

#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                      |
|----------------------------|-----------------------------------------------------------------------------|
| Core Processor             | AVR                                                                         |
| Core Size                  | 32-Bit Single-Core                                                          |
| Speed                      | 66MHz                                                                       |
| Connectivity               | CANbus, Ethernet, I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART, USB      |
| Peripherals                | Brown-out Detect/Reset, DMA, I <sup>2</sup> S, POR, PWM, WDT                |
| Number of I/O              | 81                                                                          |
| Program Memory Size        | 512KB (512K x 8)                                                            |
| Program Memory Type        | FLASH                                                                       |
| EEPROM Size                | -                                                                           |
| RAM Size                   | 64K x 8                                                                     |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 5.5V                                                                   |
| Data Converters            | A/D 16x12b; D/A 4x12b                                                       |
| Oscillator Type            | Internal                                                                    |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                           |
| Mounting Type              | Surface Mount                                                               |
| Package / Case             | 100-TQFP                                                                    |
| Supplier Device Package    | 100-TQFP (14x14)                                                            |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/at32uc3c1512c-aut |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The Full-Speed USB 2.0 Device interface supports several USB Classes at the same time thanks to the rich End-Point configuration. The On-The-GO (OTG) Host interface allows device like a USB Flash disk or a USB printer to be directly connected to the processor.

The media-independent interface (MII) and reduced MII (RMII) 10/100 Ethernet MAC module provides on-chip solutions for network-connected devices.

The Peripheral Event Controller (PEVC) allows to redirect events from one peripheral or from input pins to another peripheral. It can then trigger, in a deterministic time, an action inside a peripheral without the need of CPU. For instance a PWM waveform can directly trigger an ADC capture, hence avoiding delays due to software interrupt processing.

The AT32UC3C features analog functions like ADC, DAC, Analog comparators. The ADC interface is built around a 12-bit pipelined ADC core and is able to control two independent 8-channel or one 16-channel. The ADC block is able to measure two different voltages sampled at the same time. The analog comparators can be paired to detect when the sensing voltage is within or outside the defined reference window.

Atmel offers the QTouch library for embedding capacitive touch buttons, sliders, and wheels functionality into AVR microcontrollers. The patented charge-transfer signal acquisition offers robust sensing and included fully debounced reporting of touch keys and includes Adjacent Key Suppression<sup>®</sup> (AKS<sup>®</sup>) technology for unambiguous detection of key events. The easy-to-use QTouch Suite toolchain allows you to explore, develop, and debug your own touch applications.

AT32UC3C integrates a class 2+ Nexus 2.0 On-Chip Debug (OCD) System, with non-intrusive real-time trace, full-speed read/write memory access in addition to basic runtime control. The Nanotrace interface enables trace feature for aWire- or JTAG-based debuggers. The single-pin aWire interface allows all features available through the JTAG interface to be accessed through the RESET pin, allowing the JTAG pins to be used for GPIO or peripherals.



# 2.2 Configuration Summary

| Table 2-1. | Configuration | Summary |
|------------|---------------|---------|

| 0                       | 2                                                                                                                                                                       |                                                                    |                                                                    |  |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--|
| Feature                 | AT32UC3C0512C/<br>AT32UC3C0256C/<br>AT32UC3C0128C/<br>AT32UC3C064C                                                                                                      | AT32UC3C1512C/<br>AT32UC3C1256C/<br>AT32UC3C1128C/<br>AT32UC3C164C | AT32UC3C2512C/<br>AT32UC3C2256C/<br>AT32UC3C2128C/<br>AT32UC3C264C |  |
| Flash                   | 512/256/128/64 KB                                                                                                                                                       | 512/256/128/64 KB                                                  | 512/256/128/64 KB                                                  |  |
| SRAM                    | 64/64/32/16KB                                                                                                                                                           | 64/64/32/16KB                                                      | 64/64/32/16KB                                                      |  |
| HSB RAM                 |                                                                                                                                                                         | 4 KB                                                               |                                                                    |  |
| EBI                     | 1                                                                                                                                                                       | 0                                                                  | 0                                                                  |  |
| GPIO                    | 123                                                                                                                                                                     | 81                                                                 | 45                                                                 |  |
| External Interrupts     | 8                                                                                                                                                                       | 8                                                                  | 8                                                                  |  |
| TWI                     | 3                                                                                                                                                                       | 3                                                                  | 2                                                                  |  |
| USART                   | 5                                                                                                                                                                       | 5                                                                  | 4                                                                  |  |
| Peripheral DMA Channels | 16                                                                                                                                                                      | 16                                                                 | 16                                                                 |  |
| Peripheral Event System | 1                                                                                                                                                                       | 1                                                                  | 1                                                                  |  |
| SPI                     | 2                                                                                                                                                                       | 2                                                                  | 1                                                                  |  |
| CAN channels            | 2                                                                                                                                                                       | 2                                                                  | 2                                                                  |  |
| USB                     | 1                                                                                                                                                                       | 1                                                                  | 1                                                                  |  |
| Ethernet MAC 10/100     | 1<br>RMII/MII                                                                                                                                                           | 1<br>RMII/MII                                                      | 1<br>RMII only                                                     |  |
| I2S                     | 1                                                                                                                                                                       | 1                                                                  | 1                                                                  |  |
| Asynchronous Timers     | 1                                                                                                                                                                       | 1                                                                  | 1                                                                  |  |
| Timer/Counter Channels  | 6                                                                                                                                                                       | 6                                                                  | 3                                                                  |  |
| PWM channels            |                                                                                                                                                                         | 4x2                                                                |                                                                    |  |
| QDEC                    | 2 2 1                                                                                                                                                                   |                                                                    |                                                                    |  |
| Frequency Meter         |                                                                                                                                                                         | 1                                                                  |                                                                    |  |
| Watchdog Timer          | 1                                                                                                                                                                       |                                                                    |                                                                    |  |
| Power Manager           | 1                                                                                                                                                                       |                                                                    |                                                                    |  |
| Oscillators             | PLL 80-240 MHz (PLL0/PLL1)<br>Crystal Oscillator 0.4-20 MHz (OSC0)<br>Crystal Oscillator 32 KHz (OSC32K)<br>RC Oscillator 115 kHz (RCSYS)<br>RC Oscillator 8 MHz (RC8M) |                                                                    |                                                                    |  |
|                         |                                                                                                                                                                         |                                                                    |                                                                    |  |
|                         | 0.4-20 MF                                                                                                                                                               | 12 (USU1)                                                          | -                                                                  |  |
| number of channels      | 16                                                                                                                                                                      | 16                                                                 | 11                                                                 |  |
| 12-bit DAC              | 1                                                                                                                                                                       | 1                                                                  | 1                                                                  |  |
| number of channels      | 4                                                                                                                                                                       | 4                                                                  | 2                                                                  |  |



