

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	AVR
Core Size	32-Bit Single-Core
Speed	66MHz
Connectivity	CANbus, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	81
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x12b; D/A 4x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at32uc3c1128c-aut

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

AT32UC3C

- One 4-Channel 20-bit Pulse Width Modulation Controller (PWM)
 - Complementary outputs, with Dead Time Insertion
 - Output Override and Fault Protection
- Two Quadrature Decoders
- One 16-channel 12-bit Pipelined Analog-To-Digital Converter (ADC)
 - Dual Sample and Hold Capability Allowing 2 Synchronous Conversions
 - Single-Ended and Differential Channels, Window Function
- Two 12-bit Digital-To-Analog Converters (DAC), with Dual Output Sample System
- Four Analog Comparators
- Six 16-bit Timer/Counter (TC) Channels
 - External Clock Inputs, PWM, Capture and Various Counting Capabilities
- One Peripheral Event Controller
 - Trigger Actions in Peripherals Depending on Events Generated from Peripherals or from Input Pins
 - Deterministic Trigger
 - 34 Events and 22 Event Actions
- Five Universal Synchronous/Asynchronous Receiver/Transmitters (USART)
 - Independent Baudrate Generator, Support for SPI, LIN, IrDA and ISO7816 interfaces
 - Support for Hardware Handshaking, RS485 Interfaces and Modem Line
- Two Master/Slave Serial Peripheral Interfaces (SPI) with Chip Select Signals
- One Inter-IC Sound (I2S) Controller
 - Compliant with I2S Bus Specification
 - Time Division Multiplexed mode
- Three Master and Three Slave Two-Wire Interfaces (TWI), 400kbit/s I²C-compatible
- QTouch[®] Library Support
 - Capacitive Touch Buttons, Sliders, and Wheels
 - QTouch[®] and QMatrix[®] Acquisition
- On-Chip Non-intrusive Debug System
 - Nexus Class 2+, Runtime Control, Non-Intrusive Data and Program Trace
 - aWire[™] single-pin programming trace and debug interface muxed with reset pin
 - NanoTrace[™] provides trace capabilities through JTAG or aWire interface
- 3 package options
 - 64-pin QFN/TQFP (45 GPIO pins)
 - 100-pin TQFP (81 GPIO pins)
 - 144-pin LQFP (123 GPIO pins)
- Two operating voltage ranges:
 - Single 5V Power Supply
 - Single 3.3V Power Supply

Table 3-7.Signal Description List

Signal Name	Function	Туре	Active Level	Comments
VDDIN_5	1.8V Voltage Regulator Input	Power Input		Power Supply: 4.5V to 5.5V or 3.0V to 3.6 V
VDDIN_33	USB I/O power supply	Power Output/ Input		Capacitor Connection for the 3.3V voltage regulator or power supply: 3.0V to 3.6 V
VDDCORE	1.8V Voltage Regulator Output	Power output		Capacitor Connection for the 1.8V voltage regulator
GNDIO1 GNDIO2 GNDIO3	I/O Ground	Ground		
GNDANA	Analog Ground	Ground		
GNDCORE	Ground of the core	Ground		
GNDPLL	Ground of the PLLs	Ground		
	Analog Comparator Interf	ace - ACIFA	0/1	
AC0AN1/AC0AN0	Negative inputs for comparator AC0A	Analog		
AC0AP1/AC0AP0	Positive inputs for comparator AC0A	Analog		
AC0BN1/AC0BN0	Negative inputs for comparator AC0B	Analog		
AC0BP1/AC0BP0	Positive inputs for comparator AC0B	Analog		
AC1AN1/AC1AN0	Negative inputs for comparator AC1A	Analog		
AC1AP1/AC1AP0	Positive inputs for comparator AC1A	Analog		
AC1BN1/AC1BN0	Negative inputs for comparator AC1B	Analog		
AC1BP1/AC1BP0	Positive inputs for comparator AC1B	Analog		
ACAOUT/ACBOUT	analog comparator outputs	output		
	ADC Interface - A	DCIFA		
ADCIN[15:0]	ADC input pins	Analog		
ADCREF0	Analog positive reference 0 voltage input	Analog		
ADCREF1	Analog positive reference 1 voltage input	Analog		
ADCVREFP	Analog positive reference connected to external capacitor	Analog		

relative to EVBA. The autovector offset has 14 address bits, giving an offset of maximum 16384 bytes. The target address of the event handler is calculated as (EVBA | event_handler_offset), not (EVBA + event_handler_offset), so EVBA and exception code segments must be set up appropriately. The same mechanisms are used to service all different types of events, including interrupt requests, yielding a uniform event handling scheme.

