

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	AVR
Core Size	32-Bit Single-Core
Speed	66MHz
Connectivity	CANbus, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	45
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 11x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at32uc3c2128c-z2ut

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 3-7.Signal Description List

Signal Name	Function	Туре	Active Level	Comments
DP	USB Device Port Data +	Analog		
VBUS	USB VBUS Monitor and OTG Negociation	Analog Input		
ID	ID Pin of the USB Bus	Input		
VBOF	USB VBUS On/off: bus power control port	output		

3.4 I/O Line Considerations

3.4.1 JTAG pins

The JTAG is enabled if TCK is low while the RESET_N pin is released. The TCK, TMS, and TDI pins have pull-up resistors when JTAG is enabled. The TCK pin always have pull-up enabled during reset. The TDO pin is an output, driven at VDDIO1, and has no pull-up resistor. The JTAG pins can be used as GPIO pins and muxed with peripherals when the JTAG is disabled. Please refer to Section 3.2.4 for the JTAG port connections.

3.4.2 RESET_N pin

The RESET_N pin integrates a pull-up resistor to VDDIO1. As the product integrates a power-on reset cell, the RESET_N pin can be left unconnected in case no reset from the system needs to be applied to the product.

The RESET_N pin is also used for the aWire debug protocol. When the pin is used for debugging, it must not be driven by external circuitry.

3.4.3 TWI pins

When these pins are used for TWI, the pins are open-drain outputs with slew-rate limitation and inputs with inputs with spike-filtering. When used as GPIO-pins or used for other peripherals, the pins have the same characteristics as GPIO pins.

3.4.4 GPIO pins

All I/O lines integrate programmable pull-up and pull-down resistors. Most I/O lines integrate drive strength control, see Table 3-1. Programming of this pull-up and pull-down resistor or this drive strength is performed independently for each I/O line through the GPIO Controllers.

After reset, I/O lines default as inputs with pull-up/pull-down resistors disabled. After reset, output drive strength is configured to the lowest value to reduce global EMI of the device.

When the I/O line is configured as analog function (ADC I/O, AC inputs, DAC I/O), the pull-up and pull-down resistors are automatically disabled.

Figure 4-2. The AVR32UC Pipeline

4.3.2 AVR32A Microarchitecture Compliance

AVR32UC implements an AVR32A microarchitecture. The AVR32A microarchitecture is targeted at cost-sensitive, lower-end applications like smaller microcontrollers. This microarchitecture does not provide dedicated hardware registers for shadowing of register file registers in interrupt contexts. Additionally, it does not provide hardware registers for the return address registers and return status registers. Instead, all this information is stored on the system stack. This saves chip area at the expense of slower interrupt handling.

4.3.2.1 Interrupt Handling

Upon interrupt initiation, registers R8-R12 are automatically pushed to the system stack. These registers are pushed regardless of the priority level of the pending interrupt. The return address and status register are also automatically pushed to stack. The interrupt handler can therefore use R8-R12 freely. Upon interrupt completion, the old R8-R12 registers and status register are restored, and execution continues at the return address stored popped from stack.

The stack is also used to store the status register and return address for exceptions and *scall*. Executing the *rete* or *rets* instruction at the completion of an exception or system call will pop this status register and continue execution at the popped return address.

4.3.2.2 Java Support

AVR32UC does not provide Java hardware acceleration.

4.3.2.3 Floating Point Support

A fused multiply-accumulate Floating Point Unit (FPU), performing a multiply and accumulate as a single operation with no intermediate rounding, therby increasing precision is provided. The floating point hardware conforms to the requirements of the C standard, which is based on the IEEE 754 floating point standard.

4.3.2.4 Memory Protection

The MPU allows the user to check all memory accesses for privilege violations. If an access is attempted to an illegal memory address, the access is aborted and an exception is taken. The MPU in AVR32UC is specified in the AVR32UC Technical Reference manual.

Debug state can be entered as described in the AVR32UC Technical Reference Manual.

Debug state is exited by the *retd* instruction.

4.4.3.3 Secure State

The AVR32 can be set in a secure state, that allows a part of the code to execute in a state with higher security levels. The rest of the code can not access resources reserved for this secure code. Secure State is used to implement FlashVault technology. Refer to the *AVR32UC Technical Reference Manual* for details.