| Table 2-1.         Configuration Summar |
|-----------------------------------------|
|-----------------------------------------|

| Feature            | AT32UC3C0512C/<br>AT32UC3C0256C/<br>AT32UC3C0128C/<br>AT32UC3C064C | AT32UC3C1512C/<br>AT32UC3C1256C/<br>AT32UC3C1128C/<br>AT32UC3C164C | AT32UC3C2512C/<br>AT32UC3C2256C/<br>AT32UC3C2128C/<br>AT32UC3C264C |  |
|--------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--|
| Analog Comparators | 4                                                                  | 4                                                                  | 2                                                                  |  |
| JTAG               | 1                                                                  |                                                                    |                                                                    |  |
| aWire              | 1                                                                  |                                                                    |                                                                    |  |
| Max Frequency      | 66 MHz                                                             |                                                                    |                                                                    |  |
| Package            | LQFP144                                                            | TQFP100                                                            | TQFP64/QFN64                                                       |  |



# Table 3-2.Peripheral Functions

| Function              | Description                  |
|-----------------------|------------------------------|
| aWire DATAOUT         | aWire output in two-pin mode |
| JTAG port connections | JTAG debug port              |
| Oscillators           | OSC0, OSC32                  |

#### 3.2.3 Oscillator Pinout

The oscillators are not mapped to the normal GPIO functions and their muxings are controlled by registers in the System Control Interface (SCIF). Please refer to the SCIF chapter for more information about this.

| Table 3-3. | Oscillator | pinout |
|------------|------------|--------|
|------------|------------|--------|

| QFN64/<br>TQFP64 pin | TQFP100 pin | LQFP144 pin | Pad  | Oscillator pin |
|----------------------|-------------|-------------|------|----------------|
| 31                   | 47          | 69          | PB30 | xin0           |
|                      | 99          | 143         | PB02 | xin1           |
| 62                   | 96          | 140         | PB00 | xin32          |
| 32                   | 48          | 70          | PB31 | xout0          |
|                      | 100         | 144         | PB03 | xout1          |
| 63                   | 97          | 141         | PB01 | xout32         |

# 3.2.4 JTAG port connections

If the JTAG is enabled, the JTAG will take control over a number of pins, irrespectively of the I/O Controller configuration.

| QFN64/<br>TQFP64 pin | TQFP100 pin | LQFP144 pin | Pin name | JTAG pin |
|----------------------|-------------|-------------|----------|----------|
| 2                    | 2           | 2           | PA01     | TDI      |
| 3                    | 3           | 3           | PA02     | TDO      |
| 4                    | 4           | 4           | PA03     | TMS      |
| 1                    | 1           | 1           | PA00     | ТСК      |

# 3.2.5 Nexus OCD AUX port connections

If the OCD trace system is enabled, the trace system will take control over a number of pins, irrespectively of the GPIO configuration. Three different OCD trace pin mappings are possible,



#### **Table 3-7.**Signal Description List

| Signal Name | Function                                | Туре   | Active<br>Level | Comments |
|-------------|-----------------------------------------|--------|-----------------|----------|
| DP          | USB Device Port Data +                  | Analog |                 |          |
| VBUS        | USB VBUS Monitor and OTG Negociation    |        |                 |          |
| ID          | ID Pin of the USB Bus                   |        |                 |          |
| VBOF        | USB VBUS On/off: bus power control port | output |                 |          |

# 3.4 I/O Line Considerations

#### 3.4.1 JTAG pins

The JTAG is enabled if TCK is low while the RESET\_N pin is released. The TCK, TMS, and TDI pins have pull-up resistors when JTAG is enabled. The TCK pin always have pull-up enabled during reset. The TDO pin is an output, driven at VDDIO1, and has no pull-up resistor. The JTAG pins can be used as GPIO pins and muxed with peripherals when the JTAG is disabled. Please refer to Section 3.2.4 for the JTAG port connections.