An interrupt controller does the priority handling of the interrupts and provides the autovector offset to the CPU.

4.5.1 System Stack Issues

Event handling in AVR32UC uses the system stack pointed to by the system stack pointer, SP_SYS, for pushing and popping R8-R12, LR, status register, and return address. Since event code may be timing-critical, SP_SYS should point to memory addresses in the IRAM section, since the timing of accesses to this memory section is both fast and deterministic.

The user must also make sure that the system stack is large enough so that any event is able to push the required registers to stack. If the system stack is full, and an event occurs, the system will enter an UNDEFINED state.

4.5.2 Exceptions and Interrupt Requests

When an event other than *scall* or debug request is received by the core, the following actions are performed atomically:

- 1. The pending event will not be accepted if it is masked. The I3M, I2M, I1M, I0M, EM, and GM bits in the Status Register are used to mask different events. Not all events can be masked. A few critical events (NMI, Unrecoverable Exception, TLB Multiple Hit, and Bus Error) can not be masked. When an event is accepted, hardware automatically sets the mask bits corresponding to all sources with equal or lower priority. This inhibits acceptance of other events of the same or lower priority, except for the critical events listed above. Software may choose to clear some or all of these bits after saving the necessary state if other priority schemes are desired. It is the event source's responsability to ensure that their events are left pending until accepted by the CPU.
- 2. When a request is accepted, the Status Register and Program Counter of the current context is stored to the system stack. If the event is an INT0, INT1, INT2, or INT3, registers R8-R12 and LR are also automatically stored to stack. Storing the Status Register ensures that the core is returned to the previous execution mode when the current event handling is completed. When exceptions occur, both the EM and GM bits are set, and the application may manually enable nested exceptions if desired by clearing the appropriate bit. Each exception handler has a dedicated handler address, and this address uniquely identifies the exception source.
- 3. The Mode bits are set to reflect the priority of the accepted event, and the correct register file bank is selected. The address of the event handler, as shown in Table 4-4 on page 38, is loaded into the Program Counter.

The execution of the event handler routine then continues from the effective address calculated.

The *rete* instruction signals the end of the event. When encountered, the Return Status Register and Return Address Register are popped from the system stack and restored to the Status Register and Program Counter. If the *rete* instruction returns from INT0, INT1, INT2, or INT3, registers R8-R12 and LR are also popped from the system stack. The restored Status Register contains information allowing the core to resume operation in the previous execution mode. This concludes the event handling.

5. Memories

5.1 Embedded Memories

- Internal High-Speed Flash (See Table 5-1 on page 40)
 - 512 Kbytes
 - 256 Kbytes
 - 128 Kbytes
 - 64 Kbytes
 - 0 Wait State Access at up to 33 MHz in Worst Case Conditions
 - 1 Wait State Access at up to 66 MHz in Worst Case Conditions
 - Pipelined Flash Architecture, allowing burst reads from sequential Flash locations, hiding penalty of 1 wait state access
 - Pipelined Flash Architecture typically reduces the cycle penalty of 1 wait state operation to only 15% compared to 0 wait state operation
 - 100 000 Write Cycles, 15-year Data Retention Capability
 - Sector Lock Capabilities, Bootloader Protection, Security Bit
 - 32 Fuses, Erased During Chip Erase
 - User Page For Data To Be Preserved During Chip Erase
- Internal High-Speed SRAM, Single-cycle access at full speed (See Table 5-1 on page 40)
 - 64 Kbytes
 - 32 Kbytes
 - 16 Kbytes
- Supplementary Internal High-Speed System SRAM (HSB RAM), Single-cycle access at full speed
 - Memory space available on System Bus for peripherals data.
 - 4 Kbytes

5.2 Physical Memory Map

The system bus is implemented as a bus matrix. All system bus addresses are fixed, and they are never remapped in any way, not even in boot. Note that AVR32UC CPU uses unsegmented translation, as described in the AVR32 Architecture Manual. The 32-bit physical address space is mapped as follows:

