

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

ĿXF

Product Status	Active
Core Processor	AVR
Core Size	32-Bit Single-Core
Speed	66MHz
Connectivity	CANbus, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	45
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 11x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at32uc3c2128c-z2ur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The Full-Speed USB 2.0 Device interface supports several USB Classes at the same time thanks to the rich End-Point configuration. The On-The-GO (OTG) Host interface allows device like a USB Flash disk or a USB printer to be directly connected to the processor.

The media-independent interface (MII) and reduced MII (RMII) 10/100 Ethernet MAC module provides on-chip solutions for network-connected devices.

The Peripheral Event Controller (PEVC) allows to redirect events from one peripheral or from input pins to another peripheral. It can then trigger, in a deterministic time, an action inside a peripheral without the need of CPU. For instance a PWM waveform can directly trigger an ADC capture, hence avoiding delays due to software interrupt processing.

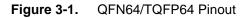
The AT32UC3C features analog functions like ADC, DAC, Analog comparators. The ADC interface is built around a 12-bit pipelined ADC core and is able to control two independent 8-channel or one 16-channel. The ADC block is able to measure two different voltages sampled at the same time. The analog comparators can be paired to detect when the sensing voltage is within or outside the defined reference window.

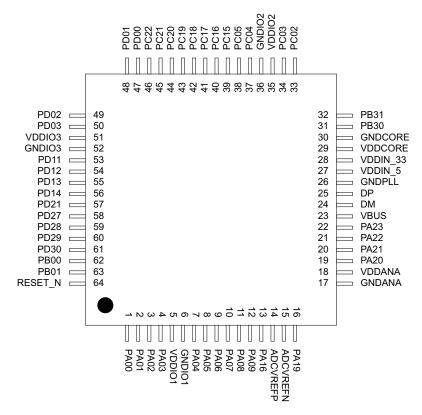
Atmel offers the QTouch library for embedding capacitive touch buttons, sliders, and wheels functionality into AVR microcontrollers. The patented charge-transfer signal acquisition offers robust sensing and included fully debounced reporting of touch keys and includes Adjacent Key Suppression[®] (AKS[®]) technology for unambiguous detection of key events. The easy-to-use QTouch Suite toolchain allows you to explore, develop, and debug your own touch applications.

AT32UC3C integrates a class 2+ Nexus 2.0 On-Chip Debug (OCD) System, with non-intrusive real-time trace, full-speed read/write memory access in addition to basic runtime control. The Nanotrace interface enables trace feature for aWire- or JTAG-based debuggers. The single-pin aWire interface allows all features available through the JTAG interface to be accessed through the RESET pin, allowing the JTAG pins to be used for GPIO or peripherals.

