction
12	EVBA+0x14	Instruction Address	CPU	PC of offending instruction
13	EVBA+0x50	ITLB Miss	MPU	PC of offending instruction
14	EVBA+0x18	ITLB Protection	MPU	PC of offending instruction
15	EVBA+0x1C	Breakpoint	OCD system	First non-completed instruction
16	EVBA+0x20	Illegal Opcode	Instruction	PC of offending instruction
17	EVBA+0x24	Unimplemented instruction	Instruction	PC of offending instruction
18	EVBA+0x28	Privilege violation	Instruction	PC of offending instruction
19	EVBA+0x2C	Floating-point	UNUSED	
20	EVBA+0x30	Coprocessor absent	Instruction	PC of offending instruction
21	EVBA+0x100	Supervisor call	Instruction	PC(Supervisor Call) +2
22	EVBA+0x34	Data Address (Read)	CPU	PC of offending instruction
23	EVBA+0x38	Data Address (Write)	CPU	PC of offending instruction
24	EVBA+0x60	DTLB Miss (Read)	MPU	PC of offending instruction
25	EVBA+0x70	DTLB Miss (Write)	MPU	PC of offending instruction
26	EVBA+0x3C	DTLB Protection (Read)	MPU	PC of offending instruction
27	EVBA+0x40	DTLB Protection (Write)	MPU	PC of offending instruction
28	EVBA+0x44	DTLB Modified	UNUSED	

Table 4-4. Priority and Handler Addresses for Events

The following GPIO registers are mapped on the local bus:

 Table 5-4.
 Local bus mapped GPIO registers

Port	Register	Mode	Local Bus Address	Access
А	Output Driver Enable Register (ODER)	WRITE	0x40000040	Write-only
		SET	0x40000044	Write-only
		CLEAR	0x40000048	Write-only
		TOGGLE	0x4000004C	Write-only
	Output Value Register (OVR)	WRITE	0x40000050	Write-only
		SET	0x40000054	Write-only
		CLEAR	0x40000058	Write-only
		TOGGLE	0x4000005C	Write-only
	Pin Value Register (PVR)	-	0x40000060	Read-only
В	Output Driver Enable Register (ODER)	WRITE	0x40000140	Write-only
		SET	0x40000144	Write-only
		CLEAR	0x40000148	Write-only
		TOGGLE	0x4000014C	Write-only
	Output Value Register (OVR)	WRITE	0x40000150	Write-only
		SET	0x40000154	Write-only
		CLEAR	0x40000158	Write-only
		TOGGLE	0x4000015C	Write-only
	Pin Value Register (PVR)	-	0x40000160	Read-only
С	Output Driver Enable Register (ODER)	WRITE	0x40000240	Write-only
		SET	0x40000244	Write-only
		CLEAR	0x40000248	Write-only
		TOGGLE	0x4000024C	Write-only
	Output Value Register (OVR)	WRITE	0x40000250	Write-only
		SET	0x40000254	Write-only
		CLEAR	0x40000258	Write-only
		TOGGLE	0x4000025C	Write-only
	Pin Value Register (PVR)	-	0x40000260	Read-only

6. Supply and Startup Considerations

6.1 Supply Considerations

6.1.1 Power Supplies

The AT32UC3C has several types of power supply pins:

- VDDIO pins (VDDIO1, VDDIO2, VDDIO3): Power I/O lines. Two voltage ranges are available: 5V or 3.3V nominal. The VDDIO pins should be connected together.
- VDDANA: Powers the Analog part of the device (Analog I/Os, ADC, ACs, DACs). 2 voltage ranges available: 5V or 3.3V nominal.
- VDDIN_5: Input voltage for the 1.8V and 3.3V regulators. Two Voltage ranges are available: 5V or 3.3V nominal.
- VDDIN_33:
 - USB I/O power supply
 - if the device is 3.3V powered: Input voltage, voltage is 3.3V nominal.
 - if the device is 5V powered: stabilization for the 3.3V voltage regulator, requires external capacitors
- VDDCORE: Stabilization for the 1.8V voltage regulator, requires external capacitors.
- GNDCORE: Ground pins for the voltage regulators and the core.
- GNDANA: Ground pin for Analog part of the design
- GNDPLL: Ground pin for the PLLs
- GNDIO pins (GNDIO1, GNDIO2, GNDIO3): Ground pins for the I/O lines. The GNDIO pins should be connected together.