Device			AT32UC3 Derivatives						
Device	Start Address	C0512C	C1512C C2512C	C0256C	C1256C C2256C	C0128C	C1128C C2128C	C064C	C164C C264C
Embedded SRAM	0x0000_0000	64 KB	64 KB	64 KB	64 KB	32 KB	32 KB	16 KB	16 KB
Embedded Flash	0x8000_0000	512 KB	512 KB	256 KB	256 KB	128 KB	128 KB	64 KB	64 KB
SAU	0x9000_0000	1 KB	1 KB	1 KB	1 KB	1 KB	1 KB	1 KB	1 KB
HSB SRAM	0xA000_0000	4 KB	4 KB	4 KB	4 KB	4 KB	4 KB	4 KB	4 KB
EBI SRAM CS0	0xC000_0000	16 MB	-	16 MB	-	16 MB	-	16 MB	-
EBI SRAM CS2	0xC800_0000	16 MB	-	16 MB	-	16 MB	-	16 MB	-
EBI SRAM CS3	0xCC00_0000	16 MB	-	16 MB	-	16 MB	-	16 MB	-
EBI SRAM /SDRAM CS1	0xD000_0000	128 MB	-	128 MB	-	128 MB	-	128 MB	-
HSB-PB Bridge C	0xFFFD_0000	64 KB	64 KB	64 KB	64 KB	64 KB	64 KB	64 KB	64 KB
HSB-PB Bridge B	0xFFFE_0000	64 KB	64 KB	64 KB	64 KB	64 KB	64 KB	64 KB	64 KB
HSB-PB Bridge A	0xFFFF_0000	64 KB	64 KB	64 KB	64 KB	64 KB	64 KB	64 KB	64 KB

 Table 5-1.
 AT32UC3C Physical Memory Map

Table 5-3.Peripheral Address Mapping

0xFFFF3800	TWIMO	Two-wire Master Interface - TWIM0
0xFFFF3C00	TWIM1	Two-wire Master Interface - TWIM1
0xFFFF4000	TWIS0	Two-wire Slave Interface - TWIS0
0xFFFF4400	TWIS1	Two-wire Slave Interface - TWIS1
0xFFFF4800	IISC	Inter-IC Sound (I2S) Controller - IISC
0xFFFF4C00	PWM	Pulse Width Modulation Controller - PWM
0xFFFF5000	QDEC0	Quadrature Decoder - QDEC0
0xFFFF5400	QDEC1	Quadrature Decoder - QDEC1
0xFFFF5800	TC1	Timer/Counter - TC1
0xFFFF5C00	PEVC	Peripheral Event Controller - PEVC
0xFFFF6000	ACIFA0	Analog Comparators Interface - ACIFA0
0xFFFF6400	ACIFA1	Analog Comparators Interface - ACIFA1
0xFFFF6800	DACIFB0	DAC interface - DACIFB0
0xFFFF6C00	DACIFB1	DAC interface - DACIFB1
0xFFFF7000	AW	aWire - AW

5.4 CPU Local Bus Mapping

Some of the registers in the GPIO module are mapped onto the CPU local bus, in addition to being mapped on the Peripheral Bus. These registers can therefore be reached both by accesses on the Peripheral Bus, and by accesses on the local bus.

Mapping these registers on the local bus allows cycle-deterministic toggling of GPIO pins since the CPU and GPIO are the only modules connected to this bus. Also, since the local bus runs at CPU speed, one write or read operation can be performed per clock cycle to the local busmapped GPIO registers.

6. Supply and Startup Considerations

6.1 Supply Considerations

6.1.1 Power Supplies

The AT32UC3C has several types of power supply pins:

- VDDIO pins (VDDIO1, VDDIO2, VDDIO3): Power I/O lines. Two voltage ranges are available: 5V or 3.3V nominal. The VDDIO pins should be connected together.
- VDDANA: Powers the Analog part of the device (Analog I/Os, ADC, ACs, DACs). 2 voltage ranges available: 5V or 3.3V nominal.
- VDDIN_5: Input voltage for the 1.8V and 3.3V regulators. Two Voltage ranges are available: 5V or 3.3V nominal.
- VDDIN_33:
 - USB I/O power supply
 - if the device is 3.3V powered: Input voltage, voltage is 3.3V nominal.
 - if the device is 5V powered: stabilization for the 3.3V voltage regulator, requires external capacitors
- VDDCORE: Stabilization for the 1.8V voltage regulator, requires external capacitors.
- GNDCORE: Ground pins for the voltage regulators and the core.
- GNDANA: Ground pin for Analog part of the design
- GNDPLL: Ground pin for the PLLs
- GNDIO pins (GNDIO1, GNDIO2, GNDIO3): Ground pins for the I/O lines. The GNDIO pins should be connected together.