2.2 Configuration Summary

Table 2-1.	Configuration Summary

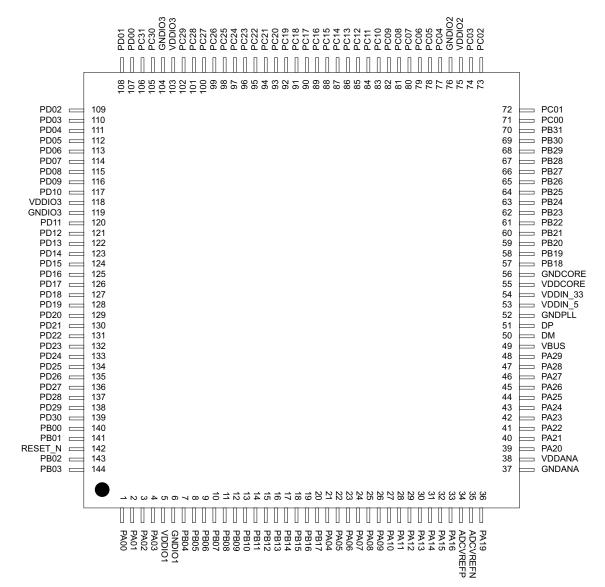

Feature	AT32UC3C0512C/ AT32UC3C0256C/ AT32UC3C0128C/ AT32UC3C064C	AT32UC3C1512C/ AT32UC3C1256C/ AT32UC3C1128C/ AT32UC3C164C	AT32UC3C2512C/ AT32UC3C2256C/ AT32UC3C2128C/ AT32UC3C264C		
Flash	512/256/128/64 KB	512/256/128/64 KB	512/256/128/64 KB		
SRAM	64/64/32/16KB	64/64/32/16KB	64/64/32/16KB		
HSB RAM		4 KB			
EBI	1	0	0		
GPIO	123	81	45		
External Interrupts	8	8	8		
TWI	3	3	2		
USART	5	5	4		
Peripheral DMA Channels	16	16	16		
Peripheral Event System	1	1	1		
SPI	2	2	1		
CAN channels	2	2	2		
USB	1	1	1		
Ethernet MAC 10/100	1 RMII/MII	1 RMII/MII	1 RMII only		
I2S	1	1	1		
Asynchronous Timers	1	1	1		
Timer/Counter Channels	6	6	3		
PWM channels		4x2			
QDEC	2	2	1		
Frequency Meter		1			
Watchdog Timer		1			
Power Manager		1			
Oscillators	PLL 80-240 MHz (PLL0/PLL1) Crystal Oscillator 0.4-20 MHz (OSC0) Crystal Oscillator 32 KHz (OSC32K) RC Oscillator 115 kHz (RCSYS) RC Oscillator 8 MHz (RC8M) RC Oscillator 120 MHz (RC120M)				
		Hz (OSC1)	-		
12-bit ADC number of channels	1 16	1 16	1		
12-bit DAC number of channels	1 4	1 4	1 2		



3. Package and Pinout

3.1 Package

The device pins are multiplexed with peripheral functions as described in Table 3-1 on page 11.



Note: on QFN packages, the exposed pad is unconnected.

Figure 3-3. LQFP144 Pinout

Table 3-1.	GPIO Controller Function Multiplexing
------------	---------------------------------------

TQFP				G					GPIO fu	unction		
/ QFN 64	TQFP 100	LQFP 144	PIN	P I O	Supply	Pin Type (1)	А	в	С	D	E	F
16	25	36	PA19	19	VDDANA	x1/x2	ADCIN8	EIC - EXTINT[1]				
19	28	39	PA20	20	VDDANA	x1/x2	ADCIN9	AC0AP0	AC0AP0 or DAC0A			
20	29	40	PA21	21	VDDANA	x1/x2	ADCIN10	AC0BN0	AC0BN0 or DAC0B			
21	30	41	PA22	22	VDDANA	x1/x2	ADCIN11	AC0AN0	PEVC - PAD_EVT [4]		MACB - SPEED	
22	31	42	PA23	23	VDDANA	x1/x2	ADCIN12	AC0BP0	PEVC - PAD_EVT [5]		MACB - WOL	
	32	43	PA24	24	VDDANA	x1/x2	ADCIN13	SPI1 - NPCS[2]				
	33	44	PA25	25	VDDANA	x1/x2	ADCIN14	SPI1 - NPCS[3]	EIC - EXTINT[0]			
		45	PA26	26	VDDANA	x1/x2	AC0AP1	EIC - EXTINT[1]				
		46	PA27	27	VDDANA	x1/x2	AC0AN1	EIC - EXTINT[2]				
		47	PA28	28	VDDANA	x1/x2	AC0BP1	EIC - EXTINT[3]				
		48	PA29	29	VDDANA	x1/x2	AC0BN1	EIC - EXTINT[0]				
62	96	140	PB00	32	VDDIO1	x1	USART0 - CLK	CANIF - RXLINE[1]	EIC - EXTINT[8]	PEVC - PAD_EVT [10]		
63	97	141	PB01	33	VDDIO1	x1		CANIF - TXLINE[1]		PEVC - PAD_EVT [11]		
	99	143	PB02	34	VDDIO1	x1		USBC - ID	PEVC - PAD_EVT [6]	TC1 - A1		
	100	144	PB03	35	VDDIO1	x1		USBC - VBOF	PEVC - PAD_EVT [7]			
	7	7	PB04	36	VDDIO1	x1/x2	SPI1 - MOSI	CANIF - RXLINE[0]	QDEC1 - QEPI		MACB - TXD[2]	
	8	8	PB05	37	VDDIO1	x1/x2	SPI1 - MISO	CANIF - TXLINE[0]	PEVC - PAD_EVT [12]	USART3 - CLK	MACB - TXD[3]	
	9	9	PB06	38	VDDIO1	x2/x4	SPI1 - SCK		QDEC1 - QEPA	USART1- CLK	MACB - TX_ER	
		10	PB07	39	VDDIO1	x1/x2	SPI1 - NPCS[0]	EIC - EXTINT[2]	QDEC1 - QEPB		MACB - RX_DV	
		11	PB08	40	VDDIO1	x1/x2	SPI1 - NPCS[1]	PEVC - PAD_EVT [1]	PWM - PWML[0]		MACB - RXD[0]	
		12	PB09	41	VDDIO1	x1/x2	SPI1 - NPCS[2]		PWM - PWMH[0]		MACB - RXD[1]	
		13	PB10	42	VDDIO1	x1/x2	USART1 - DTR	SPI0 - MOSI	PWM - PWML[1]			