4.4.4 System Registers

The system registers are placed outside of the virtual memory space, and are only accessible using the privileged *mfsr* and *mtsr* instructions. The table below lists the system registers specified in the AVR32 architecture, some of which are unused in AVR32UC. The programmer is responsible for maintaining correct sequencing of any instructions following a *mtsr* instruction. For detail on the system registers, refer to the *AVR32UC Technical Reference Manual*.

Reg #	Address	Name	Function
0	0	SR	Status Register
1	4	EVBA	Exception Vector Base Address
2	8	ACBA	Application Call Base Address
3	12	CPUCR	CPU Control Register
4	16	ECR	Exception Cause Register
5	20	RSR_SUP	Unused in AVR32UC
6	24	RSR_INT0	Unused in AVR32UC
7	28	RSR_INT1	Unused in AVR32UC
8	32	RSR_INT2	Unused in AVR32UC
9	36	RSR_INT3	Unused in AVR32UC
10	40	RSR_EX	Unused in AVR32UC
11	44	RSR_NMI	Unused in AVR32UC
12	48	RSR_DBG	Return Status Register for Debug mode
13	52	RAR_SUP	Unused in AVR32UC
14	56	RAR_INT0	Unused in AVR32UC
15	60	RAR_INT1	Unused in AVR32UC
16	64	RAR_INT2	Unused in AVR32UC
17	68	RAR_INT3	Unused in AVR32UC
18	72	RAR_EX	Unused in AVR32UC
19	76	RAR_NMI	Unused in AVR32UC
20	80	RAR_DBG	Return Address Register for Debug mode
21	84	JECR	Unused in AVR32UC
22	88	JOSP	Unused in AVR32UC
23	92	JAVA_LV0	Unused in AVR32UC

Table 4-3. System Registers

Table 4-3.	System Reg	gisters (Continue	d)
Reg #	Address	Name	Function
90	360	MPUPSR2	MPU Privilege Select Register region 2
91	364	MPUPSR3	MPU Privilege Select Register region 3
92	368	MPUPSR4	MPU Privilege Select Register region 4
93	372	MPUPSR5	MPU Privilege Select Register region 5
94	376	MPUPSR6	MPU Privilege Select Register region 6
95	380	MPUPSR7	MPU Privilege Select Register region 7
96	384	MPUCRA	Unused in this version of AVR32UC
97	388	MPUCRB	Unused in this version of AVR32UC
98	392	MPUBRA	Unused in this version of AVR32UC
99	396	MPUBRB	Unused in this version of AVR32UC
100	400	MPUAPRA	MPU Access Permission Register A
101	404	MPUAPRB	MPU Access Permission Register B
102	408	MPUCR	MPU Control Register
103	412	SS_STATUS	Secure State Status Register
104	416	SS_ADRF	Secure State Address Flash Register
105	420	SS_ADRR	Secure State Address RAM Register
106	424	SS_ADR0	Secure State Address 0 Register
107	428	SS_ADR1	Secure State Address 1 Register
108	432	SS_SP_SYS	Secure State Stack Pointer System Register
109	436	SS_SP_APP	Secure State Stack Pointer Application Register
110	440	SS_RAR	Secure State Return Address Register
111	444	SS_RSR	Secure State Return Status Register
112-191	448-764	Reserved	Reserved for future use
192-255	768-1020	IMPL	IMPLEMENTATION DEFINED

Table 4 9 m Deviatere (Centinued)

4.5 **Exceptions and Interrupts**

In the AVR32 architecture, events are used as a common term for exceptions and interrupts. AVR32UC incorporates a powerful event handling scheme. The different event sources, like Illegal Op-code and interrupt requests, have different priority levels, ensuring a well-defined behavior when multiple events are received simultaneously. Additionally, pending events of a higher priority class may preempt handling of ongoing events of a lower priority class.