See "Electrical Characteristics" on page 50 for power consumption on the various supply pins.

For decoupling recommendations for the different power supplies, please refer to the schematic checklist.

6.1.2 Voltage Regulators

The AT32UC3C embeds two voltage regulators:

- One 1.8V internal regulator that converts from VDDIN_5 to 1.8V. The regulator supplies the output voltage on VDDCORE.
- One 3.3V internal regulator that converts from VDDIN_5 to 3.3V. The regulator supplies the USB pads on VDDIN_33. If the USB is not used or if VDDIN_5 is within the 3V range, the 3.3V regulator can be disabled through the VREG33CTL field of the VREGCTRL SCIF register.

6.1.3 Regulators Connection

The AT32UC3C supports two power supply configurations.

- 5V single supply mode
- 3.3V single supply mode

6.1.3.1 5V Single Supply Mode

In 5V single supply mode, the 1.8V internal regulator is connected to the 5V source (VDDIN_5 pin) and its output feeds VDDCORE.

- Internal 3.3V regulator is off
- TA = 25°C
- I/Os are configured as inputs, with internal pull-up enabled.
- Oscillators
 - OSC0/1 (crystal oscillator) stopped
 - OSC32K (32KHz crystal oscillator) stopped
 - PLL0 running
 - PLL1 stopped
- Clocks
 - External clock on XIN0 as main clock source (10MHz)
 - CPU, HSB, and PBB clocks undivided
 - PBA, PBC clock divided by 4
 - All peripheral clocks running

 Table 7-4.
 Power Consumption for Different Operating Modes

Mode	Conditions	Measured on	Consumption Typ	Unit
Active ⁽¹⁾	CPU running a recursive Fibonacci algorithm		512	
Idle ⁽¹⁾			258	. (b . 4) 1
Frozen ⁽¹⁾			106	µA/MHz
Standby ⁽¹⁾			48	-
Stop		Amp	73	
DeepStop			43	
Ctatia	OSC32K and AST running		32	μA
Static	AST and OSC32K stopped		31	

Note: 1. These numbers are valid for the measured condition only and must not be extrapolated to other frequencies.