 Table 3-1.
 GPIO Controller Function Multiplexing

TQFP				G			-		GPIO fu	unction		
/ QFN 64	TQFP 100	LQFP 144	PIN	ΡΙΟ	Supply	Pin Type (1)	А	в	с	D	E	F
		14	PB11	43	VDDIO1	x1/x2	USART1 - DSR	SPI0 - MISO	PWM - PWMH[1]			
		15	PB12	44	VDDIO1	x1/x2	USART1 - DCD	SPI0 - SCK	PWM - PWML[2]			
		16	PB13	45	VDDIO1	x1/x2	USART1 - RI	SPI0 - NPCS[0]	PWM - PWMH[2]		MACB - RX_ER	
		17	PB14	46	VDDIO1	x1/x2	USART1 - RTS	SPI0 - NPCS[1]	PWM - PWML[3]		MACB - MDC	
		18	PB15	47	VDDIO1	x1/x2	USART1 - CTS	USART1 - CLK	PWM - PWMH[3]		MACB - MDIO	
		19	PB16	48	VDDIO1	x1/x2	USART1 - RXD	SPI0 - NPCS[2]	PWM - EXT_ FAULTS[0]		CANIF - RXLINE[0]	
		20	PB17	49	VDDIO1	x1/x2	USART1 - TXD	SPIO - NPCS[3]	PWM - EXT_ FAULTS[1]		CANIF - TXLINE[0]	
		57	PB18	50	VDDIO2	x1/x2	TC0 - CLK2		EIC - EXTINT[4]			
	42	58	PB19	51	VDDIO2	x1/x2	TC0 - A0	SPI1 - MOSI	IISC - ISDO		MACB - CRS	
	43	59	PB20	52	VDDIO2	x1/x2	TC0 - B0	SPI1 - MISO	IISC - ISDI	ACIFA1 - ACAOUT	MACB - COL	
	44	60	PB21	53	VDDIO2	x2/x4	TC0 - CLK1	SPI1 - SCK	IISC - IMCK	ACIFA1 - ACBOUT	MACB - RXD[2]	
	45	61	PB22	54	VDDIO2	x1/x2	TC0 - A1	SPI1 - NPCS[3]	IISC - ISCK	SCIF - GCLK[0]	MACB - RXD[3]	
	46	62	PB23	55	VDDIO2	x1/x2	TC0 - B1	SPI1 - NPCS[2]	IISC - IWS	SCIF - GCLK[1]	MACB - RX_CLK	
		63	PB24	56	VDDIO2	x1/x2	TC0 - CLK0	SPI1 - NPCS[1]				
		64	PB25	57	VDDIO2	x1/x2	TC0 - A2	SPI1 - NPCS[0]	PEVC - PAD_EVT [8]			
		65	PB26	58	VDDIO2	x2/x4	TC0 - B2	SPI1 - SCK	PEVC - PAD_EVT [9]		MACB - TX_EN	
		66	PB27	59	VDDIO2	x1/x2	QDEC0 - QEPA	SPI1 - MISO	PEVC - PAD_EVT [10]	TC1 - CLK0	MACB - TXD[0]	
		67	PB28	60	VDDIO2	x1/x2	QDEC0 - QEPB	SPI1 - MOSI	PEVC - PAD_EVT [11]	TC1 - B0	MACB - TXD[1]	
		68	PB29	61	VDDIO2	x1/x2	QDEC0 - QEPI	SPI0 - NPCS[0]	PEVC - PAD_EVT [12]	TC1 - A0		
31	47	69	PB30	62	VDDIO2	x1						
32	48	70	PB31	63	VDDIO2	x1						
	49	71	PC00	64	VDDIO2	x1/x2	USBC - ID	SPI0 - NPCS[1]	USART2 - CTS	TC1 - B2	CANIF - TXLINE[1]	
	50	72	PC01	65	VDDIO2	x1/x2	USBC - VBOF	SPI0 - NPCS[2]	USART2 - RTS	TC1 - A2	CANIF - RXLINE[1]	

4. Processor and Architecture

Rev: 2.1.2.0

This chapter gives an overview of the AVR32UC CPU. AVR32UC is an implementation of the AVR32 architecture. A summary of the programming model, instruction set, and MPU is presented. For further details, see the *AVR32 Architecture Manual* and the *AVR32UC Technical Reference Manual*.

