

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Detalls	
Product Status	Active
Core Processor	AVR
Core Size	32-Bit Single-Core
Speed	66MHz
Connectivity	CANbus, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	45
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 11x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at32uc3c2512c-a2ur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2 Configuration Summary

Table 2-1.	Configuration Summary

Feature	AT32UC3C0512C/ AT32UC3C0256C/ AT32UC3C0128C/ AT32UC3C064C	AT32UC3C1512C/ AT32UC3C1256C/ AT32UC3C1128C/ AT32UC3C164C	AT32UC3C2512C/ AT32UC3C2256C/ AT32UC3C2128C/ AT32UC3C264C		
Flash	512/256/128/64 KB	512/256/128/64 KB	512/256/128/64 KB		
SRAM	64/64/32/16KB	64/64/32/16KB	64/64/32/16KB		
HSB RAM		4 KB			
EBI	1	0	0		
GPIO	123	81	45		
External Interrupts	8	8	8		
TWI	3	3	2		
USART	5	5	4		
Peripheral DMA Channels	16	16	16		
Peripheral Event System	1	1	1		
SPI	2	2	1		
CAN channels	2	2	2		
USB	1	1	1		
Ethernet MAC 10/100	1 RMII/MII	1 RMII/MII	1 RMII only		
I2S	1	1	1		
Asynchronous Timers	1	1	1		
Timer/Counter Channels	6	6	3		
PWM channels		4x2			
QDEC	2	2	1		
Frequency Meter		1			
Watchdog Timer		1			
Power Manager		1			
Oscillators	PLL 80-240 MHz (PLL0/PLL1) Crystal Oscillator 0.4-20 MHz (OSC0) Crystal Oscillator 32 KHz (OSC32K) RC Oscillator 115 kHz (RCSYS) RC Oscillator 8 MHz (RC8M) RC Oscillator 120 MHz (RC120M)				
		Hz (OSC1)	-		
12-bit ADC number of channels	1 16	1 16	1		
12-bit DAC number of channels	1 4	1 4	1 2		

 Table 3-1.
 GPIO Controller Function Multiplexing

TQFP				G			-		GPIO fu	unction		
/ QFN 64	TQFP 100	LQFP 144	PIN	ΡΙΟ	Supply	Pin Type (1)	А	в	с	D	E	F
		14	PB11	43	VDDIO1	x1/x2	USART1 - DSR	SPI0 - MISO	PWM - PWMH[1]			
		15	PB12	44	VDDIO1	x1/x2	USART1 - DCD	SPI0 - SCK	PWM - PWML[2]			
		16	PB13	45	VDDIO1	x1/x2	USART1 - RI	SPI0 - NPCS[0]	PWM - PWMH[2]		MACB - RX_ER	
		17	PB14	46	VDDIO1	x1/x2	USART1 - RTS	SPI0 - NPCS[1]	PWM - PWML[3]		MACB - MDC	
		18	PB15	47	VDDIO1	x1/x2	USART1 - CTS	USART1 - CLK	PWM - PWMH[3]		MACB - MDIO	
		19	PB16	48	VDDIO1	x1/x2	USART1 - RXD	SPI0 - NPCS[2]	PWM - EXT_ FAULTS[0]		CANIF - RXLINE[0]	
		20	PB17	49	VDDIO1	x1/x2	USART1 - TXD	SPIO - NPCS[3]	PWM - EXT_ FAULTS[1]		CANIF - TXLINE[0]	
		57	PB18	50	VDDIO2	x1/x2	TC0 - CLK2		EIC - EXTINT[4]			
	42	58	PB19	51	VDDIO2	x1/x2	TC0 - A0	SPI1 - MOSI	IISC - ISDO		MACB - CRS	
	43	59	PB20	52	VDDIO2	x1/x2	TC0 - B0	SPI1 - MISO	IISC - ISDI	ACIFA1 - ACAOUT	MACB - COL	
	44	60	PB21	53	VDDIO2	x2/x4	TC0 - CLK1	SPI1 - SCK	IISC - IMCK	ACIFA1 - ACBOUT	MACB - RXD[2]	
	45	61	PB22	54	VDDIO2	x1/x2	TC0 - A1	SPI1 - NPCS[3]	IISC - ISCK	SCIF - GCLK[0]	MACB - RXD[3]	
	46	62	PB23	55	VDDIO2	x1/x2	TC0 - B1	SPI1 - NPCS[2]	IISC - IWS	SCIF - GCLK[1]	MACB - RX_CLK	
		63	PB24	56	VDDIO2	x1/x2	TC0 - CLK0	SPI1 - NPCS[1]				
		64	PB25	57	VDDIO2	x1/x2	TC0 - A2	SPI1 - NPCS[0]	PEVC - PAD_EVT [8]			
		65	PB26	58	VDDIO2	x2/x4	TC0 - B2	SPI1 - SCK	PEVC - PAD_EVT [9]		MACB - TX_EN	
		66	PB27	59	VDDIO2	x1/x2	QDEC0 - QEPA	SPI1 - MISO	PEVC - PAD_EVT [10]	TC1 - CLK0	MACB - TXD[0]	
		67	PB28	60	VDDIO2	x1/x2	QDEC0 - QEPB	SPI1 - MOSI	PEVC - PAD_EVT [11]	TC1 - B0	MACB - TXD[1]	
		68	PB29	61	VDDIO2	x1/x2	QDEC0 - QEPI	SPI0 - NPCS[0]	PEVC - PAD_EVT [12]	TC1 - A0		
31	47	69	PB30	62	VDDIO2	x1						
32	48	70	PB31	63	VDDIO2	x1						
	49	71	PC00	64	VDDIO2	x1/x2	USBC - ID	SPI0 - NPCS[1]	USART2 - CTS	TC1 - B2	CANIF - TXLINE[1]	
	50	72	PC01	65	VDDIO2	x1/x2	USBC - VBOF	SPI0 - NPCS[2]	USART2 - RTS	TC1 - A2	CANIF - RXLINE[1]	