See "Electrical Characteristics" on page 50 for power consumption on the various supply pins.

For decoupling recommendations for the different power supplies, please refer to the schematic checklist.

6.1.2 Voltage Regulators

The AT32UC3C embeds two voltage regulators:

- One 1.8V internal regulator that converts from VDDIN_5 to 1.8V. The regulator supplies the output voltage on VDDCORE.
- One 3.3V internal regulator that converts from VDDIN_5 to 3.3V. The regulator supplies the USB pads on VDDIN_33. If the USB is not used or if VDDIN_5 is within the 3V range, the 3.3V regulator can be disabled through the VREG33CTL field of the VREGCTRL SCIF register.

6.1.3 Regulators Connection

The AT32UC3C supports two power supply configurations.

- 5V single supply mode
- 3.3V single supply mode

6.1.3.1 5V Single Supply Mode

In 5V single supply mode, the 1.8V internal regulator is connected to the 5V source (VDDIN_5 pin) and its output feeds VDDCORE.

Table 7-2. Supply Rise Rates and Order

		Rise Rate					
Symbol	Parameter	Min	Мах	Comment			
V _{VDDIN_5}	DC supply internal 3.3V regulator	0.01 V/ms	1.25 V/us				
V _{VDDIN_33}	DC supply internal 1.8V regulator	0.01 V/ms	1.25 V/us				
V _{VDDI01} V _{VDDI02} V _{VDDI03}	DC supply peripheral I/O	0.01 V/ms	1.25 V/us	Rise after or at the same time as VDDIN_5, VDDIN_33			
V _{VDDANA}	DC supply peripheral I/O and analog part	0.01 V/ms	1.25 V/us	Rise after or at the same time as VDDIN_5, VDDIN_33			

7.3 Maximum Clock Frequencies

These parameters are given in the following conditions:

- V_{VDDCORE} > 1.85V
- Temperature = -40°C to 85°C

Table 7-3.	Clock Frequencies
------------	-------------------

Symbol	Parameter	Conditions	Min	Max	Units
f _{CPU}	CPU clock frequency			66	MHz
f _{PBA}	PBA clock frequency			66	MHz
f _{PBB}	PBB clock frequency			66	MHz
f _{PBC}	PBC clock frequency			66	MHz
f _{GCLK0}	GCLK0 clock frequency	Generic clock for USBC		50 ⁽¹⁾	MHz
f _{GCLK1}	GCLK1 clock frequency	Generic clock for CANIF		66 ⁽¹⁾	MHz
f _{GCLK2}	GCLK2 clock frequency	Generic clock for AST		80 ⁽¹⁾	MHz
f _{GCLK4}	GCLK4 clock frequency	Generic clock for PWM		133 ⁽¹⁾	MHz
f _{GCLK11}	GCLK11 clock frequency	Generic clock for IISC		50 ⁽¹⁾	MHz

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

7.4 Power Consumption

The values in Table 7-4 are measured values of power consumption under the following conditions, except where noted:

- Operating conditions core supply (Figure 7-1)
 - V_{VDDIN_5} = V_{VDDIN_33} = 3.3V
 - $V_{VDDCORE} = 1.85V$, supplied by the internal regulator
 - V_{VDDIO1} = V_{VDDIO2} = V_{VDDIO3} = 3.3V
 - $-V_{VDDANA} = 3.3V$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
RES	Resolution	Differential mode,			12	Bit
INL	Integral Non-Linearity	V _{VDDANA} = 3V,			5	LSB
DNL	Differential Non-Linearity	$V_{ADCREF0} = 1V,$ $ADCFIA.SEQCFGn.SRES = 0,$ $S/H \text{ gain} = 1$ $(F_{adc} = 1.2MHz)$			4	LSB
	Offset error		-5		5	mV
	Gain error		-20		20	mV
RES	Resolution	Differential mode,			12	Bit
INL	Integral Non-Linearity	$V_{VDDANA} = 5V,$			5	LSB
DNL	Differential Non-Linearity	$V_{ADCREF0} = 3V,$			3	LSB
	Offset error	= ADCFIA.SEQCFGn.SRES = 0,	-10		10	mV
	Gain error (F _{adc} = 1.5MHz)	$(F_{adc} = 1.5MHz)$	-20		20	mV