4.1 Features

- 32-bit load/store AVR32A RISC architecture
 - 15 general-purpose 32-bit registers
 - 32-bit Stack Pointer, Program Counter and Link Register reside in register file
 - Fully orthogonal instruction set
 - Privileged and unprivileged modes enabling efficient and secure operating systems
 - Innovative instruction set together with variable instruction length ensuring industry leading code density
 - DSP extension with saturating arithmetic, and a wide variety of multiply instructions
- 3-stage pipeline allowing one instruction per clock cycle for most instructions
 - Byte, halfword, word, and double word memory access
 - Multiple interrupt priority levels
- MPU allows for operating systems with memory protection
- FPU enables hardware accelerated floating point calculations
- Secure State for supporting FlashVault technology

4.2 AVR32 Architecture

AVR32 is a new, high-performance 32-bit RISC microprocessor architecture, designed for costsensitive embedded applications, with particular emphasis on low power consumption and high code density. In addition, the instruction set architecture has been tuned to allow a variety of microarchitectures, enabling the AVR32 to be implemented as low-, mid-, or high-performance processors. AVR32 extends the AVR family into the world of 32- and 64-bit applications.

Through a quantitative approach, a large set of industry recognized benchmarks has been compiled and analyzed to achieve the best code density in its class. In addition to lowering the memory requirements, a compact code size also contributes to the core's low power characteristics. The processor supports byte and halfword data types without penalty in code size and performance.

Memory load and store operations are provided for byte, halfword, word, and double word data with automatic sign- or zero extension of halfword and byte data. The C-compiler is closely linked to the architecture and is able to exploit code optimization features, both for size and speed.

In order to reduce code size to a minimum, some instructions have multiple addressing modes. As an example, instructions with immediates often have a compact format with a smaller immediate, and an extended format with a larger immediate. In this way, the compiler is able to use the format giving the smallest code size.

Another feature of the instruction set is that frequently used instructions, like add, have a compact format with two operands as well as an extended format with three operands. The larger format increases performance, allowing an addition and a data move in the same instruction in a

single cycle. Load and store instructions have several different formats in order to reduce code size and speed up execution.

The register file is organized as sixteen 32-bit registers and includes the Program Counter, the Link Register, and the Stack Pointer. In addition, register R12 is designed to hold return values from function calls and is used implicitly by some instructions.

4.3 The AVR32UC CPU

The AVR32UC CPU targets low- and medium-performance applications, and provides an advanced On-Chip Debug (OCD) system, no caches, and a Memory Protection Unit (MPU). A hardware Floating Point Unit (FPU) is also provided through the coprocessor instruction space. Java acceleration hardware is not implemented.

AVR32UC provides three memory interfaces, one High Speed Bus master for instruction fetch, one High Speed Bus master for data access, and one High Speed Bus slave interface allowing other bus masters to access data RAMs internal to the CPU. Keeping data RAMs internal to the CPU allows fast access to the RAMs, reduces latency, and guarantees deterministic timing. Also, power consumption is reduced by not needing a full High Speed Bus access for memory accesses. A dedicated data RAM interface is provided for communicating with the internal data RAMs.

A local bus interface is provided for connecting the CPU to device-specific high-speed systems, such as floating-point units and I/O controller ports. This local bus has to be enabled by writing a one to the LOCEN bit in the CPUCR system register. The local bus is able to transfer data between the CPU and the local bus slave in a single clock cycle. The local bus has a dedicated memory range allocated to it, and data transfers are performed using regular load and store instructions. Details on which devices that are mapped into the local bus space is given in the CPU Local Bus section in the Memories chapter.

Figure 4-1 on page 27 displays the contents of AVR32UC.