Table 7-6. Normal I/O Pin Characteristics⁽¹⁾

Symbol	Parameter	Condition		Min	Тур	Max	Units
			load = 10pF, pin drive $x1^{(2)}$			7.7	
			load = 10pF, pin drive $x2^{(2)}$			3.4	-
			load = 10pF, pin drive $x4^{(2)}$			1.9	
		$V_{VDD} = 3.0 V$	load = 30pF, pin drive x1 ⁽²⁾			16	
			load = 30 pF , pin drive $x2^{(2)}$			7.5	
	$ {\rm Fall\ time}^{(3)} = {\rm Fall\ time}^{(3)} = {\rm A.V} \left\{ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3.8					
RISE RISE TIN	Rise time ⁽⁹⁾		load = 10pF, pin drive x1 ⁽²⁾			5.3	ns
			load = 10pF, pin drive $x2^{(2)}$			2.4	
			load = 10pF, pin drive $x4^{(2)}$			1.3	
		V _{VDD} = 4.5 V	load = 30pF, pin drive x1 ⁽²⁾			11.1	
			load = 30 pF , pin drive $x2^{(2)}$			5.2	-
			load = 30pF, pin drive x4 ⁽²⁾			5.2 2.7 7.6 3.5	
		V _{VDD} = 3.0V	load = 10pF, pin drive x1 ⁽²⁾			7.6	-
			load = 10pF, pin drive $x2^{(2)}$			3.5	
			load = 10pF, pin drive $x4^{(2)}$			1.9	
			load = 30pF, pin drive x1 ⁽²⁾			15.8	
t _{FALL}			load = 30 pF , pin drive $x2^{(2)}$			7.3	
			load = 30pF, pin drive x4 ⁽²⁾			7.7 3.4 1.9 16 7.5 3.8 5.3 2.4 1.3 11.1 5.2 2.7 7.6 3.5 1.9 15.8 7.3 3.8 5.2 2.7 7.6 3.5 1.9 15.8 7.3 3.8 5.2 2.4 1.9 15.8 7.3 3.8 5.2 2.4 1.4 10.9 5.1 2.7 1.0	
τ _{FALL}	Fail time		load = 10pF, pin drive x1 ⁽²⁾ 7.7 load = 10pF, pin drive x2 ⁽²⁾ 3.4 load = 10pF, pin drive x4 ⁽²⁾ 1.9 load = 30pF, pin drive x1 ⁽²⁾ 16 load = 30pF, pin drive x2 ⁽²⁾ 7.5 load = 30pF, pin drive x2 ⁽²⁾ 7.5 load = 30pF, pin drive x2 ⁽²⁾ 3.8 load = 10pF, pin drive x4 ⁽²⁾ 3.8 load = 10pF, pin drive x2 ⁽²⁾ 2.4 load = 10pF, pin drive x2 ⁽²⁾ 2.4 load = 30pF, pin drive x2 ⁽²⁾ 1.3 load = 30pF, pin drive x2 ⁽²⁾ 5.2 load = 30pF, pin drive x2 ⁽²⁾ 5.2 load = 30pF, pin drive x2 ⁽²⁾ 5.2 load = 10pF, pin drive x2 ⁽²⁾ 7.6 load = 10pF, pin drive x2 ⁽²⁾ 7.6 load = 10pF, pin drive x2 ⁽²⁾ 7.3 load = 30pF, pin drive x2 ⁽²⁾ 7.3 load = 30pF, pin drive x2 ⁽²⁾ 7.3 load = 30pF, pin drive x2 ⁽²⁾ 5.2 load = 30pF, pin drive x2 ⁽²⁾ 5.2 load = 10pF, pin drive x2 ⁽²⁾ 5.2 load = 10pF, pin drive x2 ⁽²⁾ 5.2 <td< td=""><td>5.2</td><td>ns</td></td<>	5.2	ns		
			load = 10pF, pin drive $x2^{(2)}$			2.4	
			load = 10pF, pin drive $x4^{(2)}$			1.4	
		$V_{VDD} = 4.5 V$	load = 30pF, pin drive x1 ⁽²⁾			10.9	
			load = 30 pF, pin drive x2 ⁽²⁾			5.1	
			load = 30 pF, pin drive x4 ⁽²⁾			2.7	
I _{LEAK}	Input leakage current	Pull-up resiste	ors disabled			1.0	μA
C _{IN}	Input capacitance	PA00-PA29, F PC08-PC31, I			7.5		pF
		PC02, PC03,	PC04, PC05, PC06, PC07		2		

Note: 1. V_{VDD} corresponds to either V_{VDDIO1}, V_{VDDIO2}, V_{VDDIO3}, or V_{VDDANA}, depending on the supply for the pin. Refer to Section 3-1 on page 11 for details.

drive x1 capability pins are: PB00, PB01, PB02, PB03, PB30, PB31, PC02, PC03, PC04, PC05, PC06, PC07 - drive x2 /x4 capability pins are: PB06, PB21, PB26, PD02, PD06, PD13 - drive x1/x2 capability pins are the remaining PA, PB, PC, PD pins. The drive strength is programmable through ODCR0, ODCR0S, ODCR0C, ODCR0T registers of GPIO.

3. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
RES	Resolution	Differential mode,			12	Bit
INL	Integral Non-Linearity	$V_{VDDANA} = 5V,$			4	LSB
DNL	Differential Non-Linearity	$V_{\text{ADCREF0}} = 3V,$			3	LSB
	Offset error	ADCFIA.SEQCFGn.SRES = 0	-15		15	mV
	Gain error	(F _{adc} = 1.5MHz)	-25		25	mV

 Table 7-31.
 ADC Transfer Characteristics (Continued)12-bit Resolution Mode⁽¹⁾

Note: 1. The measures are done without any I/O activity on VDDANA/GNDANA power domain.

 Table 7-32.
 ADC Transfer Characteristics 10-bit Resolution Mode⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Units
RES	Resolution	Differential mode.			10	Bit
INL	Integral Non-Linearity	$V_{VDDANA} = 3V,$			1.25	LSB
DNL	Differential Non-Linearity	$V_{ADCREF0} = 1V,$			1	LSB
	Offset error	ADCFIA.SEQCFGn.SRES = 1	-10		10	mV
	Gain error	(F _{adc} = 1.5MHz)	-20		20	mV
RES	Resolution	Differential mode.			10	Bit
INL	Integral Non-Linearity	$V_{VDDANA} = 5V,$			1.25	LSB
DNL	Differential Non-Linearity	V _{ADCREF0} = 3V,			1	LSB
	Offset error	ADCFIA.SEQCFGn.SRES = 1	-15		15	mV
	Gain error	$(F_{adc} = 1.5MHz)$	-20		20	mV

Note: 1. The measures are done without any I/O activity on VDDANA/GNDANA power domain.