Table 7-34. ADC and S/H Transfer Characteristics 12-bit Resolution Mode and S/H gain = $1^{(1)}$

Note: 1. The measures are done without any I/O activity on VDDANA/GNDANA power domain.

Table 7-35.	ADC and S/H Transfer Characteristics 12-bit Resolution Mode and S/H g	ain from 1 to 8 ⁽¹⁾
-------------	---	--------------------------------

Symbol	Parameter	Conditions	Min	Тур	Max	Units
RES	Resolution	Differential mode,			12	Bit
INL	Integral Non-Linearity	$V_{VDDANA} = 3V,$			25	LSB
DNL	Differential Non-Linearity	$V_{ADCREF0} = 1V,$ $ADCFIA.SEQCFGn.SRES = 0,$ $S/H \text{ gain from 1 to 8}$			25	LSB
	Offset error		-10		10	mV
	Gain error	-20		20	mV	
RES	Resolution	Differential mode,			12	Bit
INL	Integral Non-Linearity	$V_{VDDANA} = 5V,$			9	LSB
DNL	Differential Non-Linearity	$V_{ADCREF0} = 3V,$			10	LSB
	Offset error		-15		15	mV
	Gain error	$(F_{adc} = 1.5 MHz)$	-20		20	mV

Note: 1. The measures are done without any I/O activity on VDDANA/GNDANA power domain

Table 7-36.	ADC and S/H Transfer	Characteristics	10-bit Resolution	Mode and S/H gain from 1	to 16 ⁽¹⁾
-------------	----------------------	------------------------	-------------------	--------------------------	----------------------

Symbol	Parameter	Conditions	Min	Тур	Max	Units
RES	Resolution	Differential mode,			10	Bit
INL	Integral Non-Linearity	$V_{VDDANA} = 3V,$			3	LSB
DNL	Differential Non-Linearity	$V_{ADCREF0} = 1V,$			3	LSB
	Offset error	ADCFIA.SEQUEGN.SRES = 1, S/H gain from 1 to 16	-15		15	mV
	Gain error	$(F_{adc} = 1.5MHz)$	-20		20	mV

Figure 7-4. DAC output

 Table 7-40.
 Transfer Characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Units
RES	Resolution				12	Bit
INL	Integral Non-Linearity	$V_{VDDANA} = 3V,$		8		LSB
DNL	Differential Non-linearity	$V_{DACREF} = 2V,$		6		LSB
	Offset error	One S/H	-30		30	mV
	Gain error		-30		30	mV
RES	Resolution				12	Bit
INL	Integral Non-Linearity	V _{VDDANA} = 5V,		12		LSB
DNL	Differential Non-linearity	V _{DACREF} = 3V,		6		LSB
	Offset error	One S/H	-30		30	mV
	Gain error		-30		30	mV

Note: 1. The measures are done without any I/O activity on VDDANA/GNDANA power domain.

7.9 Timing Characteristics

7.9.1 Startup, Reset, and Wake-up Timing

The startup, reset, and wake-up timings are calculated using the following formula:

$$t = t_{CONST} + N_{CPU} \times t_{CPU}$$

Where t_{CONST} and N_{CPU} are found in Table 7-44. t_{CONST} is the delay relative to RCSYS, t_{CPU} is the period of the CPU clock. If another clock source than RCSYS is selected as CPU clock the startup time of the oscillator, $t_{OSCSTART}$, must be added to the wake-up time in the stop, deepstop, and static sleep modes. Please refer to the source for the CPU clock in the "Oscillator Characteristics" on page 57 for more details about oscillator startup times.