When an event occurs, the execution of the instruction stream is halted, and execution is passed to an event handler at an address specified in Table 4-4 on page 38. Most of the handlers are placed sequentially in the code space starting at the address specified by EVBA, with four bytes between each handler. This gives ample space for a jump instruction to be placed there, jumping to the event routine itself. A few critical handlers have larger spacing between them, allowing the entire event routine to be placed directly at the address specified by the EVBA-relative offset generated by hardware. All interrupt sources have autovectored interrupt service routine (ISR) addresses. This allows the interrupt controller to directly specify the ISR address as an address

4.5.3 Supervisor Calls

The AVR32 instruction set provides a supervisor mode call instruction. The *scall* instruction is designed so that privileged routines can be called from any context. This facilitates sharing of code between different execution modes. The *scall* mechanism is designed so that a minimal execution cycle overhead is experienced when performing supervisor routine calls from time-critical event handlers.

The *scall* instruction behaves differently depending on which mode it is called from. The behaviour is detailed in the instruction set reference. In order to allow the *scall* routine to return to the correct context, a return from supervisor call instruction, *rets*, is implemented. In the AVR32UC CPU, *scall* and *rets* uses the system stack to store the return address and the status register.

4.5.4 Debug Requests

The AVR32 architecture defines a dedicated Debug mode. When a debug request is received by the core, Debug mode is entered. Entry into Debug mode can be masked by the DM bit in the status register. Upon entry into Debug mode, hardware sets the SR.D bit and jumps to the Debug Exception handler. By default, Debug mode executes in the exception context, but with dedicated Return Address Register and Return Status Register. These dedicated registers remove the need for storing this data to the system stack, thereby improving debuggability. The Mode bits in the Status Register can freely be manipulated in Debug mode, to observe registers in all contexts, while retaining full privileges.

Debug mode is exited by executing the *retd* instruction. This returns to the previous context.

4.5.5 Entry Points for Events

Several different event handler entry points exist. In AVR32UC, the reset address is 0x80000000. This places the reset address in the boot flash memory area.

TLB miss exceptions and *scall* have a dedicated space relative to EVBA where their event handler can be placed. This speeds up execution by removing the need for a jump instruction placed at the program address jumped to by the event hardware. All other exceptions have a dedicated event routine entry point located relative to EVBA. The handler routine address identifies the exception source directly.

AVR32UC uses the ITLB and DTLB protection exceptions to signal a MPU protection violation. ITLB and DTLB miss exceptions are used to signal that an access address did not map to any of the entries in the MPU. TLB multiple hit exception indicates that an access address did map to multiple TLB entries, signalling an error.

All interrupt requests have entry points located at an offset relative to EVBA. This autovector offset is specified by an interrupt controller. The programmer must make sure that none of the autovector offsets interfere with the placement of other code. The autovector offset has 14 address bits, giving an offset of maximum 16384 bytes.

Special considerations should be made when loading EVBA with a pointer. Due to security considerations, the event handlers should be located in non-writeable flash memory, or optionally in a privileged memory protection region if an MPU is present.

If several events occur on the same instruction, they are handled in a prioritized way. The priority ordering is presented in Table 4-4 on page 38. If events occur on several instructions at different locations in the pipeline, the events on the oldest instruction are always handled before any events on any younger instruction, even if the younger instruction has events of higher priority

than the oldest instruction. An instruction B is younger than an instruction A if it was sent down the pipeline later than A.

The addresses and priority of simultaneous events are shown in Table 4-4 on page 38. Some of the exceptions are unused in AVR32UC since it has no MMU, coprocessor interface, or floating-point unit.