 Table 7-33.
 ADC Transfer Characteristics 8-bit Resolution Mode⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Units
RES	Resolution	Differential mode,			8	Bit
INL	Integral Non-Linearity	V _{VDDANA} = 3V,			0.3	LSB
DNL	$\begin{array}{c c} & \text{Differential Non-Linearity} \\ \hline \\ & \text{Offset error} \\ \hline \\ & \text{Fadc} = 1.5 \text{MHz} \\ \end{array} \\ \begin{array}{c} V_{\text{ADCREF0}} = 1 \text{V}, \\ \text{ADCFIA.SEQCFGn.SRES} = 2 \\ (F_{\text{adc}} = 1.5 \text{MHz}) \\ \end{array} $			0.25	LSB	
		-10		10	mV	
	Gain error	(1 adc = 1.010112)	-20		20	mV
RES	Resolution	Differential mode,			8	Bit
INL	Integral Non-Linearity	$V_{VDDANA} = 5V,$			0.2	LSB
DNL	Differential Non-Linearity	$V_{ADCREF0} = 3V,$			0.2	LSB
	Offset error	- ADCFIA.SEQCFGn.SRES = 2	-20		20	mV
	Gain error	(F _{adc} = 1.5MHz)	-20		20	mV

Note: 1. The measures are done without any I/O activity on VDDANA/GNDANA power domain.

Figure 7-4. DAC output

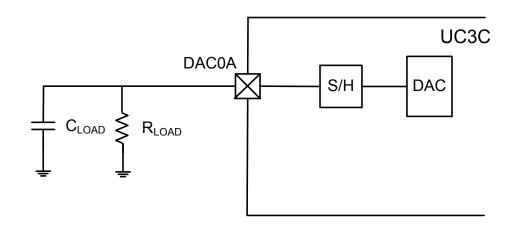
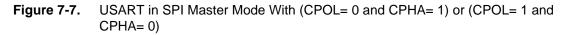
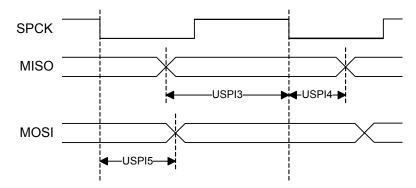


 Table 7-40.
 Transfer Characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Units
RES	Resolution				12	Bit
INL	Integral Non-Linearity	V _{VDDANA} = 3V,		8		LSB
DNL	Differential Non-linearity	$V_{\text{DACREF}} = 2V,$		6		LSB
	Offset error	One S/H	-30		30	mV
	Gain error		-30		30	mV
RES	Resolution				12	Bit
INL	Integral Non-Linearity	$V_{VDDANA} = 5V,$		12		LSB
DNL	Differential Non-linearity	$V_{VDDANA} = 5V,$ $V_{DACREF} = 3V,$		6		LSB
	Offset error	One S/H	-30		30	mV
	Gain error		-30		30	mV

Note: 1. The measures are done without any I/O activity on VDDANA/GNDANA power domain.




7.9.3 USART in SPI Mode Timing

7.9.3.1 Master mode

SPCK

Figure 7-6. USART in SPI Master Mode With (CPOL= CPHA= 0) or (CPOL= CPHA= 1)

Table 7-46. USART in SPI Mode Timing, Master
--

Symbol	Parameter	Conditions	Min	Max	Units
USPI0	MISO setup time before SPCK rises		26+ t _{SAMPLE} ⁽²⁾		ns
USPI1	MISO hold time after SPCK rises		0		ns
USPI2	SPCK rising to MOSI delay	external		11	ns
USPI3	MISO setup time before SPCK falls	capacitor = 40pF	26+ t _{SAMPLE} ⁽²⁾		ns
USPI4	MISO hold time after SPCK falls		0		ns
USPI5	SPCK falling to MOSI delay			11.5	ns

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

2. Where:
$$t_{SAMPLE} = t_{SPCK} - \left(\left[\frac{t_{SPCK}}{2 \times t_{CLKUSART}} \right] \frac{1}{2} \right) \times t_{CLKUSART} \right)$$