#### 3.4.2 RESET\_N pin

The RESET\_N pin integrates a pull-up resistor to VDDIO1. As the product integrates a power-on reset cell, the RESET\_N pin can be left unconnected in case no reset from the system needs to be applied to the product.

The RESET\_N pin is also used for the aWire debug protocol. When the pin is used for debugging, it must not be driven by external circuitry.

#### 3.4.3 TWI pins

When these pins are used for TWI, the pins are open-drain outputs with slew-rate limitation and inputs with inputs with spike-filtering. When used as GPIO-pins or used for other peripherals, the pins have the same characteristics as GPIO pins.

#### 3.4.4 GPIO pins

All I/O lines integrate programmable pull-up and pull-down resistors. Most I/O lines integrate drive strength control, see Table 3-1. Programming of this pull-up and pull-down resistor or this drive strength is performed independently for each I/O line through the GPIO Controllers.

After reset, I/O lines default as inputs with pull-up/pull-down resistors disabled. After reset, output drive strength is configured to the lowest value to reduce global EMI of the device.

When the I/O line is configured as analog function (ADC I/O, AC inputs, DAC I/O), the pull-up and pull-down resistors are automatically disabled.



# 4. Processor and Architecture

Rev: 2.1.2.0

This chapter gives an overview of the AVR32UC CPU. AVR32UC is an implementation of the AVR32 architecture. A summary of the programming model, instruction set, and MPU is presented. For further details, see the AVR32 Architecture Manual and the AVR32UC Technical Reference Manual.

# 4.1 Features

- 32-bit load/store AVR32A RISC architecture
  - 15 general-purpose 32-bit registers
  - 32-bit Stack Pointer, Program Counter and Link Register reside in register file
  - Fully orthogonal instruction set
  - Privileged and unprivileged modes enabling efficient and secure operating systems
  - Innovative instruction set together with variable instruction length ensuring industry leading code density
  - DSP extension with saturating arithmetic, and a wide variety of multiply instructions
- 3-stage pipeline allowing one instruction per clock cycle for most instructions
  - Byte, halfword, word, and double word memory access
  - Multiple interrupt priority levels
- MPU allows for operating systems with memory protection
- FPU enables hardware accelerated floating point calculations
- Secure State for supporting FlashVault technology

# 4.2 AVR32 Architecture

AVR32 is a new, high-performance 32-bit RISC microprocessor architecture, designed for costsensitive embedded applications, with particular emphasis on low power consumption and high code density. In addition, the instruction set architecture has been tuned to allow a variety of microarchitectures, enabling the AVR32 to be implemented as low-, mid-, or high-performance processors. AVR32 extends the AVR family into the world of 32- and 64-bit applications.

Through a quantitative approach, a large set of industry recognized benchmarks has been compiled and analyzed to achieve the best code density in its class. In addition to lowering the memory requirements, a compact code size also contributes to the core's low power characteristics. The processor supports byte and halfword data types without penalty in code size and performance.

Memory load and store operations are provided for byte, halfword, word, and double word data with automatic sign- or zero extension of halfword and byte data. The C-compiler is closely linked to the architecture and is able to exploit code optimization features, both for size and speed.

In order to reduce code size to a minimum, some instructions have multiple addressing modes. As an example, instructions with immediates often have a compact format with a smaller immediate, and an extended format with a larger immediate. In this way, the compiler is able to use the format giving the smallest code size.

Another feature of the instruction set is that frequently used instructions, like add, have a compact format with two operands as well as an extended format with three operands. The larger format increases performance, allowing an addition and a data move in the same instruction in a







#### 4.3.1 Pipeline Overview

AVR32UC has three pipeline stages, Instruction Fetch (IF), Instruction Decode (ID), and Instruction Execute (EX). The EX stage is split into three parallel subsections, one arithmetic/logic (ALU) section, one multiply (MUL) section, and one load/store (LS) section.

Instructions are issued and complete in order. Certain operations require several clock cycles to complete, and in this case, the instruction resides in the ID and EX stages for the required number of clock cycles. Since there is only three pipeline stages, no internal data forwarding is required, and no data dependencies can arise in the pipeline.

Figure 4-2 on page 28 shows an overview of the AVR32UC pipeline stages.





Figure 4-5. The Status Register Low Halfword

#### 4.4.3 Processor States

#### 4.4.3.1 Normal RISC State

The AVR32 processor supports several different execution contexts as shown in Table 4-2.

| Priority | Mode                   | Security     | Description                               |
|----------|------------------------|--------------|-------------------------------------------|
| 1        | Non Maskable Interrupt | Privileged   | Non Maskable high priority interrupt mode |
| 2        | Exception              | Privileged   | Execute exceptions                        |
| 3        | Interrupt 3            | Privileged   | General purpose interrupt mode            |
| 4        | Interrupt 2            | Privileged   | General purpose interrupt mode            |
| 5        | Interrupt 1            | Privileged   | General purpose interrupt mode            |
| 6        | Interrupt 0            | Privileged   | General purpose interrupt mode            |
| N/A      | Supervisor             | Privileged   | Runs supervisor calls                     |
| N/A      | Application            | Unprivileged | Normal program execution mode             |

 Table 4-2.
 Overview of Execution Modes, their Priorities and Privilege Levels.