AT32UC3C

Priority	Handler Address	Name	Event source	Stored Return Address
1	0x8000000	Reset	External input	Undefined
2	Provided by OCD system	OCD Stop CPU	OCD system	First non-completed instruction
3	EVBA+0x00	Unrecoverable exception	Internal	PC of offending instruction
4	EVBA+0x04	TLB multiple hit	MPU	PC of offending instruction
5	EVBA+0x08	Bus error data fetch	Data bus	First non-completed instruction
6	EVBA+0x0C	Bus error instruction fetch	Data bus	First non-completed instruction
7	EVBA+0x10	NMI	External input	First non-completed instruction
8	Autovectored	Interrupt 3 request	External input	First non-completed instruction
9	Autovectored	Interrupt 2 request	External input	First non-completed instruction
10	Autovectored	Interrupt 1 request	External input	First non-completed instruction
11	Autovectored	Interrupt 0 request	External input	First non-completed instruction
12	EVBA+0x14	Instruction Address	CPU	PC of offending instruction
13	EVBA+0x50	ITLB Miss	MPU	PC of offending instruction
14	EVBA+0x18	ITLB Protection	MPU	PC of offending instruction
15	EVBA+0x1C	Breakpoint	OCD system	First non-completed instruction
16	EVBA+0x20	Illegal Opcode	Instruction	PC of offending instruction
17	EVBA+0x24	Unimplemented instruction	Instruction	PC of offending instruction
18	EVBA+0x28	Privilege violation	Instruction	PC of offending instruction
19	EVBA+0x2C	Floating-point	UNUSED	
20	EVBA+0x30	Coprocessor absent	Instruction	PC of offending instruction
21	EVBA+0x100	Supervisor call	Instruction	PC(Supervisor Call) +2
22	EVBA+0x34	Data Address (Read)	CPU	PC of offending instruction
23	EVBA+0x38	Data Address (Write)	CPU	PC of offending instruction
24	EVBA+0x60	DTLB Miss (Read)	MPU	PC of offending instruction
25	EVBA+0x70	DTLB Miss (Write)	MPU	PC of offending instruction
26	EVBA+0x3C	DTLB Protection (Read)	MPU	PC of offending instruction
27	EVBA+0x40	DTLB Protection (Write)	MPU	PC of offending instruction
28	EVBA+0x44	DTLB Modified	UNUSED	

Table 4-4. Priority and Handler Addresses for Events

6.2 Startup Considerations

This chapter summarizes the boot sequence of the AT32UC3C. The behavior after power-up is controlled by the Power Manager. For specific details, refer to the Power Manager chapter.

6.2.1 Starting of clocks

At power-up, the BOD33 and the BOD18 are enabled. The device will be held in a reset state by the power-up circuitry, until the VDDIN_33 (resp. VDDCORE) has reached the reset threshold of the BOD33 (resp BOD18). Refer to the Electrical Characteristics for the BOD thresholds. Once the power has stabilized, the device will use the System RC Oscillator (RCSYS, 115KHz typical frequency) as clock source. The BOD18 and BOD33 are kept enabled or are disabled according to the fuse settings (See the Fuse Setting section in the Flash Controller chapter).

On system start-up, the PLLs are disabled. All clocks to all modules are running. No clocks have a divided frequency, all parts of the system receive a clock with the same frequency as the internal RC Oscillator.

6.2.2 Fetching of initial instructions

After reset has been released, the AVR32UC CPU starts fetching instructions from the reset address, which is 0x8000_0000. This address points to the first address in the internal Flash.

The internal Flash uses VDDIO voltage during read and write operations. It is recommended to use the BOD33 to monitor this voltage and make sure the VDDIO is above the minimum level (3.0V).

The code read from the internal Flash is free to configure the system to use for example the PLLs, to divide the frequency of the clock routed to some of the peripherals, and to gate the clocks to unused peripherals.

- Internal 3.3V regulator is off
- TA = 25°C
- I/Os are configured as inputs, with internal pull-up enabled.
- Oscillators
 - OSC0/1 (crystal oscillator) stopped
 - OSC32K (32KHz crystal oscillator) stopped
 - PLL0 running
 - PLL1 stopped
- Clocks
 - External clock on XIN0 as main clock source (10MHz)
 - CPU, HSB, and PBB clocks undivided
 - PBA, PBC clock divided by 4
 - All peripheral clocks running

 Table 7-4.
 Power Consumption for Different Operating Modes

Mode	Conditions	Measured on	Consumption Typ	Unit	
Active ⁽¹⁾	CPU running a recursive Fibonacci algorithm		512		
Idle ⁽¹⁾			258		
Frozen ⁽¹⁾			106	μΑνινιπΖ	
Standby ⁽¹⁾		A	48		
Stop		Amp	73		
DeepStop			43		
Statio	OSC32K and AST running		32	μΑ	
Static	AST and OSC32K stopped		31		

Note: 1. These numbers are valid for the measured condition only and must not be extrapolated to other frequencies.

- PLL1 stopped
- Clocks
 - External clock on XIN0 as main clock source.
 - CPU, HSB, and PB clocks undivided

Consumption active is the added current consumption when the module clock is turned on and when the module is doing a typical set of operations.