depending on the configuration of the OCD AXS register. For details, see the AVR32UC Technical Reference Manual.

Pin	AXS=0	AXS=1	AXS=2
EVTI_N	PA08	PB19	PA10
MDO[5]	PC05	PC31	PB06
MDO[4]	PC04	PC12	PB15
MDO[3]	PA23	PC11	PB14
MDO[2]	PA22	PB23	PA27
MDO[1]	PA19	PB22	PA26
MDO[0]	PA09	PB20	PA19
EVTO_N	PD29	PD29	PD29
МСКО	PD13	PB21	PB26
MSEO[1]	PD30	PD08	PB25
MSEO[0]	PD14	PD07	PB18

Table 3-5. Nexus OCD AUX port connections

3.2.6 Other Functions

The functions listed in Table 3-6 are not mapped to the normal GPIO functions. The aWire DATA pin will only be active after the aWire is enabled. The aWire DATAOUT pin will only be active after the aWire is enabled and the 2_PIN_MODE command has been sent.

Table 3-6. Othe	r Functions
-----------------	-------------

QFN64/ TQFP64 pin	TQFP100 pin	LQFP144 pin	Pad	Oscillator pin
64	98	142	RESET_N	aWire DATA
3	3	3	PA02	aWire DATAOUT

3.3 Signals Description

The following table give details on the signal name classified by peripherals.

Table 3-7. Signal Description List

Signal Name	Function	Туре	Active Level	Comments
	Power			
VDDIO1 VDDIO2 VDDIO3	I/O Power Supply	Power Input		4.5V to 5.5V or 3.0V to 3.6 V
VDDANA	Analog Power Supply	Power Input		4.5V to 5.5V or 3.0V to 3.6 V

Table 3-7.Signal Description List

Signal Name	Function	Туре	Active Level	Comments	
VDDIN_5	1.8V Voltage Regulator Input	Power Input		Power Supply: 4.5V to 5.5V or 3.0V to 3.6 V	
VDDIN_33	USB I/O power supply	Power Output/ Input		Capacitor Connection for the 3.3V voltage regulator or power supply: 3.0V to 3.6 V	
VDDCORE	1.8V Voltage Regulator Output	Power output		Capacitor Connection for the 1.8V voltage regulator	
GNDIO1 GNDIO2 GNDIO3	I/O Ground	Ground			
GNDANA	Analog Ground	Ground			
GNDCORE	Ground of the core	Ground			
GNDPLL	Ground of the PLLs	Ground			
	Analog Comparator Interfa	ace - ACIFA	0/1	1	
AC0AN1/AC0AN0	Negative inputs for comparator AC0A	Analog			
AC0AP1/AC0AP0	Positive inputs for comparator AC0A	Analog			
AC0BN1/AC0BN0	Negative inputs for comparator AC0B	Analog			
AC0BP1/AC0BP0	Positive inputs for comparator AC0B	Analog			
AC1AN1/AC1AN0	Negative inputs for comparator AC1A	Analog			
AC1AP1/AC1AP0	Positive inputs for comparator AC1A	Analog			
AC1BN1/AC1BN0	Negative inputs for comparator AC1B	Analog			
AC1BP1/AC1BP0	Positive inputs for comparator AC1B	Analog			
ACAOUT/ACBOUT	analog comparator outputs	output			
	ADC Interface - A	DCIFA	L		
ADCIN[15:0]	ADC input pins	Analog			
ADCREF0	Analog positive reference 0 voltage input	Analog			
ADCREF1	Analog positive reference 1 voltage input	Analog			
ADCVREFP	Analog positive reference connected to external capacitor	Analog			