Table 7-44. Maximum Reset and Wake-up Timing

Parameter		Measuring	Max <i>t_{CONST}</i> (in µs)	$\mathbf{Max}\; N_{CPU}$
Startup time from power-up, using regulator		VDDIN_5 rising (10 mV/ms) Time from V_{VDDIN_5} =0 to the first instruction entering the decode stage of CPU. VDDCORE is supplied by the internal regulator.	2600	0
Startup time from reset release		Time from releasing a reset source (except POR, BOD18, and BOD33) to the first instruction entering the decode stage of CPU.	1240	0
	Idle		0	19
	Frozen		268	209
	Standby	From wake-up event to the first instruction entering	268	209
vvake-up	Stop	the decode stage of the CPU.	268+ t _{OSCSTART}	212
	Deepstop		268+ t _{OSCSTART}	212
Static			268+ t _{OSCSTART}	212

7.9.3 USART in SPI Mode Timing

7.9.3.1 Master mode

SPCK

Figure 7-6. USART in SPI Master Mode With (CPOL= CPHA= 0) or (CPOL= CPHA= 1)

Table 7-46.	USART in	SPI Mode	Timina.	Master	Mode ⁽¹⁾
-------------	----------	----------	---------	--------	---------------------

Symbol	Parameter	Conditions	Min	Max	Units
USPI0	MISO setup time before SPCK rises		26+ t _{SAMPLE} ⁽²⁾		ns
USPI1	MISO hold time after SPCK rises		0		ns
USPI2	SPCK rising to MOSI delay	external		11	ns
USPI3	MISO setup time before SPCK falls	40pF	26+ t _{SAMPLE} ⁽²⁾		ns
USPI4	MISO hold time after SPCK falls		0		ns
USPI5	SPCK falling to MOSI delay			11.5	ns

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

2. Where:
$$t_{SAMPLE} = t_{SPCK} - \left(\left[\frac{t_{SPCK}}{2 \times t_{CLKUSART}} \right] \frac{1}{2} \right) \times t_{CLKUSART} \right)$$

Symbol	Parameter	Conditions	Min	Max	Units
SPI6	SPCK falling to MISO delay			29	ns
SPI7	MOSI setup time before SPCK rises		0		ns
SPI8	MOSI hold time after SPCK rises		6.5		ns
SPI9	SPCK rising to MISO delay			30	ns
SPI10	MOSI setup time before SPCK falls	external	0		ns
SPI11	MOSI hold time after SPCK falls	capacitor =	5		ns
SPI12	NPCS setup time before SPCK rises		0		ns
SPI13	NPCS hold time after SPCK falls		1.5		ns
SPI14	NPCS setup time before SPCK falls		0		ns
SPI15	NPCS hold time after SPCK rises		1.5		ns

Table 7-49.SPI Timing, Slave Mode⁽¹⁾

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

Maximum SPI Frequency, Slave Input Mode

The maximum SPI slave input frequency is given by the following formula:

$$f_{SPCKMAX} = MIN(f_{CLKSPI}, \frac{1}{SPIn})$$

Where *SPIn* is the MOSI setup and hold time, SPI7 + SPI8 or SPI10 + SPI11 depending on CPOL and NCPHA. f_{CLKSPI} is the maximum frequency of the CLK_SPI. Refer to the SPI chapter for a description of this clock.

Maximum SPI Frequency, Slave Output Mode

The maximum SPI slave output frequency is given by the following formula:

$$f_{SPCKMAX} = MIN(f_{PINMAX}, \frac{1}{SPIn + t_{SETUP}})$$

Where *SPIn* is the MISO delay, SPI6 or SPI9 depending on CPOL and NCPHA. t_{SETUP} is the SPI master setup time. Please refer to the SPI masterdatasheet for t_{SETUP} . f_{PINMAX} is the maximum frequency of the SPI pins. Please refer to the I/O Pin Characteristics section for the maximum frequency of the pins.