Peripheral	Typ Consumption Active	Unit
ACIFA ⁽¹⁾	3	
ADCIFA ⁽¹⁾	7	
AST	3	
CANIF	25	
DACIFB ⁽¹⁾	3	
EBI	23	
EIC	0.5	
FREQM	0.5	
GPIO	37	
INTC	3	
MDMA	4	
PDCA	24	
PEVC	15	
PWM	40	
QDEC	3	µA/MHz
SAU	3	
SDRAMC	2	
SMC	9	
SPI	5	
ТС	8	
TWIM	2	
TWIS	2	
USART	10	
USBC	5	
WDT	2	

 Table 7-5.
 Typical Current Consumption by Peripheral⁽²⁾

Notes: 1. Includes the current consumption on VDDANA.

2. These numbers are valid for the measured condition only and must not be extrapolated to other frequencies.

Table 7-6. Normal I/O Pin Characteristics⁽¹⁾

Symbol	Parameter	Condition		Min	Тур	Max	Units
			load = 10pF, pin drive $x1^{(2)}$			7.7	
			load = 10pF, pin drive $x2^{(2)}$			3.4	
			load = 10pF, pin drive $x4^{(2)}$			1.9	
		$V_{VDD} = 3.0 V$	load = 30pF, pin drive x1 ⁽²⁾			16	
			load = 30 pF , pin drive $x2^{(2)}$			7.5	
			load = 30 pF , pin drive $x4^{(2)}$			3.8	1
t _{RISE}	Rise time ⁽⁰⁾		load = 10pF, pin drive $x1^{(2)}$			5.3	ns
			load = 10pF, pin drive $x2^{(2)}$			2.4	
			load = 10pF, pin drive $x4^{(2)}$			1.3	
		$V_{VDD} = 4.5 V$	load = 30pF, pin drive x1 ⁽²⁾			11.1	
			load = 30 pF , pin drive $x2^{(2)}$			5.2	-
			load = 30 pF , pin drive $x4^{(2)}$			2.7	
		V _{VDD} = 3.0 V	load = 10pF, pin drive x1 ⁽²⁾			7.6	ns
			load = 10pF, pin drive $x2^{(2)}$			3.5	
			load = 10pF, pin drive $x4^{(2)}$			1.9	
			load = 30pF, pin drive x1 ⁽²⁾			15.8	
			load = 30 pF , pin drive $x2^{(2)}$			7.3	
	– u		load = 30 pF , pin drive $x4^{(2)}$			3.8	
t _{FALL}	Fall time(0)		load = 10pF, pin drive x1 ⁽²⁾			5.2	
			load = 10pF, pin drive $x2^{(2)}$			2.4	
			load = 10pF, pin drive $x4^{(2)}$			1.4	
		$V_{VDD} = 4.5 V$	load = 30pF, pin drive x1 ⁽²⁾			10.9	1
			load = 30 pF , pin drive $x2^{(2)}$			5.1	
			load = 30 pF , pin drive $x4^{(2)}$			2.7	
I _{LEAK}	Input leakage current	Pull-up resiste	ors disabled			1.0	μΑ
C _{IN}	Input capacitance	PA00-PA29, PB00-PB31, PC00-PC01, PC08-PC31, PD00-PD30			7.5		pF
OIN		PC02, PC03,	PC04, PC05, PC06, PC07		2		

Note: 1. V_{VDD} corresponds to either V_{VDDIO1}, V_{VDDIO2}, V_{VDDIO3}, or V_{VDDANA}, depending on the supply for the pin. Refer to Section 3-1 on page 11 for details.

drive x1 capability pins are: PB00, PB01, PB02, PB03, PB30, PB31, PC02, PC03, PC04, PC05, PC06, PC07 - drive x2 /x4 capability pins are: PB06, PB21, PB26, PD02, PD06, PD13 - drive x1/x2 capability pins are the remaining PA, PB, PC, PD pins. The drive strength is programmable through ODCR0, ODCR0S, ODCR0C, ODCR0T registers of GPIO.

3. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

Table 7-8.Crystal Oscillator Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OUT}	Crystal oscillator frequency		0.4		20	MHz
C _i	Internal equivalent load capacitance			1.7		pF
	Start in time	f _{OUT} = 8MHz SCIF.OSCCTRL.GAIN = 1 ⁽¹⁾		975		us
^L STARTUP		f _{OUT} = 16MHz SCIF.OSCCTRL.GAIN = 2 ⁽¹⁾		1100		us

Notes: 1. Please refer to the SCIF chapter for details.