Table 3-7.Signal Description List

Signal Name	Function	Туре	Active Level	Comments
DP	USB Device Port Data +	Analog		
VBUS	USB VBUS Monitor and OTG Negociation	Analog Input		
ID	ID Pin of the USB Bus	Input		
VBOF	USB VBUS On/off: bus power control port	output		

3.4 I/O Line Considerations

3.4.1 JTAG pins

The JTAG is enabled if TCK is low while the RESET_N pin is released. The TCK, TMS, and TDI pins have pull-up resistors when JTAG is enabled. The TCK pin always have pull-up enabled during reset. The TDO pin is an output, driven at VDDIO1, and has no pull-up resistor. The JTAG pins can be used as GPIO pins and muxed with peripherals when the JTAG is disabled. Please refer to Section 3.2.4 for the JTAG port connections.

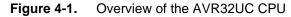
3.4.2 RESET_N pin

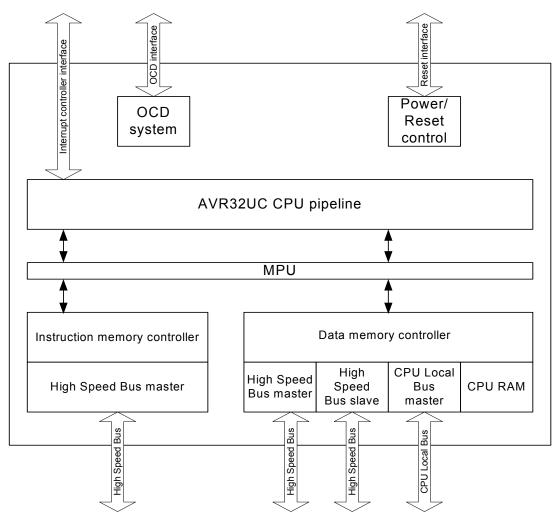
The RESET_N pin integrates a pull-up resistor to VDDIO1. As the product integrates a power-on reset cell, the RESET_N pin can be left unconnected in case no reset from the system needs to be applied to the product.

The RESET_N pin is also used for the aWire debug protocol. When the pin is used for debugging, it must not be driven by external circuitry.

3.4.3 TWI pins

When these pins are used for TWI, the pins are open-drain outputs with slew-rate limitation and inputs with inputs with spike-filtering. When used as GPIO-pins or used for other peripherals, the pins have the same characteristics as GPIO pins.


3.4.4 GPIO pins


All I/O lines integrate programmable pull-up and pull-down resistors. Most I/O lines integrate drive strength control, see Table 3-1. Programming of this pull-up and pull-down resistor or this drive strength is performed independently for each I/O line through the GPIO Controllers.

After reset, I/O lines default as inputs with pull-up/pull-down resistors disabled. After reset, output drive strength is configured to the lowest value to reduce global EMI of the device.

When the I/O line is configured as analog function (ADC I/O, AC inputs, DAC I/O), the pull-up and pull-down resistors are automatically disabled.

4.3.1 Pipeline Overview

AVR32UC has three pipeline stages, Instruction Fetch (IF), Instruction Decode (ID), and Instruction Execute (EX). The EX stage is split into three parallel subsections, one arithmetic/logic (ALU) section, one multiply (MUL) section, and one load/store (LS) section.

Instructions are issued and complete in order. Certain operations require several clock cycles to complete, and in this case, the instruction resides in the ID and EX stages for the required number of clock cycles. Since there is only three pipeline stages, no internal data forwarding is required, and no data dependencies can arise in the pipeline.

Figure 4-2 on page 28 shows an overview of the AVR32UC pipeline stages.