Mode changes can be made under software control, or can be caused by external interrupts or exception processing. A mode can be interrupted by a higher priority mode, but never by one with lower priority. Nested exceptions can be supported with a minimal software overhead.

When running an operating system on the AVR32, user processes will typically execute in the application mode. The programs executed in this mode are restricted from executing certain instructions. Furthermore, most system registers together with the upper halfword of the status register cannot be accessed. Protected memory areas are also not available. All other operating modes are privileged and are collectively called System Modes. They have full access to all privileged and unprivileged resources. After a reset, the processor will be in supervisor mode.

#### 4.4.3.2 Debug State

The AVR32 can be set in a debug state, which allows implementation of software monitor routines that can read out and alter system information for use during application development. This implies that all system and application registers, including the status registers and program counters, are accessible in debug state. The privileged instructions are also available.

All interrupt levels are by default disabled when debug state is entered, but they can individually be switched on by the monitor routine by clearing the respective mask bit in the status register.



| Part Number                                     | Flash Size<br>(FLASH_PW) | Number of<br>pages<br>(FLASH_P) | Page size<br>(FLASH_W) |
|-------------------------------------------------|--------------------------|---------------------------------|------------------------|
| AT32UC3C0512C<br>AT32UC3C1512C<br>AT32UC3C2512C | 512 Kbytes               | 1024                            | 128 words              |
| AT32UC3C0256C<br>AT32UC3C1256C<br>AT32UC3C2256C | 256 Kbytes               | 512                             | 128 words              |
| AT32UC3C0128C<br>AT32UC3C1128C<br>AT32UC3C2128C | 128 Kbytes               | 256                             | 128 words              |
| AT32UC3C064C<br>AT32UC3C164C<br>AT32UC3C264C    | 64 Kbytes                | 128                             | 128 words              |

Table 5-2.Flash Memory Parameters

# 5.3 Peripheral Address Map

# **Table 5-3.**Peripheral Address Mapping

| Address    |        | Peripheral Name                                                     |
|------------|--------|---------------------------------------------------------------------|
| 0xFFFD0000 | PDCA   | Peripheral DMA Controller - PDCA                                    |
| 0xFFFD1000 | MDMA   | Memory DMA - MDMA                                                   |
| 0xFFFD1400 | USART1 | Universal Synchronous/Asynchronous<br>Receiver/Transmitter - USART1 |
| 0xFFFD1800 | SPI0   | Serial Peripheral Interface - SPI0                                  |
| 0xFFFD1C00 | CANIF  | Control Area Network interface - CANIF                              |
| 0xFFFD2000 | TC0    | Timer/Counter - TC0                                                 |
| 0xFFFD2400 | ADCIFA | ADC controller interface with Touch Screen functionality - ADCIFA   |
| 0xFFFD2800 | USART4 | Universal Synchronous/Asynchronous<br>Receiver/Transmitter - USART4 |
| 0xFFFD2C00 | TWIM2  | Two-wire Master Interface - TWIM2                                   |
| 0xFFFD3000 | TWIS2  | Two-wire Slave Interface - TWIS2                                    |



# 6. Supply and Startup Considerations

# 6.1 Supply Considerations

## 6.1.1 Power Supplies

The AT32UC3C has several types of power supply pins:

- VDDIO pins (VDDIO1, VDDIO2, VDDIO3): Power I/O lines. Two voltage ranges are available: 5V or 3.3V nominal. The VDDIO pins should be connected together.
- VDDANA: Powers the Analog part of the device (Analog I/Os, ADC, ACs, DACs). 2 voltage ranges available: 5V or 3.3V nominal.
- VDDIN\_5: Input voltage for the 1.8V and 3.3V regulators. Two Voltage ranges are available: 5V or 3.3V nominal.
- VDDIN\_33:
  - USB I/O power supply
  - if the device is 3.3V powered: Input voltage, voltage is 3.3V nominal.
  - if the device is 5V powered: stabilization for the 3.3V voltage regulator, requires external capacitors
- VDDCORE: Stabilization for the 1.8V voltage regulator, requires external capacitors.
- GNDCORE: Ground pins for the voltage regulators and the core.
- GNDANA: Ground pin for Analog part of the design
- GNDPLL: Ground pin for the PLLs
- GNDIO pins (GNDIO1, GNDIO2, GNDIO3): Ground pins for the I/O lines. The GNDIO pins should be connected together.

See "Electrical Characteristics" on page 50 for power consumption on the various supply pins.

For decoupling recommendations for the different power supplies, please refer to the schematic checklist.

#### 6.1.2 Voltage Regulators

The AT32UC3C embeds two voltage regulators:

- One 1.8V internal regulator that converts from VDDIN\_5 to 1.8V. The regulator supplies the output voltage on VDDCORE.
- One 3.3V internal regulator that converts from VDDIN\_5 to 3.3V. The regulator supplies the USB pads on VDDIN\_33. If the USB is not used or if VDDIN\_5 is within the 3V range, the 3.3V regulator can be disabled through the VREG33CTL field of the VREGCTRL SCIF register.