7.6.2 32KHz Crystal Oscillator (OSC32K) Characteristics

7.6.2.1 Digital Clock Characteristics

The following table describes the characteristics for the oscillator when a digital clock is applied on XIN32.

Table 7-9. Digital 32KHz Clock Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
f _{CPXIN}	XIN32 clock frequency			32.768	5000	KHz
t _{CPXIN}	XIN32 clock period		200			ns
t _{CHXIN}	XIN32 clock high half-priod		0.4 x t _{CPXIN}		0.6 x t _{CPXIN}	ns
t _{CLXIN}	XIN32 clock low half-priod		0.4 x t _{CPXIN}		0.6 x t _{CPXIN}	ns
C _{IN}	XIN32 input capacitance			2		pF

7.6.2.2 Crystal Oscillator Characteristics

Figure 7-2 and the equation above also applies to the 32KHz oscillator connection. The user must choose a crystal oscillator where the crystal load capacitance C_L is within the range given in the table. The exact value of C_L can then be found in the crystal datasheet.

 Table 7-10.
 32 KHz Crystal Oscillator Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OUT}	Crystal oscillator frequency			32 768		Hz
t _{STARTUP}	Startup time	$R_{S} = 50$ kOhm, $C_{L} = 12.5$ pF		2		s
CL	Crystal load capacitance		6		15	pF
C _i	Internal equivalent load capacitance			1.4		pF

AT32UC3C

7.8.4 3.3V Brown Out Detector (BOD33) Characteristics

The values in Table 7-23 describe the values of the BOD33.LEVEL field in the SCIF module.

BOD33.LEVEL Value	Parameter	Min	Max	Units
17		2.21	2.55	
22		2.30	2.64	
27		2.39	2.74	
31	threshold at power-up sequence	2.46	2.82	
33		2.50	2.86	N
39		2.60	2.98	V
44		2.69	3.08	
49		2.78	3.18	
53		2.85	3.27	
60		2.98	3.41	

Table 7-23. BOD33.LEVEL Values

7.8.5 5V Brown Out Detector (BOD50) Characteristics

The values in Table 7-25 describe the values of the BOD50.LEVEL field in the SCIF module.

Table 7-25.	BOD50.LEVEL Values
-------------	--------------------

BOD50.LEVEL Value	Parameter	Min	Max	Units
16		3.20	3.65	
25		3.42	3.92	
35		3.68	4.22	V
44		3.91	4.48	V
53		4.15	4.74	
61		4.36	4.97	

Figure 7-4. DAC output

 Table 7-40.
 Transfer Characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Units
RES	Resolution				12	Bit
INL	Integral Non-Linearity	V _{VDDANA} = 3V,		8		LSB
DNL	Differential Non-linearity	$V_{DACREF} = 2V,$		6		LSB
	Offset error	One S/H	-30		30	mV
	Gain error		-30		30	mV
RES	Resolution				12	Bit
INL	Integral Non-Linearity	V _{VDDANA} = 5V,		12		LSB
DNL	Differential Non-linearity	V _{DACREF} = 3V,		6		LSB
	Offset error	One S/H	-30		30	mV
	Gain error		-30		30	mV

Note: 1. The measures are done without any I/O activity on VDDANA/GNDANA power domain.

7.9 Timing Characteristics

7.9.1 Startup, Reset, and Wake-up Timing

The startup, reset, and wake-up timings are calculated using the following formula:

$$t = t_{CONST} + N_{CPU} \times t_{CPU}$$

Where t_{CONST} and N_{CPU} are found in Table 7-44. t_{CONST} is the delay relative to RCSYS, t_{CPU} is the period of the CPU clock. If another clock source than RCSYS is selected as CPU clock the startup time of the oscillator, $t_{OSCSTART}$, must be added to the wake-up time in the stop, deepstop, and static sleep modes. Please refer to the source for the CPU clock in the "Oscillator Characteristics" on page 57 for more details about oscillator startup times.