Reg #	Address	Name	Function
90	360	MPUPSR2	MPU Privilege Select Register region 2
91	364	MPUPSR3	MPU Privilege Select Register region 3
92	368	MPUPSR4	MPU Privilege Select Register region 4
93	372	MPUPSR5	MPU Privilege Select Register region 5
94	376	MPUPSR6	MPU Privilege Select Register region 6
95	380	MPUPSR7	MPU Privilege Select Register region 7
96	384	MPUCRA	Unused in this version of AVR32UC
97	388	MPUCRB	Unused in this version of AVR32UC
98	392	MPUBRA	Unused in this version of AVR32UC
99	396	MPUBRB	Unused in this version of AVR32UC
100	400	MPUAPRA	MPU Access Permission Register A
101	404	MPUAPRB	MPU Access Permission Register B
102	408	MPUCR	MPU Control Register
103	412	SS_STATUS	Secure State Status Register
104	416	SS_ADRF	Secure State Address Flash Register
105	420	SS_ADRR	Secure State Address RAM Register
106	424	SS_ADR0	Secure State Address 0 Register
107	428	SS_ADR1	Secure State Address 1 Register
108	432	SS_SP_SYS	Secure State Stack Pointer System Register
109	436	SS_SP_APP	Secure State Stack Pointer Application Register
110	440	SS_RAR	Secure State Return Address Register
111	444	SS_RSR	Secure State Return Status Register
112-191	448-764	Reserved	Reserved for future use
192-255	768-1020	IMPL	IMPLEMENTATION DEFINED

Table 4 9 m Deviatere (Centinued)

4.5 **Exceptions and Interrupts**

In the AVR32 architecture, events are used as a common term for exceptions and interrupts. AVR32UC incorporates a powerful event handling scheme. The different event sources, like Illegal Op-code and interrupt requests, have different priority levels, ensuring a well-defined behavior when multiple events are received simultaneously. Additionally, pending events of a higher priority class may preempt handling of ongoing events of a lower priority class.

When an event occurs, the execution of the instruction stream is halted, and execution is passed to an event handler at an address specified in Table 4-4 on page 38. Most of the handlers are placed sequentially in the code space starting at the address specified by EVBA, with four bytes between each handler. This gives ample space for a jump instruction to be placed there, jumping to the event routine itself. A few critical handlers have larger spacing between them, allowing the entire event routine to be placed directly at the address specified by the EVBA-relative offset generated by hardware. All interrupt sources have autovectored interrupt service routine (ISR) addresses. This allows the interrupt controller to directly specify the ISR address as an address

than the oldest instruction. An instruction B is younger than an instruction A if it was sent down the pipeline later than A.

The addresses and priority of simultaneous events are shown in Table 4-4 on page 38. Some of the exceptions are unused in AVR32UC since it has no MMU, coprocessor interface, or floating-point unit.

Port	Register	Mode	Local Bus Address	Access
D	Output Driver Enable Register (ODER)	WRITE	0x40000340	Write-only
		SET	0x40000344	Write-only
		CLEAR	0x40000348	Write-only
		TOGGLE	0x4000034C	Write-only
	Output Value Register (OVR)	WRITE	0x40000350	Write-only
		SET	0x40000354	Write-only
		CLEAR	0x40000358	Write-only
		TOGGLE	0x4000035C	Write-only
	Pin Value Register (PVR)	-	0x40000360	Read-only

Table 5-4.	Local bus mapped GPIO registers
------------	---------------------------------

7. Electrical Characteristics

7.1 Absolute Maximum Ratings*

Operating temperature40°C to +85°C
Storage temperature60°C to +150°C
Voltage on any pin except DM/DP/VBUS with respect to ground0.3V to $V_{VDD}^{(1)}$ +0.3V
Voltage on DM/DP with respect to ground0.3V to +3.6V
Voltage on VBUS with respect to ground0.3V to +5.5V
Maximum operating voltage (VDDIN_5)
Maximum operating voltage (VDDIO1, VDDIO2, VDDIO3, VDDANA)
Maximum operating voltage (VDDIN_33)
Total DC output current on all I/O pins- VDDIO1 120 mA
Total DC output current on all I/O pins- VDDIO2 120 mA
Total DC output current on all I/O pins- VDDIO3 120 mA
Total DC output current on all I/O pins- VDDANA 120 mA

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Notes: 1. V_{VDD} corresponds to either V_{VDDIO1}, V_{VDDIO2}, V_{VDDIO3}, or V_{VDDANA}, depending on the supply for the pin. Refer to Section 3-1 on page 11 for details.

7.2 Supply Characteristics

The following characteristics are applicable to the operating temperature range: $T_A = -40$ °C to 85 °C, unless otherwise specified and are valid for a junction temperature up to $T_J = 100$ °C. Please refer to Section 6. "Supply and Startup Considerations" on page 46.