#### 6.1.3 Regulators Connection

The AT32UC3C supports two power supply configurations.

- 5V single supply mode
- 3.3V single supply mode

#### 6.1.3.1 5V Single Supply Mode

In 5V single supply mode, the 1.8V internal regulator is connected to the 5V source (VDDIN\_5 pin) and its output feeds VDDCORE.





Figure 6-2. 3 Single Power Supply Mode

#### 6.1.4 Power-up Sequence

#### 6.1.4.1 Maximum Rise Rate

To avoid risk of latch-up, the rise rate of the power supplies must not exceed the values described in Table 7-2 on page 51.

Recommended order for power supplies is also described in this table.

#### 6.1.4.2 Minimum Rise Rate

The integrated Power-Reset circuitry monitoring the powering supply requires a minimum rise rate for the VDDIN\_5 power supply.

See Table 7-2 on page 51 for the minimum rise rate value.

If the application can not ensure that the minimum rise rate condition for the VDDIN power supply is met, the following configuration can be used:

- A logic "0" value is applied during power-up on pin RESET\_N until:
  - VDDIN\_5 rises above 4.5V in 5V single supply mode.
  - VDDIN\_33 rises above 3V in 3.3V single supply mode.

- Internal 3.3V regulator is off
- TA = 25°C
- I/Os are configured as inputs, with internal pull-up enabled.
- Oscillators
  - OSC0/1 (crystal oscillator) stopped
  - OSC32K (32KHz crystal oscillator) stopped
  - PLL0 running
  - PLL1 stopped
- Clocks
  - External clock on XIN0 as main clock source (10MHz)
  - CPU, HSB, and PBB clocks undivided
  - PBA, PBC clock divided by 4
  - All peripheral clocks running

 Table 7-4.
 Power Consumption for Different Operating Modes

| Mode                   | Conditions                                  | Measured on | Consumption Typ | Unit     |  |
|------------------------|---------------------------------------------|-------------|-----------------|----------|--|
| Active <sup>(1)</sup>  | CPU running a recursive Fibonacci algorithm |             | 512             |          |  |
| Idle <sup>(1)</sup>    |                                             |             | 258             |          |  |
| Frozen <sup>(1)</sup>  |                                             |             | 106             | μΑνινιπΖ |  |
| Standby <sup>(1)</sup> |                                             | A           | 48              |          |  |
| Stop                   |                                             | Amp         | 73              |          |  |
| DeepStop               |                                             |             | 43              |          |  |
| Statio                 | OSC32K and AST running                      |             | 32              | μΑ       |  |
| Static                 | AST and OSC32K stopped                      |             | 31              |          |  |

Note: 1. These numbers are valid for the measured condition only and must not be extrapolated to other frequencies.



# 7.6.3 Phase Lock Loop (PLL0 and PLL1) Characteristics

| Symbol               | Parameter                          | Conditions                       | Min | Тур | Max | Unit |
|----------------------|------------------------------------|----------------------------------|-----|-----|-----|------|
| f <sub>VCO</sub>     | Output frequency                   |                                  | 80  |     | 240 | MHz  |
| f <sub>IN</sub>      | Input frequency                    |                                  | 4   |     | 16  | MHz  |
| I <sub>PLL</sub>     | Current consumption                | Active mode, $f_{VCO} = 80 MHz$  |     | 250 |     | μA   |
|                      |                                    | Active mode, $f_{VCO} = 240 MHz$ |     | 600 |     |      |
|                      | Startup time, from enabling        | Wide Bandwidth mode disabled     |     | 15  |     |      |
| t <sub>STARTUP</sub> | the PLL until the PLL is<br>locked | Wide Bandwidth mode enabled      |     | 45  |     | μs   |

#### Table 7-11. PLL Characteristics

# 7.6.4 120 MHz RC Oscillator (RC120M) Characteristics

### Table 7-12. Internal 120MHz RC Oscillator Characteristics

| Symbol               | Parameter                       | Conditions | Min | Тур  | Max | Unit |
|----------------------|---------------------------------|------------|-----|------|-----|------|
| f <sub>OUT</sub>     | Output frequency <sup>(1)</sup> |            | 88  | 120  | 152 | MHz  |
| I <sub>RC120M</sub>  | Current consumption             |            |     | 1.85 |     | mA   |
| t <sub>STARTUP</sub> | Startup time                    |            |     | 3    |     | μs   |

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

# 7.6.5 System RC Oscillator (RCSYS) Characteristics

#### Table 7-13. System RC Oscillator Characteristics

| Symbol           | Parameter        | Conditions                        | Min | Тур   | Max | Unit |
|------------------|------------------|-----------------------------------|-----|-------|-----|------|
|                  |                  | Calibrated at $T_A = 85^{\circ}C$ | 110 | 115.2 | 120 |      |
| f <sub>оит</sub> | Output frequency | $T_A = 25^{\circ}C$               | 105 | 109   | 115 | kHz  |
|                  |                  | $T_A = -40^{\circ}C$              | 100 | 104   | 108 |      |