Table 7-44. Maximum Reset and Wake-up Timing

Parameter		Measuring	Max <i>t_{CONST}</i> (in µs)	$\mathbf{Max}\; N_{CPU}$
Startup time from power-up, using regulator		VDDIN_5 rising (10 mV/ms) Time from V_{VDDIN_5} =0 to the first instruction entering the decode stage of CPU. VDDCORE is supplied by the internal regulator.	2600	0
Startup time from reset release		Time from releasing a reset source (except POR, BOD18, and BOD33) to the first instruction entering the decode stage of CPU.1240		0
Idle			0	19
	Frozen		268	209
	Standby	From wake-up event to the first instruction entering	268	209
vvake-up	Stop	the decode stage of the CPU.	268+ t _{OSCSTART}	212
	Deepstop		268+ t _{OSCSTART}	212
	Static		268+ t _{OSCSTART}	212

Figure 7-9. USART in SPI Slave Mode With (CPOL= CPHA= 0) or (CPOL= CPHA= 1)

 Table 7-47.
 USART in SPI mode Timing, Slave Mode⁽¹⁾

Symbol	Parameter	Conditions	Min	Мах	Units
USPI6	SPCK falling to MISO delay			27	ns
USPI7	MOSI setup time before SPCK rises		$t_{SAMPLE}^{(2)} + t_{CLK_USART}$		ns
USPI8	MOSI hold time after SPCK rises		0		ns
USPI9	SPCK rising to MISO delay			28	ns
USPI10	MOSI setup time before SPCK falls	external	$t_{SAMPLE}^{(2)} + t_{CLK_USART}$		ns
USPI11	MOSI hold time after SPCK falls	40pF	0		ns
USPI12	NSS setup time before SPCK rises		33		ns
USPI13	NSS hold time after SPCK falls		0		ns
USPI14	NSS setup time before SPCK falls		33		ns
USPI15	NSS hold time after SPCK rises		0		ns

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

2. Where:
$$t_{SAMPLE} = t_{SPCK} - \left(\left\lfloor \frac{t_{SPCK}}{2 \times t_{CLKUSART}} \right\rfloor + \frac{1}{2} \right) \times t_{CLKUSART}$$

7.9.9 MACB Characteristics

 Table 7-59.
 Ethernet MAC Signals⁽¹⁾

Symbol	Parameter	Conditions	Min.	Max.	Unit
MAC ₁	Setup for MDIO from MDC rising	$V_{VDD} = 3.0V,$	0	2.5	ns
MAC ₂	Hold for MDIO from MDC rising	drive strength of the pads set to the	0	0.7	ns
MAC ₃	MDIO toggling from MDC falling	external capacitor = 10pF on MACB pins	0	1.1	ns

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

 Table 7-60.
 Ethernet MAC MII Specific Signals⁽¹⁾

Symbol	Parameter	Conditions	Min.	Max.	Unit
MAC ₄	Setup for COL from TX_CLK rising		0		ns
MAC ₅	Hold for COL from TX_CLK rising		0		ns
MAC ₆	Setup for CRS from TX_CLK rising		0.5		ns
MAC ₇	Hold for CRS from TX_CLK rising		0.5		ns
MAC ₈	TX_ER toggling from TX_CLK rising		16.4	18.6	ns
MAC ₉	TX_EN toggling from TX_CLK rising	$V_{VDD} = 3.0V$, drive strength of the pads set to the	14.5	15.3	ns
MAC ₁₀	TXD toggling from TX_CLK rising	highest,	13.9	18.2	ns
MAC ₁₁	Setup for RXD from RX_CLK	external capacitor = 10pF on MACB	1.3		ns
MAC ₁₂	Hold for RXD from RX_CLK	- pins	1.8		ns
MAC ₁₃	Setup for RX_ER from RX_CLK		3.4		ns
MAC ₁₄	Hold for RX_ER from RX_CLK		0		ns
MAC ₁₅	Setup for RX_DV from RX_CLK		0.7		ns
MAC ₁₆	Hold for RX_DV from RX_CLK		1.3n		ns