Part Number	Flash Size (FLASH_PW)	Number of pages (FLASH_P)	Page size (FLASH_W)
AT32UC3C0512C AT32UC3C1512C AT32UC3C2512C	512 Kbytes	1024	128 words
AT32UC3C0256C AT32UC3C1256C AT32UC3C2256C	256 Kbytes	512	128 words
AT32UC3C0128C AT32UC3C1128C AT32UC3C2128C	128 Kbytes	256	128 words
AT32UC3C064C AT32UC3C164C AT32UC3C264C	64 Kbytes	128	128 words

Table 5-2.Flash Memory Parameters

5.3 Peripheral Address Map

Table 5-3.Peripheral Address Mapping

Address		Peripheral Name
0xFFFD0000	PDCA	Peripheral DMA Controller - PDCA
0xFFFD1000	MDMA	Memory DMA - MDMA
		Universal Synchronous/Asynchronous Receiver/Transmitter - USART1
0xFFFD1800	SPI0	Serial Peripheral Interface - SPI0
0xFFFD1C00	CANIF	Control Area Network interface - CANIF
0xFFFD2000	TC0	Timer/Counter - TC0
0xFFFD2400	ADCIFA	ADC controller interface with Touch Screen functionality - ADCIFA
0xFFFD2800	USART4	Universal Synchronous/Asynchronous Receiver/Transmitter - USART4
0xFFFD2C00	TWIM2	Two-wire Master Interface - TWIM2
0xFFFD3000	TWIS2	Two-wire Slave Interface - TWIS2

Port	Register	Mode	Local Bus Address	Access
D	Output Driver Enable Register (ODER)	WRITE	0x40000340	Write-only
		SET	0x40000344	Write-only
		CLEAR	0x40000348	Write-only
		TOGGLE	0x4000034C	Write-only
	Output Value Register (OVR)	WRITE	0x40000350	Write-only
		SET	0x40000354	Write-only
		CLEAR	0x40000358	Write-only
		TOGGLE	0x4000035C	Write-only
	Pin Value Register (PVR)	-	0x40000360	Read-only

Table 5-4.	Local bus mapped GPIO registers
------------	---------------------------------

7. Electrical Characteristics

7.1 Absolute Maximum Ratings*

Operating temperature40°C to +85°C
Storage temperature60°C to +150°C
Voltage on any pin except DM/DP/VBUS with respect to ground0.3V to $V_{VDD}^{(1)}$ +0.3V
Voltage on DM/DP with respect to ground0.3V to +3.6V
Voltage on VBUS with respect to ground0.3V to +5.5V
Maximum operating voltage (VDDIN_5)
Maximum operating voltage (VDDIO1, VDDIO2, VDDIO3, VDDANA)
Maximum operating voltage (VDDIN_33)
Total DC output current on all I/O pins- VDDIO1 120 mA
Total DC output current on all I/O pins- VDDIO2 120 mA
Total DC output current on all I/O pins- VDDIO3 120 mA
Total DC output current on all I/O pins- VDDANA 120 mA

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Notes: 1. V_{VDD} corresponds to either V_{VDDIO1}, V_{VDDIO2}, V_{VDDIO3}, or V_{VDDANA}, depending on the supply for the pin. Refer to Section 3-1 on page 11 for details.

7.2 Supply Characteristics

The following characteristics are applicable to the operating temperature range: $T_A = -40$ °C to 85 °C, unless otherwise specified and are valid for a junction temperature up to $T_J = 100$ °C. Please refer to Section 6. "Supply and Startup Considerations" on page 46.

Symbol	Parameter	Condition	Min	Мах	Unit
M		3V range	3.0	3.6	V
V_{VDDIN_5}	DC supply internal regulators	5V range	4.5	5.5	v
V _{VDDIN_33}	DC supply USB I/O	only in 3V range	3.0	3.6	V
M	DC supply peripheral I/O and	3V range	3.0	3.6	
V _{VDDANA}	analog part	5V range	4.5	5.5	V
V _{VDDIO1}		3V range	3.0	3.6	
V _{VDDIO2} V _{VDDIO2}	DC supply peripheral I/O	5V range	4.5	5.5	V

 Table 7-1.
 Supply Characteristics

- Internal 3.3V regulator is off
- TA = 25°C
- I/Os are configured as inputs, with internal pull-up enabled.
- Oscillators
 - OSC0/1 (crystal oscillator) stopped
 - OSC32K (32KHz crystal oscillator) stopped
 - PLL0 running
 - PLL1 stopped
- Clocks
 - External clock on XIN0 as main clock source (10MHz)
 - CPU, HSB, and PBB clocks undivided
 - PBA, PBC clock divided by 4
 - All peripheral clocks running

 Table 7-4.
 Power Consumption for Different Operating Modes

Mode	Conditions	Measured on	Consumption Typ	Unit
Active ⁽¹⁾	CPU running a recursive Fibonacci algorithm		512	
Idle ⁽¹⁾			258	. (b . 4) 1
Frozen ⁽¹⁾			106	µA/MHz
Standby ⁽¹⁾			48	-
Stop		Amp	73	
DeepStop			43	
Ctatia	OSC32K and AST running		32	μA
Static	AST and OSC32K stopped		31	

Note: 1. These numbers are valid for the measured condition only and must not be extrapolated to other frequencies.