# 7.6.6 8MHz/1MHz RC Oscillator (RC8M) Characteristics

## Table 7-14. 8MHz/1MHz RC Oscillator Characteristics

| Symbol               | Parameter        | Conditions                             | Min   | Тур | Max   | Unit |
|----------------------|------------------|----------------------------------------|-------|-----|-------|------|
| 4                    | Output fraguanay | SCIF.RCCR8.FREQMODE = $0^{(1)}$        | 7.6   | 8   | 8.4   |      |
| t <sub>out</sub>     | Output frequency | SCIF.RCCR8.FREQMODE = 1 <sup>(1)</sup> | 0.955 | 1   | 1.045 | MHZ  |
| t <sub>STARTUP</sub> | Startup time     |                                        |       |     | 20    | μs   |

Notes: 1. Please refer to the SCIF chapter for details.



 Table 7-29.
 ADC Decoupling requirements

| Symbol    | Parameter                   | Conditions                                          | Min | Тур | Мах | Units |
|-----------|-----------------------------|-----------------------------------------------------|-----|-----|-----|-------|
| CADCREFPN | ADCREFP/ADCREFN capacitance | No voltage reference appplied on<br>ADCREFP/ADCREFN |     | 100 |     | nF    |

Table 7-30. ADC Inputs

| Symbol              | Parameter               | Conditions           | Min | Тур | Max                 | Units |
|---------------------|-------------------------|----------------------|-----|-----|---------------------|-------|
| V <sub>ADCINn</sub> | ADC input voltage range |                      | 0   |     | V <sub>VDDANA</sub> | V     |
| <u> </u>            | Internal Canaditanaa    | ADC used without S/H |     |     | 5                   | ۳E    |
| CONCHIP             | Internal Capacitance    | ADC used with S/H    |     |     | 4                   | рг    |
| D                   | Switch registeres       | ADC used without S/H |     |     | 5.1                 | ko    |
| R <sub>ONCHIP</sub> | Switch resistance       | ADC used with S/H    |     |     | 4.6                 | KΩ    |





|--|

| Symbol | Parameter                  | Conditions              | Min | Тур | Max | Units |
|--------|----------------------------|-------------------------|-----|-----|-----|-------|
| RES    | Resolution                 | Differential mode,      |     |     | 12  | Bit   |
| INL    | Integral Non-Linearity     | $V_{VDDANA} = 3V,$      |     |     | 5   | LSB   |
| DNL    | Differential Non-Linearity | $V_{ADCREF0} = 1V,$     |     |     | 3   | LSB   |
|        | Offset error               | ADCFIA.SEQCFGn.SRES = 0 | -7  |     | 7   | mV    |
|        | Gain error                 | $(F_{adc} = 1.2MHz)$    | -20 |     | 20  | mV    |



| Symbol | Parameter                  | Conditions              | Min | Тур | Max | Units |
|--------|----------------------------|-------------------------|-----|-----|-----|-------|
| RES    | Resolution                 | Differential mode,      |     |     | 12  | Bit   |
| INL    | Integral Non-Linearity     | $V_{VDDANA} = 5V,$      |     |     | 4   | LSB   |
| DNL    | Differential Non-Linearity | $V_{ADCREF0} = 3V,$     |     |     | 3   | LSB   |
|        | Offset error               | ADCFIA.SEQCFGn.SRES = 0 | -15 |     | 15  | mV    |
|        | Gain error                 | $(F_{adc} = 1.5MHz)$    | -25 |     | 25  | mV    |

 Table 7-31.
 ADC Transfer Characteristics (Continued)12-bit Resolution Mode<sup>(1)</sup>

Note: 1. The measures are done without any I/O activity on VDDANA/GNDANA power domain.

 Table 7-32.
 ADC Transfer Characteristics 10-bit Resolution Mode<sup>(1)</sup>

| Symbol | Parameter                              | Conditions                                            | Min | Тур | Max  | Units |
|--------|----------------------------------------|-------------------------------------------------------|-----|-----|------|-------|
| RES    | Resolution                             | Differential mode,                                    |     |     | 10   | Bit   |
| INL    | Integral Non-Linearity                 | V <sub>VDDANA</sub> = 3V,                             |     |     | 1.25 | LSB   |
| DNL    | Differential Non-Linearity             | V <sub>ADCREF0</sub> = 1V,<br>ADCREA.SEQCFGn.SRES = 1 |     |     | 1    | LSB   |
|        | Offset error                           |                                                       | -10 |     | 10   | mV    |
|        | Gain error (F <sub>adc</sub> = 1.5MHz) | (F <sub>adc</sub> = 1.5MHz)                           | -20 |     | 20   | mV    |
| RES    | Resolution                             | Differential mode,                                    |     |     | 10   | Bit   |
| INL    | Integral Non-Linearity                 | $V_{VDDANA} = 5V,$                                    |     |     | 1.25 | LSB   |
| DNL    | Differential Non-Linearity             | $V_{ADCREF0}$ = 3V,                                   |     |     | 1    | LSB   |
|        | Offset error                           | ADCFIA.SEQCFGn.SRES = 1                               | -15 |     | 15   | mV    |
|        | Gain error                             | $(F_{adc} = 1.5MHz)$                                  | -20 |     | 20   | mV    |

Note: 1. The measures are done without any I/O activity on VDDANA/GNDANA power domain.