Symbol	Parameter	Conditions	Min	Max	Units
SPI6	SPCK falling to MISO delay			29	ns
SPI7	MOSI setup time before SPCK rises		0		ns
SPI8	MOSI hold time after SPCK rises		6.5		ns
SPI9	SPCK rising to MISO delay			30	ns
SPI10	MOSI setup time before SPCK falls	external	0		ns
SPI11	MOSI hold time after SPCK falls	capacitor = 40pF	5		ns
SPI12	NPCS setup time before SPCK rises		0		ns
SPI13	NPCS hold time after SPCK falls		1.5		ns
SPI14	NPCS setup time before SPCK falls		0		ns
SPI15	NPCS hold time after SPCK rises		1.5		ns

Table 7-49.SPI Timing, Slave Mode⁽¹⁾

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

Maximum SPI Frequency, Slave Input Mode

The maximum SPI slave input frequency is given by the following formula:

$$f_{SPCKMAX} = MIN(f_{CLKSPI}, \frac{1}{SPIn})$$

Where *SPIn* is the MOSI setup and hold time, SPI7 + SPI8 or SPI10 + SPI11 depending on CPOL and NCPHA. f_{CLKSPI} is the maximum frequency of the CLK_SPI. Refer to the SPI chapter for a description of this clock.

Maximum SPI Frequency, Slave Output Mode

The maximum SPI slave output frequency is given by the following formula:

$$f_{SPCKMAX} = MIN(f_{PINMAX}, \frac{1}{SPIn + t_{SETUP}})$$

Where *SPIn* is the MISO delay, SPI6 or SPI9 depending on CPOL and NCPHA. t_{SETUP} is the SPI master setup time. Please refer to the SPI masterdatasheet for t_{SETUP} . f_{PINMAX} is the maximum frequency of the SPI pins. Please refer to the I/O Pin Characteristics section for the maximum frequency of the pins.

7.9.5 TWIM/TWIS Timing

Figure 7-50 shows the TWI-bus timing requirements and the compliance of the device with them. Some of these requirements (t_r and t_f) are met by the device without requiring user intervention. Compliance with the other requirements (t_{HD-STA} , t_{SU-STA} , t_{SU-STO} , t_{HD-DAT} , $t_{SU-DAT-I2C}$, $t_{LOW-I2C}$, t_{HIGH} , and f_{TWCK}) requires user intervention through appropriate programming of the relevant

Symbol	Parameter	Conditions	Min	Units
SDRAMC ₁	SDCKE high before SDCK rising edge		5.6	
SDRAMC ₂	SDCKE low after SDCK rising edge		7.3	
SDRAMC ₃	SDCKE low before SDCK rising edge		6.8	
SDRAMC ₄	SDCKE high after SDCK rising edge		8.3	
SDRAMC ₅	SDCS low before SDCK rising edge		6.1	ns
SDRAMC ₆	SDCS high after SDCK rising edge		8.4	
SDRAMC ₇	RAS low before SDCK rising edge		7	
SDRAMC ₈	RAS high after SDCK rising edge		7.7	
SDRAMC ₉	SDA10 change before SDCK rising edge		6.4	
SDRAMC ₁₀	SDA10 change after SDCK rising edge		7.1	
SDRAMC ₁₁	Address change before SDCK rising edge	V _{VDD} = 3.0V, drive strength of the pads set to the highest, external capacitor = 40pF on SDRAM pins except 8 pF on SDCK pins	4.7	
SDRAMC ₁₂	Address change after SDCK rising edge		4.4	
SDRAMC ₁₃	Bank change before SDCK rising edge		6.2	
SDRAMC ₁₄	Bank change after SDCK rising edge		6.9	
SDRAMC ₁₅	CAS low before SDCK rising edge		6.6	
SDRAMC ₁₆	CAS high after SDCK rising edge		7.8	
SDRAMC ₁₇	DQM change before SDCK rising edge		6	-
SDRAMC ₁₈	DQM change after SDCK rising edge		6.7	_
SDRAMC ₁₉	D0-D15 in setup before SDCK rising edge		6.4	-
SDRAMC ₂₀	D0-D15 in hold after SDCK rising edge		0	
SDRAMC ₂₃	SDWE low before SDCK rising edge	-	7	
SDRAMC ₂₄	SDWE high after SDCK rising edge		7.4	
SDRAMC ₂₅	D0-D15 Out valid before SDCK rising edge		5.2	
SDRAMC ₂₆	D0-D15 Out valid after SDCK rising edge		5.6	1

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

8. Mechanical Characteristics

8.1 Thermal Considerations

8.1.1 Thermal Data

Table 8-1 summarizes the thermal resistance data depending on the package.