- PLL1 stopped
- Clocks
 - External clock on XIN0 as main clock source.
 - CPU, HSB, and PB clocks undivided

Consumption active is the added current consumption when the module clock is turned on and when the module is doing a typical set of operations.

Peripheral	Typ Consumption Active	Unit
ACIFA ⁽¹⁾	3	
ADCIFA ⁽¹⁾	7	
AST	3	-
CANIF	25	-
DACIFB ⁽¹⁾	3	-
EBI	23	-
EIC	0.5	
FREQM	0.5	_
GPIO	37	-
INTC	3	-
MDMA	4	-
PDCA	24	-
PEVC	15	-
PWM	40	-
QDEC	3	µA/MHz
SAU	3	
SDRAMC	2	
SMC	9	
SPI	5	
тс	8	
ТШМ	2	
TWIS	2	
USART	10	
USBC	5	
WDT	2	

 Table 7-5.
 Typical Current Consumption by Peripheral⁽²⁾

Notes: 1. Includes the current consumption on VDDANA.

2. These numbers are valid for the measured condition only and must not be extrapolated to other frequencies.

 Table 7-8.
 Crystal Oscillator Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OUT}	Crystal oscillator frequency		0.4		20	MHz
C _i	Internal equivalent load capacitance			1.7		pF
t _{STARTUP}		f _{OUT} = 8MHz SCIF.OSCCTRL.GAIN = 1 ⁽¹⁾		975		us
	Startup time	$f_{OUT} = 16MHz$ SCIF.OSCCTRL.GAIN = 2 ⁽¹⁾		1100		us

Notes: 1. Please refer to the SCIF chapter for details.

7.6.2 32KHz Crystal Oscillator (OSC32K) Characteristics

7.6.2.1 Digital Clock Characteristics

The following table describes the characteristics for the oscillator when a digital clock is applied on XIN32.

Table 7-9. Digital 32KHz Clock Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
f _{CPXIN}	XIN32 clock frequency			32.768	5000	KHz
t _{CPXIN}	XIN32 clock period		200			ns
t _{CHXIN}	XIN32 clock high half-priod		0.4 x t _{CPXIN}		0.6 x t _{CPXIN}	ns
t _{CLXIN}	XIN32 clock low half-priod		0.4 x t _{CPXIN}		0.6 x t _{CPXIN}	ns
C _{IN}	XIN32 input capacitance			2		pF

7.6.2.2 Crystal Oscillator Characteristics

Figure 7-2 and the equation above also applies to the 32KHz oscillator connection. The user must choose a crystal oscillator where the crystal load capacitance C_L is within the range given in the table. The exact value of C_L can then be found in the crystal datasheet.

 Table 7-10.
 32 KHz Crystal Oscillator Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OUT}	Crystal oscillator frequency			32 768		Hz
t _{STARTUP}	Startup time	$R_{S} = 50 \text{ kOhm}, C_{L} = 12.5 \text{ pF}$		2		S
CL	Crystal load capacitance		6		15	pF
C _i	Internal equivalent load capacitance			1.4		pF

7.9.4.2 Slave mode

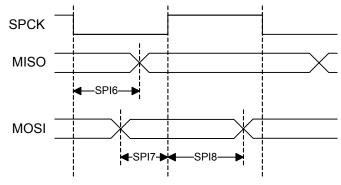


Figure 7-13. SPI Slave Mode With (CPOL= 0 and NCPHA= 1) or (CPOL= 1 and NCPHA= 0)

Figure 7-14. SPI Slave Mode With (CPOL= NCPHA= 0) or (CPOL= NCPHA= 1)

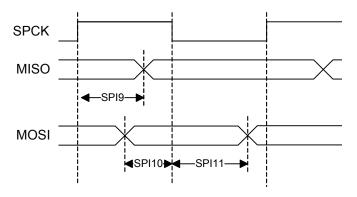
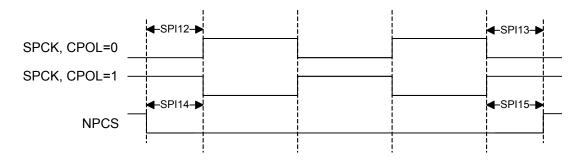



Figure 7-15. SPI Slave Mode NPCS Timing

TWIM and TWIS user interface registers. Please refer to the TWIM and TWIS sections for more information.