 Table 7-33.
 ADC Transfer Characteristics 8-bit Resolution Mode<sup>(1)</sup>

| Symbol | Parameter                  | Conditions                                                                                                         | Min | Тур | Max  | Units |
|--------|----------------------------|--------------------------------------------------------------------------------------------------------------------|-----|-----|------|-------|
| RES    | Resolution                 | Differential mode,<br>$V_{VDDANA} = 3V,$<br>$V_{ADCREF0} = 1V,$<br>ADCFIA.SEQCFGn.SRES = 2<br>$(F_{adc} = 1.5MHz)$ |     |     | 8    | Bit   |
| INL    | Integral Non-Linearity     |                                                                                                                    |     |     | 0.3  | LSB   |
| DNL    | Differential Non-Linearity |                                                                                                                    |     |     | 0.25 | LSB   |
|        | Offset error               |                                                                                                                    | -10 |     | 10   | mV    |
|        | Gain error                 |                                                                                                                    | -20 |     | 20   | mV    |
| RES    | Resolution                 | Differential mode,                                                                                                 |     |     | 8    | Bit   |
| INL    | Integral Non-Linearity     | $V_{VDDANA} = 5V,$                                                                                                 |     |     | 0.2  | LSB   |
| DNL    | Differential Non-Linearity | $V_{ADCREF0} = 3V,$                                                                                                |     |     | 0.2  | LSB   |
|        | Offset error               |                                                                                                                    | -20 |     | 20   | mV    |
|        | Gain error                 |                                                                                                                    | -20 |     | 20   | mV    |

Note: 1. The measures are done without any I/O activity on VDDANA/GNDANA power domain.



| Symbol | Parameter                  | Conditions            | Min | Тур | Max | Units |
|--------|----------------------------|-----------------------|-----|-----|-----|-------|
| RES    | Resolution                 | Differential mode,    |     |     | 10  | Bit   |
| INL    | Integral Non-Linearity     | $V_{VDDANA} = 5V,$    |     |     | 1.5 | LSB   |
| DNL    | Differential Non-Linearity | $V_{ADCREF0} = 3V,$   |     |     | 1.5 | LSB   |
|        | Offset error               |                       | -25 |     | 25  | mV    |
|        | Gain error                 | $(F_{adc} = 1.5 MHz)$ | -15 |     | 15  | mV    |

Table 7-36. ADC and S/H Transfer Characteristics (Continued)10-bit Resolution Mode and S/H gain from 1 to 16<sup>(1)</sup>

Note: 1. The measures are done without any I/O activity on VDDANA/GNDANA power domain.

# 7.8.7 Digital to Analog Converter (DAC) Characteristics

 Table 7-37.
 Channel Conversion Time and DAC Clock

| Symbol               | Parameter                 | Conditions                   | Min | Тур | Max                 | Units |
|----------------------|---------------------------|------------------------------|-----|-----|---------------------|-------|
| f <sub>DAC</sub>     | DAC clock frequency       |                              |     |     | 1                   | MHz   |
| t <sub>STARTUP</sub> | Startup time              |                              |     |     | 3                   | μs    |
| t <sub>CONV</sub>    |                           | No S/H enabled, internal DAC |     |     | 1                   | μs    |
|                      | Conversion time (latency) | One S/H                      |     |     | 1.5                 | μs    |
|                      |                           | Two S/H                      |     |     | 2                   | μs    |
|                      | Throughput rate           |                              |     |     | 1/t <sub>CONV</sub> | MSPS  |

# Table 7-38. External Voltage Reference Input

| Symbol              | Parameter                  | Conditions | Min | Тур | Мах                      | Units |
|---------------------|----------------------------|------------|-----|-----|--------------------------|-------|
| V <sub>DACREF</sub> | DACREF input voltage range |            | 1.2 |     | V <sub>VDDANA</sub> -0.7 | V     |

#### Table 7-39. DAC Outputs

| Symbol            | Parameter          | Conditions                  | Min | Тур | Max                      | Units |
|-------------------|--------------------|-----------------------------|-----|-----|--------------------------|-------|
|                   |                    | with external DAC reference | 0.2 |     | VDACREF                  | V     |
|                   |                    | with internal DAC reference | 0.2 |     | V <sub>VDDANA</sub> -0.7 | v     |
| C <sub>LOAD</sub> | Output capacitance |                             | 0   |     | 100                      | pF    |
| R <sub>LOAD</sub> | Output resitance   |                             | 2   |     |                          | kΩ    |



Figure 7-4. DAC output



 Table 7-40.
 Transfer Characteristics<sup>(1)</sup>

| Symbol | Parameter                  | Conditions                | Min | Тур | Max | Units |
|--------|----------------------------|---------------------------|-----|-----|-----|-------|
| RES    | Resolution                 |                           |     |     | 12  | Bit   |
| INL    | Integral Non-Linearity     | V <sub>VDDANA</sub> = 3V, |     | 8   |     | LSB   |
| DNL    | Differential Non-linearity | $V_{DACREF} = 2V,$        |     | 6   |     | LSB   |
|        | Offset error               | One S/H                   | -30 |     | 30  | mV    |
|        | Gain error                 |                           | -30 |     | 30  | mV    |
| RES    | Resolution                 |                           |     |     | 12  | Bit   |
| INL    | Integral Non-Linearity     | V <sub>VDDANA</sub> = 5V, |     | 12  |     | LSB   |
| DNL    | Differential Non-linearity | V <sub>DACREF</sub> = 3V, |     | 6   |     | LSB   |
|        | Offset error               | One S/H                   | -30 |     | 30  | mV    |
|        | Gain error                 |                           | -30 |     | 30  | mV    |

Note: 1. The measures are done without any I/O activity on VDDANA/GNDANA power domain.