7.9.5 TWIM/TWIS Timing

Figure 7-50 shows the TWI-bus timing requirements and the compliance of the device with them. Some of these requirements (t_r and t_f) are met by the device without requiring user intervention. Compliance with the other requirements (t_{HD-STA} , t_{SU-STA} , t_{SU-STO} , t_{HD-DAT} , $t_{SU-DAT-I2C}$, $t_{LOW-I2C}$, t_{HIGH} , and f_{TWCK}) requires user intervention through appropriate programming of the relevant

7.9.6 JTAG Timing

Figure 7-16. JTAG Interface Signals

Table 7-51.	JTAG Timings ⁽¹
-------------	----------------------------

Symbol	Parameter	Conditions	Min	Max	Units
JTAG0	TCK Low Half-period		21.5		ns
JTAG1	TCK High Half-period		8.5		ns
JTAG2	TCK Period		29		ns
JTAG3	TDI, TMS Setup before TCK High		6.5		ns
JTAG4	TDI, TMS Hold after TCK High	external	0		ns
JTAG5	TDO Hold Time	capacitor =	12.5		ns
JTAG6	TCK Low to TDO Valid	40pF		21.5	ns
JTAG7	Boundary Scan Inputs Setup Time		0		ns
JTAG8	Boundary Scan Inputs Hold Time		4.5		ns
JTAG9	Boundary Scan Outputs Hold Time		11		ns
JTAG10	TCK to Boundary Scan Outputs Valid			18	ns

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

Symbol	Parameter	Conditions	Min	Units
	I	NRD Controlled (READ_MODE = 1)		
SMC ₁₉	Data setup before NRD high	V _{VDD} = 3.0V,	32.5	
SMC ₂₀	Data hold after NRD high	drive strength of the pads set to the lowest, external capacitor = 40pF	0	ns
	l	NRD Controlled (READ_MODE = 0)		
SMC ₂₁	Data setup before NCS high	$V_{VDD} = 3.0V,$	28.5	
SMC ₂₂	Data hold after NCS high	drive strength of the pads set to the lowest, external capacitor = 40pF	0	ns

Table 7-54. SMC Read Signals with no Hold Settings⁽¹⁾

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

Symbol	Parameter	Conditions	Min	Units	
	NRD Controlled (READ_MODE = 1)				
SMC ₂₃	Data Out valid before NWE high		(nwe pulse length - 1) * tcpsmc - 1.4		
SMC ₂₄	Data Out valid after NWE high ⁽²⁾		nwe pulse length * tcpsmc - 4.7		
SMC ₂₅	NWE high to NBS0/A0 change ⁽²⁾	$V_{VDD} = 3.0V,$	nwe pulse length * tcpsmc - 2.7		
SMC ₂₉	NWE high to NBS2/A1 change ⁽²⁾	drive strength of the pads set	nwe pulse length * tcpsmc - 0.7	ns	
SMC ₃₁	NWE high to A2 - A25 change ⁽²⁾	to the lowest,	nwe pulse length * tcpsmc - 6.8		
SMC ₃₂	NWE high to NCS inactive ⁽²⁾		(nwe hold pulse - ncs wr hold length) * tcpsmc - 2.5		
SMC ₃₃	NWE pulse width	_	nwe pulse length * tcpsmc - 0.2		
	NI	RD Controlled (READ_MODE =	0)		
SMC ₃₄	Data Out valid before NCS high	$V_{VDD} = 3.0V,$	(ncs wr pulse length - 1) * tcpsmc - 2.2		
SMC ₃₅	Data Out valid after NCS high ⁽²⁾	drive strength of the pads set	ncs wr hold length * tcpsmc - 5.1	ns	
SMC ₃₆	NCS high to NWE inactive ⁽²⁾	to the lowest, external capacitor = 40pF	(ncs wr hold length - nwe hold length) * tcPSMC - 2		

Table 7-55. SMC Write Signals with Hold Settings⁽¹⁾

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

2. hold length = total cycle duration - setup duration - pulse duration. "hold length" is for "ncs wr hold length" or "nwe hold length"

Figure 8-2. TQFP-64 package drawing

COMMON	DIMENSIONS	IN MM

SYMBOL	Min	Max	NDTES
A		1, 20	
A1	0, 95	1. 05	
С	0.09	0. 20	
D	12. 0	O BSC	
D 1	10. 0	O BSC	
E	12. 0	O BSC	
E 1	10. 0	O BSC	
J	0, 05	0.15	
L	0, 45	0, 75	
e	0. 5	O BSC	
f	0.17	0. 27	

Table 8-5. Device and Package Maximum Weight

300		mg
Table 8-6.	Package Characteristics	
Moisture Ser	nsitivity Level	Jdec J-STD0-20D - MSL 3
Table 8-7.	Package Reference	

JEDEC Drawing Reference MS-026 JESD97 Classification E3

10.2.10 TWIS

10.2.11 USBC

1 Clearing the NAK bit before the BTF bit is set locks up the TWI bus

When the TWIS is in transmit mode, clearing the NAK Received (NAK) bit of the Status Register (SR) before the end of the Acknowledge/Not Acknowledge cycle will cause the TWIS to attempt to continue transmitting data, thus locking up the bus. **Fix/Workaround**

Clear SR.NAK only after the Byte Transfer Finished (BTF) bit of the same register has been set.