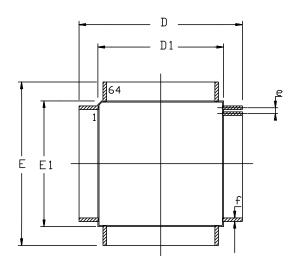
Table 7-50. **TWI-Bus Timing Requirements**

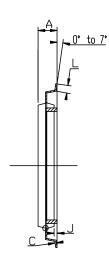
			Minin	num	Maxir	num	
Symbol	Parameter	Mode	Requirement	Device	Requirement	Device	Unit
	TWOK and TWD rise time	Standard ⁽¹⁾	-		1000		
t _r	TWCK and TWD rise time	Fast ⁽¹⁾	20 + 0	.1 C _b	30	0	ns
		Standard ⁽¹⁾	-		30	0	
t _f	TWCK and TWD fall time	Fast ⁽¹⁾	20 + 0	.1 C _b	30	0	ns ns
		Standard ⁽¹⁾	4.0	4			
t _{HD-STA}	(Repeated) START hold time	Fast ⁽¹⁾	0.6	t _{clkpb}	-		μs
		Standard ⁽¹⁾	4.7				μs
t _{SU-STA}	(Repeated) START set-up time	Fast ⁽¹⁾	0.6	t _{clkpb}	-		
		Standard ⁽¹⁾	4.0	4			
t _{SU-STO}	STOP set-up time	Fast ⁽¹⁾	0.6	4t _{clkpb}	-		μS
	Dete held time	Standard ⁽¹⁾	0.3 ⁽²⁾	01	3.45	22	
t _{HD-DAT}	Data hold time	Fast ⁽¹⁾	0.3	2t _{clkpb}	0.9	??	μS
	Data act un time	Standard ⁽¹⁾	250	01			
t _{SU-DAT-I2C}	Data set-up time	Fast ⁽¹⁾	100	2t _{clkpb}	-		ns
t _{SU-DAT}		-	-	t _{clkpb}	-		-
	TWOK LOW period	Standard ⁽¹⁾	4.7	44			
t _{LOW-I2C}	TWCK LOW period	Fast ⁽¹⁾	1.3	4t _{clkpb}	-		μS
t _{LOW}		-	-	t _{clkpb}	-		-
	TWCK LICH paried	Standard ⁽¹⁾	4.0	04			
t _{HIGH}	TWCK HIGH period	Fast ⁽¹⁾	0.6	8t _{clkpb}	-		μS
£		Standard ⁽¹⁾		1	100	1	ld le
f _{TWCK}	TWCK frequency	Fast ⁽¹⁾	-		400	^{12t} clkpb	kHz

Notes: 1. Standard mode: $f_{TWCK} \le 100 \text{ kHz}$; fast mode: $f_{TWCK} > 100 \text{ kHz}$. 2. A device must internally provide a hold time of at least 300 ns for TWD with reference to the falling edge of TWCK.

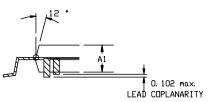
Notations:

C_b = total capacitance of one bus line in pF


 t_{clkpb} = period of TWI peripheral bus clock


 $t_{prescaled}$ = period of TWI internal prescaled clock (see chapters on TWIM and TWIS)

The maximum $t_{HD;DAT}$ has only to be met if the device does not stretch the LOW period ($t_{LOW-I2C}$) of TWCK.


Figure 8-2. TQFP-64 package drawing

COMMON DIMENSIONS IN N	ЛМ

SYMBOL	Min	Max	NDTES
A		1, 20	
A1	0, 95	1. 05	
С	0. 09	0. 20	
D	12. 0	O BSC	
D1	10, 0	O BSC	
E	12. 0	O BSC	
E1	10. 0	O BSC	
J	0. 05	0.15	
L	0, 45	0, 75	
e	0, 5		
f	0.17	0, 27	

Table 8-5. Device and Package Maximum Weight

	Bottoo alla Paokago Maximalii Polgik	
300		mg
Table 8-6.	Package Characteristics	
Moisture Se	nsitivity Level	Jdec J-STD0-20D - MSL 3
Table 8-7.	Package Reference	

JEDEC Drawing Reference MS-026 JESD97 Classification E3

8.3 Soldering Profile

Table 8-14 gives the recommended soldering profile from J-STD-20.