Symbol	Parameter	Condition	Package	Тур	Unit	
θ_{JA}	Junction-to-ambient thermal resistance	No air flow	QFN64	20.0	°C/M	
θ_{JC}	Junction-to-case thermal resistance		QFN64	0.8	°C/W	
θ_{JA}	Junction-to-ambient thermal resistance	No air flow	TQFP64	40.5	0000	
θ_{JC}	Junction-to-case thermal resistance		TQFP64	8.7	°C/W	
θ_{JA}	Junction-to-ambient thermal resistance	No air flow	TQFP100	39.3	0 0 / A/	
θ_{JC}	Junction-to-case thermal resistance		TQFP100	8.5	°C/W	
θ_{JA}	Junction-to-ambient thermal resistance	No air flow	LQFP144	38.1	0000	
θ_{JC}	Junction-to-case thermal resistance		LQFP144	8.4	°C/W	

 Table 8-1.
 Thermal Resistance Data

8.1.2 Junction Temperature

The average chip-junction temperature, T_J, in °C can be obtained from the following:

1.
$$T_J = T_A + (P_D \times \theta_{JA})$$

2. $T_J = T_A + (P_D \times (\theta_{HEATSINK} + \theta_{JC}))$

where:

- θ_{JA} = package thermal resistance, Junction-to-ambient (°C/W), provided in Table 8-1 on page 90.
- θ_{JC} = package thermal resistance, Junction-to-case thermal resistance (°C/W), provided in Table 8-1 on page 90.
- $\theta_{HEAT SINK}$ = cooling device thermal resistance (°C/W), provided in the device datasheet.
- P_D = device power consumption (W) estimated from data provided in the section "Power Consumption" on page 51.
- T_A = ambient temperature (°C).

From the first equation, the user can derive the estimated lifetime of the chip and decide if a cooling device is necessary or not. If a cooling device is to be fitted on the chip, the second equation should be used to compute the resulting average chip-junction temperature T_J in °C.

10. Errata

10.1 rev E

10.1.1 ADCIFA

1 ADCREFP/ADCREFN can not be selected as an external ADC reference by setting the ADCIFA.CFG.EXREF bit to one Fix/Workaround

A voltage reference can be applied on ADCREFP/ADCREFN pins if the ADCIFA.CFG.EXREF bit is set to zero, the ADCIFA.CFG.RS bit is set to zero and the voltage reference applied on ADCREFP/ADCREFN pins is higher than the internal 1V reference.

10.1.2 AST

1 AST wake signal is released one AST clock cycle after the BUSY bit is cleared After writing to the Status Clear Register (SCR) the wake signal is released one AST clock cycle after the BUSY bit in the Status Register (SR.BUSY) is cleared. If entering sleep mode directly after the BUSY bit is cleared the part will wake up immediately. Fix/Workaround

Read the Wake Enable Register (WER) and write this value back to the same register. Wait for BUSY to clear before entering sleep mode.

10.1.3 aWire

1 aWire MEMORY_SPEED_REQUEST command does not return correct CV

The aWire MEMORY_SPEED_REQUEST command does not return a CV corresponding to the formula in the aWire Debug Interface chapter.

Fix/Workaround

Issue a dummy read to address 0x10000000 before issuing the MEMORY_SPEED_REQUEST command and use this formula instead:

$$f_{sab} = \frac{7f_{aw}}{CV-3}$$

10.1.4 Power Manager

1 TWIS may not wake the device from sleep mode

If the CPU is put to a sleep mode (except Idle and Frozen) directly after a TWI Start condition, the CPU may not wake upon a TWIS address match. The request is NACKed. **Fix/Workaround**

When using the TWI address match to wake the device from sleep, do not switch to sleep modes deeper than Frozen. Another solution is to enable asynchronous EIC wake on the TWIS clock (TWCK) or TWIS data (TWD) pins, in order to wake the system up on bus events.