2 TWIS stretch on Address match error

When the TWIS stretches TWCK due to a slave address match, it also holds TWD low for the same duration if it is to be receiving data. When TWIS releases TWCK, it releases TWD at the same time. This can cause a TWI timing violation. **Fix/Workaround**

None.

3 TWALM forced to GND

The TWALM pin is forced to GND when the alternate function is selected and the TWIS module is enabled.

Fix/Workaround

None.

1 UPINRQx.INRQ field is limited to 8-bits

In Host mode, when using the UPINRQx.INRQ feature together with the multi-packet mode to launch a finite number of packet among multi-packet, the multi-packet size (located in the descriptor table) is limited to the UPINRQx.INRQ value multiply by the pipe size. **Fix/Workaround**

UPINRQx.INRQ value shall be less than the number of configured multi-packet.

2 In USB host mode, downstream resume feature does not work (UHCON.RESUME=1). Fix/Workaround

None.

3 In host mode, the disconnection during OUT transition is not supported In USB host mode, a pipe can not work if the previous USB device disconnection has occurred during a USB transfer. Fix/Workaround

Reset the USBC (USBCON.USB=0 and =1) after a device disconnection (UHINT.DDISCI).

4 In USB host mode, entering suspend mode can fail

In USB host mode, entering suspend mode can fail when UHCON.SOFE=0 is done just after a SOF reception (UHINT.HSOFI).

Fix/Workaround

Check that UHNUM.FLENHIGH is below 185 in Full speed and below 21 in Low speed before clearing UHCON.SOFE.

5 In USB host mode, entering suspend mode for low speed device can fail when the USB freeze (USBCON.FRZCLK=1) is done just after UHCON.SOFE=0. Fix/Workaround

When entering suspend mode (UHCON.SOFE is cleared), check that USBFSM.DRDSTATE is not equal to three before freezing the clock (USBCON.FRZCLK=1).

Table of Contents

1	Descr	ription	3
2	Overview		
	2.1	Block diagram	5
	2.2	Configuration Summary	6
3	Package and Pinout		
	3.1	Package	8
	3.2	Peripheral Multiplexing on I/O lines	11
	3.3	Signals Description	
	3.4	I/O Line Considerations	24
4	Proce	25	
	4.1	Features	25
	4.2	AVR32 Architecture	25
	4.3	The AVR32UC CPU	26
	4.4	Programming Model	
	4.5	Exceptions and Interrupts	34
5	Memories		
	5.1	Embedded Memories	
	5.2	Physical Memory Map	40
	5.3	Peripheral Address Map	41
	5.4	CPU Local Bus Mapping	43
6	Suppl	ly and Startup Considerations	46
	6.1	Supply Considerations	46
	6.2	Startup Considerations	49
7	Electr	rical Characteristics	50
	7.1	Absolute Maximum Ratings*	50
	7.2	Supply Characteristics	50
	7.3	Maximum Clock Frequencies	51
	7.4	Power Consumption	51
	7.5	I/O Pin Characteristics	55
	7.6	Oscillator Characteristics	57
	7.7	Flash Characteristics	60
	7.8	Analog Characteristics	61

AT32UC3C

	7.9	Timing Characteristics	70
8	Mecha	nical Characteristics	90
	8.1	Thermal Considerations	90
	8.2	Package Drawings	91
	8.3	Soldering Profile	95
9	Orderii	ng Information	96
10	Errata		97
	10.1	rev E	97
	10.2	rev D	101
11	Datash	eet Revision History	106
	11.1	Rev. D – 01/12	106
	11.2	Rev. C – 08/11	106
	11.3	Rev. B – 03/11	106
	11.4	Rev. A – 10/10	107