Table 8-14.	Soldering Profile
-------------	-------------------

Profile Feature	Green Package
Average Ramp-up Rate (217°C to Peak)	3°C/sec
Preheat Temperature 175°C ±25°C	Min. 150 °C, Max. 200 °C
Temperature Maintained Above 217°C	60-150 sec
Time within 5.C of Actual Peak Temperature	30 sec
Peak Temperature Range	260 °C
Ramp-down Rate	6 °C/sec
Time 25 C to Peak Temperature	Max. 8 minutes

Note: It is recommended to apply a soldering temperature higher than 250°C. A maximum of three reflow passes is allowed per component.

10.1.5 SCIF

1 PLLCOUNT value larger than zero can cause PLLEN glitch

Initializing the PLLCOUNT with a value greater than zero creates a glitch on the PLLEN signal during asynchronous wake up.

Fix/Workaround

The lock-masking mechanism for the PLL should not be used.

The PLLCOUNT field of the PLL Control Register should always be written to zero.

2 PLL lock might not clear after disable

Under certain circumstances, the lock signal from the Phase Locked Loop (PLL) oscillator may not go back to zero after the PLL oscillator has been disabled. This can cause the propagation of clock signals with the wrong frequency to parts of the system that use the PLL clock.

Fix/Workaround

PLL must be turned off before entering STOP, DEEPSTOP or STATIC sleep modes. If PLL has been turned off, a delay of 30us must be observed after the PLL has been enabled again before the SCIF.PLL0LOCK bit can be used as a valid indication that the PLL is locked.

3 BOD33 reset locks the device

If BOD33 is enabled as a reset source (SCIF.BOD33.CTRL=0x1) and when VDDIN_33 power supply voltage falls below the BOD33 voltage (SCIF.BOD33.LEVEL), the device is locked permanently under reset even if the power supply goes back above BOD33 reset level. In order to unlock the device, an external reset event should be applied on RESET_N. **Fix/Workaround**

Use an external BOD on VDDIN_33 or an external reset source.

10.1.6 SPI

1 SPI data transfer hangs with CSR0.CSAAT==1 and MR.MODFDIS==0

When CSR0.CSAAT==1 and mode fault detection is enabled (MR.MODFDIS==0), the SPI module will not start a data transfer. **Fix/Workaround**

Fix/Workaround

Disable mode fault detection by writing a one to MR.MODFDIS.

2 Disabling SPI has no effect on the SR.TDRE bit

Disabling SPI has no effect on the SR.TDRE bit whereas the write data command is filtered when SPI is disabled. Writing to TDR when SPI is disabled will not clear SR.TDRE. If SPI is disabled during a PDCA transfer, the PDCA will continue to write data to TDR until its buffer is empty, and this data will be lost.

Fix/Workaround

Disable the PDCA, add two NOPs, and disable the SPI. To continue the transfer, enable the SPI and PDCA.

3 SPI disable does not work in SLAVE mode

SPI disable does not work in SLAVE mode.

Fix/Workaround

Read the last received data, then perform a software reset by writing a one to the Software Reset bit in the Control Register (CR.SWRST).

Table of Contents

1	Descr	ription	3
2	Overv	/iew	5
	2.1	Block diagram	5
	2.2	Configuration Summary	6
3	Packa	age and Pinout	8
	3.1	Package	8
	3.2	Peripheral Multiplexing on I/O lines	11
	3.3	Signals Description	18
	3.4	I/O Line Considerations	24
4	Proce	essor and Architecture	25
	4.1	Features	25
	4.2	AVR32 Architecture	25
	4.3	The AVR32UC CPU	26
	4.4	Programming Model	30
	4.5	Exceptions and Interrupts	34
5	Memo	ories	39
	5.1	Embedded Memories	39
	5.2	Physical Memory Map	40
	5.3	Peripheral Address Map	41
	5.4	CPU Local Bus Mapping	43
6	Suppl	ly and Startup Considerations	46
	6.1	Supply Considerations	46
	6.2	Startup Considerations	49
7	Electr	rical Characteristics	50
	7.1	Absolute Maximum Ratings*	50
	7.2	Supply Characteristics	50
	7.3	Maximum Clock Frequencies	51
	7.4	Power Consumption	51
	7.5	I/O Pin Characteristics	55
	7.6	Oscillator Characteristics	57
	7.7	Flash Characteristics	60
	7.8	Analog Characteristics	61