10.2 rev D

10.2.1 ADCIFA

1 ADCREFP/ADCREFN can not be selected as an external ADC reference by setting the ADCIFA.CFG.EXREF bit to one Fix/Workaround

A voltage reference can be applied on ADCREFP/ADCREFN pins if the ADCIFA.CFG.EXREF bit is set to zero, the ADCIFA.CFG.RS bit is set to zero and the voltage reference applied on ADCREFP/ADCREFN pins is higher than the internal 1V reference.

10.2.2 AST

1 AST wake signal is released one AST clock cycle after the BUSY bit is cleared After writing to the Status Clear Register (SCR) the wake signal is released one AST clock cycle after the BUSY bit in the Status Register (SR.BUSY) is cleared. If entering sleep mode directly after the BUSY bit is cleared the part will wake up immediately. Fix/Workaround Read the Wake Enable Register (WER) and write this value back to the same register. Wait

Read the Wake Enable Register (WER) and write this value back to the same register. Wait for BUSY to clear before entering sleep mode.

10.2.3 aWire

1 aWire MEMORY_SPEED_REQUEST command does not return correct CV The aWire MEMORY_SPEED_REQUEST command does not return a CV corresponding to

the formula in the aWire Debug Interface chapter.

Fix/Workaround

Issue a dummy read to address 0x10000000 before issuing the MEMORY_SPEED_REQUEST command and use this formula instead:

$$f_{sab} = \frac{7f_{aw}}{CV-3}$$

10.2.4 GPIO

1 Clearing Interrupt flags can mask other interrupts

When clearing interrupt flags in a GPIO port, interrupts on other pins of that port, happening in the same clock cycle will not be registered.

Fix/Workaround

Read the PVR register of the port before and after clearing the interrupt to see if any pin change has happened while clearing the interrupt. If any change occurred in the PVR between the reads, they must be treated as an interrupt.

10.2.5 Power Manager

1 Clock Failure Detector (CFD) can be issued while turning off the CFD

While turning off the CFD, the CFD bit in the Status Register (SR) can be set. This will change the main clock source to RCSYS.

Fix/Workaround

Solution 1: Enable CFD interrupt. If CFD interrupt is issues after turning off the CFD, switch back to original main clock source.

Solution 2: Only turn off the CFD while running the main clock on RCSYS.

11. Datasheet Revision History

Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.

11.1 Rev. D - 01/12

- 1 Errata: Updated
- 2 PM: Clock Mask Table Updated
- 3 Fixed PLLOPT field description in SCIF chapter
- 4 MDMA: Swapped bit descriptions for IER and IDR
- 5 MACB: USRIO register description and bit descriptions for IMR/IDR/IER Updated
- 6 USBC: UPCON.PFREEZE and UPINRQn description Updated
- 7 ACIFA: Updated
- 8 ADCIFA: CFG.MUXSET, SSMQ description and conversion results section Updated
- 9 DACIFB: Calibration section Updated
- 10 Electrical Characteristics: ADCREFP/ADCREFN added

11.2 Rev. C – 08/11

Electrical Characteristics Updated:

- I/O Pins characteristics
- 8MHz/1MHz RC Oscillator (RC8M) characteristics
- 1.8V Voltage Regulator characteristics
- 3.3V Voltage Regulator characteristics
- 1.8VBrown Out Detector (BOD18) characteristics
 - 3.3VBrown Out Detector (BOD33) characteristics
 - 5VBrown Out Detector (BOD50) characteristics
 - Analog to Digital Converter (ADC) and sample and hold (S/DH) Characteristics
 - Analog Comparator characteristics
- 2 Errata: Updated

1

3 TWIS: Updated

11.3 Rev. B - 03/11

- 1 Package and pinout: Added supply column. Updated peripheral functions
- 2 Supply and Startup Considerations: Updated I/O lines power
- 3 PM: Added AWEN description
- 4 SCIF: Added VREGCR register

- 5 AST: Updated digital tuner formula
- 6 SDRAMC: cleaned-up SDCS/NCS names. Added VERSION register
- 7 SAU: Updated SR.IDLE
- 8 USART: Updated
- 9 CANIF: Updated address map figure
- 10 USBC: Updated
- 11 DACIFB: Updated
- 12 Programming and Debugging: Added JTAG Data Registers section
- 13 Electrical Characteristics: Updated
- 14 Ordering Information: Updated
- 15 Errata: Updated

11.4 Rev. A - 10/10

1 Initial revision