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

Symbol	Parameter	Conditions	Min.	Max.	Unit
MAC ₂₁	TX_EN toggling from TX_CLK rising		11.7	12.5	ns
MAC ₂₂	TXD toggling from TX_CLK rising		11.7	12.5	ns
MAC ₂₃	Setup for RXD from TX_CLK	V _{VDD} = 3.0V,	4.5		ns
MAC ₂₄	Hold for RXD from TX_CLK	drive strength of the pads set to the	0		ns
MAC ₂₅	Setup for RX_ER from TX_CLK	highest, external capacitor = 10pF on MACB	3.4		ns
MAC ₂₆	Hold for RX_ER from TX_CLK	pins	0		ns
MAC ₂₇	Setup for RX_DV from TX_CLK		4.4		ns
MAC ₂₈	Hold for RX_DV from TX_CLK		0		ns

Table 7-61. Ethernet MAC RMII Specific Signals⁽¹⁾

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

Figure 8-4. LQFP-144 package drawing

	Min	MM Nom	Max	Min	INCH Nom	Max
A	-	-	1, 60	-	-	. 063
С	0, 09	-	0, 20	, 004	-	, 008
A3	1. 35	1.40	1.45	, 053	. 055	. 057
D	21.90	22. 00	22. 10	, 862	. 866	, 870
D 1	19.90	20. 00	20.10	, 783	. 787	, 791
E	21.90	22. 00	22. 10	. 862	. 866	. 870
E 1	19.90	20. 00	20.10	. 783	. 787	. 791
J	0. 05	-	0.15	. 002	-	. 006
L	0.45	0. 60	0. 75	. 018	. 024	. 030
e	0. 50 BSC		. 0197 BSC			
f		0.22 BSC			.009 BSC	

Table 8-11. Device and Package Maximum Weight

1300		mg
Table 8-12.	Package Characteristics	
Moisture Sensitivity Level		Jdec J-STD0-20D - MSL 3
Table 8-13.	Package Reference	
		10 000

JEDEC Drawing Reference	MS-026
JESD97 Classification	E3

9. Ordering Information Table 9-1.

9-1. Ordering Information

Device	Ordering Code	Carrier Type	Package	Temperature Operating Range	
AT32UC3C0512C	AT32UC3C0512C-ALUT	Tray			
	AT32UC3C0512C-ALUR	Tape & Reel			
AT32UC3C0256C	AT32UC3C0256C-ALUT	Tray			
///02000002000	AT32UC3C0256C-ALUR	Tape & Reel	LOFP 144		
AT32UC3C0128C	AT32UC3C0128C-ALUT	CO128C-ALUT Tray			
A132003001200	AT32UC3C0128C-ALUR	Tape & Reel			
AT32UC3C064C	AT32UC3C064C-ALUT	Tray			
A13200300040	AT32UC3C064C-ALUR	Tape & Reel			
AT22UC2C1512C	AT32UC3C1512C-AUT	Tray			
A132003013120	AT32UC3C1512C-AUR	Tape & Reel			
AT2211C2C1256C	AT32UC3C1256C-AUT	Tray			
A132003012300	AT32UC3C1256C-AUR	Tape & Reel			
AT22UC2C1128C	AT32UC3C1128C-AUT	Tray			
AT32UC3C164C	AT32UC3C1128C-AUR	Tape & Reel			
	AT32UC3C164C-AUT	Tray			
	AT32UC3C164C-AUR	Tape & Reel		Industrial (-40°C to 85°C)	
	AT32UC3C2512C-A2UT	Tray			
AT22UC2C2512C	AT32UC3C2512C-A2UR	Tape & Reel			
A132003023120	AT32UC3C2512C-Z2UT	Tray			
	AT32UC3C2512C-Z2UR	Tape & Reel			
	AT32UC3C2256C-A2UT	Tray			
AT2211C2C2256C	AT32UC3C2256C-A2UR	Tape & Reel			
A132003022300	AT32UC3C2256C-Z2UT	Tray			
	AT32UC3C2256C-Z2UR	Tape & Reel			
	AT32UC3C2128C-A2UT	Tray			
AT2211C2C2128C	AT32UC3C2128C-A2UR	Tape & Reel			
A1320C3C2128C	AT32UC3C2128C-Z2UT	Tray			
	AT32UC3C2128C-Z2UR	Tape & Reel			
	AT32UC3C264C-A2UT	Tray			
AT2211C2C264C	AT32UC3C264C-A2UR	Tape & Reel			
A13200302040	AT32UC3C264C-Z2UT	Tray			
	AT32UC3C264C-Z2UR	Tape & Reel	QEIN 04		