## 7.9.4.2 Slave mode



Figure 7-13. SPI Slave Mode With (CPOL= 0 and NCPHA= 1) or (CPOL= 1 and NCPHA= 0)

Figure 7-14. SPI Slave Mode With (CPOL= NCPHA= 0) or (CPOL= NCPHA= 1)



Figure 7-15. SPI Slave Mode NPCS Timing





| Symbol | Parameter                         | Conditions  | Min | Max | Units |
|--------|-----------------------------------|-------------|-----|-----|-------|
| SPI6   | SPCK falling to MISO delay        |             |     | 29  | ns    |
| SPI7   | MOSI setup time before SPCK rises |             | 0   |     | ns    |
| SPI8   | MOSI hold time after SPCK rises   |             | 6.5 |     | ns    |
| SPI9   | SPCK rising to MISO delay         |             |     | 30  | ns    |
| SPI10  | MOSI setup time before SPCK falls | external    | 0   |     | ns    |
| SPI11  | MOSI hold time after SPCK falls   | capacitor = | 5   |     | ns    |
| SPI12  | NPCS setup time before SPCK rises |             | 0   |     | ns    |
| SPI13  | NPCS hold time after SPCK falls   |             | 1.5 |     | ns    |
| SPI14  | NPCS setup time before SPCK falls |             | 0   |     | ns    |
| SPI15  | NPCS hold time after SPCK rises   |             | 1.5 |     | ns    |

**Table 7-49.**SPI Timing, Slave Mode<sup>(1)</sup>

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

#### Maximum SPI Frequency, Slave Input Mode

The maximum SPI slave input frequency is given by the following formula:

$$f_{SPCKMAX} = MIN(f_{CLKSPI}, \frac{1}{SPIn})$$

Where *SPIn* is the MOSI setup and hold time, SPI7 + SPI8 or SPI10 + SPI11 depending on CPOL and NCPHA. $f_{CLKSPI}$  is the maximum frequency of the CLK\_SPI. Refer to the SPI chapter for a description of this clock.

#### Maximum SPI Frequency, Slave Output Mode

The maximum SPI slave output frequency is given by the following formula:

$$f_{SPCKMAX} = MIN(f_{PINMAX}, \frac{1}{SPIn + t_{SETUP}})$$

Where *SPIn* is the MISO delay, SPI6 or SPI9 depending on CPOL and NCPHA.  $t_{SETUP}$  is the SPI master setup time. Please refer to the SPI masterdatasheet for  $t_{SETUP}$ .  $f_{PINMAX}$  is the maximum frequency of the SPI pins. Please refer to the I/O Pin Characteristics section for the maximum frequency of the pins.

#### 7.9.5 TWIM/TWIS Timing

Figure 7-50 shows the TWI-bus timing requirements and the compliance of the device with them. Some of these requirements ( $t_r$  and  $t_f$ ) are met by the device without requiring user intervention. Compliance with the other requirements ( $t_{HD-STA}$ ,  $t_{SU-STA}$ ,  $t_{SU-STO}$ ,  $t_{HD-DAT}$ ,  $t_{SU-DAT-I2C}$ ,  $t_{LOW-I2C}$ ,  $t_{HIGH}$ , and  $f_{TWCK}$ ) requires user intervention through appropriate programming of the relevant



### 10.2.12 WDT

# 1 Clearing the Watchdog Timer (WDT) counter in second half of timeout period will issue a Watchdog reset

If the WDT counter is cleared in the second half of the timeout period, the WDT will immediately issue a Watchdog reset.

#### Fix/Workaround

Use twice as long timeout period as needed and clear the WDT counter within the first half of the timeout period. If the WDT counter is cleared after the first half of the timeout period, you will get a Watchdog reset immediately. If the WDT counter is not cleared at all, the time before the reset will be twice as long as needed.

#### 2 WDT Control Register does not have synchronization feedback

When writing to the Timeout Prescale Select (PSEL), Time Ban Prescale Select (TBAN), Enable (EN), or WDT Mode (MODE) fieldss of the WDT Control Register (CTRL), a synchronizer is started to propagate the values to the WDT clcok domain. This synchronization takes a finite amount of time, but only the status of the synchronization of the EN bit is reflected back to the user. Writing to the synchronized fields during synchronization can lead to undefined behavior.

# Fix/Workaround

-When writing to the affected fields, the user must ensure a wait corresponding to 2 clock cycles of both the WDT peripheral bus clock and the selected WDT clock source.

-When doing writes that changes the EN bit, the EN bit can be read back until it reflects the written value.