			Voltage		
Symbol	Parameter	Condition	Min	Мах	Unit
M		3V range	3.0	3.6	V
V_{VDDIN_5}	DC supply internal regulators	5V range	4.5	5.5	v
V _{VDDIN_33}	DC supply USB I/O	only in 3V range	3.0	3.6	V
M	DC supply peripheral I/O and	3V range	3.0	3.6	
V _{VDDANA}	analog part	5V range	4.5	5.5	V
V _{VDDIO1}		3V range	3.0	3.6	
V _{VDDIO2} V _{VDDIO2}	DC supply peripheral I/O	5V range	4.5	5.5	V

 Table 7-1.
 Supply Characteristics

- PLL1 stopped
- Clocks
 - External clock on XIN0 as main clock source.
 - CPU, HSB, and PB clocks undivided

Consumption active is the added current consumption when the module clock is turned on and when the module is doing a typical set of operations.

Peripheral	Typ Consumption Active	Unit
ACIFA ⁽¹⁾	3	
ADCIFA ⁽¹⁾	7	
AST	3	-
CANIF	25	-
DACIFB ⁽¹⁾	3	-
EBI	23	-
EIC	0.5	
FREQM	0.5	_
GPIO	37	-
INTC	3	-
MDMA	4	-
PDCA	24	-
PEVC	15	-
PWM	40	-
QDEC	3	µA/MHz
SAU	3	
SDRAMC	2	
SMC	9	
SPI	5	
тс	8	
ТШМ	2	
TWIS	2	
USART	10	
USBC	5	
WDT	2	

 Table 7-5.
 Typical Current Consumption by Peripheral⁽²⁾

Notes: 1. Includes the current consumption on VDDANA.

2. These numbers are valid for the measured condition only and must not be extrapolated to other frequencies.

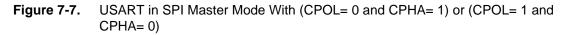
7.8.6 Analog to Digital Converter (ADC) and sample and hold (S/H) Characteristics

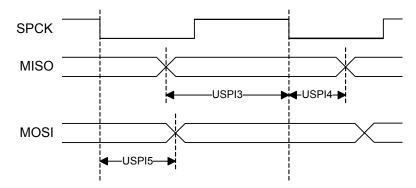
Symbol	Parameter	Conditions	Min	Тур	Max	Units
		12-bit resolution mode, $V_{VDDANA} = 3V$			1.2	
		10-bit resolution mode, $V_{VDDANA} = 3V$			1.6	
£	ADC clock	8-bit resolution mode, $V_{VDDANA} = 3V$			2.2	MHz
f _{ADC}	frequency	12-bit resolution mode, $V_{VDDANA} = 4.5V$			1.5	
		10-bit resolution mode, $V_{VDDANA} = 4.5V$			2	
		8-bit resolution mode, $V_{VDDANA} = 4.5V$			2.4	
t _{STARTUP} Startup time		ADC cold start-up			1	ms
	ADC hot start-up			24	ADC clock cycles	
	Conversion time	(ADCIFA.SEQCFGn.SRES)/2 + 2, ADCIFA.CFG.SHD = 1	6		8	ADC clock
t _{CONV}	(latency)	(ADCIFA.SEQCFGn.SRES)/2 + 3, ADCIFA.CFG.SHD = 0	7		9	cycles
		12-bit resolution, ADC clock = 1.2 MHz, V _{VDDANA} = 3V			1.2	
Throu	Throughput roto	10-bit resolution, ADC clock = 1.6 MHz, V _{VDDANA} = 3V			1.6	MODO
	Throughput rate	12-bit resolution, ADC clock = 1.5 MHz, V _{VDDANA} = 4.5V			1.5	– MSPS
		10-bit resolution, ADC clock = 2 MHz, V _{VDDANA} = 4.5V			2	

Table 7-27. ADC and S/H characteristics

Table 7-28. ADC Reference Voltage

Symbol	Parameter	Conditions	Min	Тур	Max	Unit s	
M		5V Range	1		3.5	V	
V _{ADCREF0}	ADCREF0 input voltage range	3V Range	1		V _{VDDANA} -0.7	v	
M		5V Range	1		3.5	- V	
V _{ADCREF1}	ADCREF1 input voltage range	3V Range	1		V _{VDDANA} -0.7		
		5V Range - Voltage reference applied on ADCREFP	1		3.5	- V	
V _{ADCREFP}	ADCREFP input voltage	3V Range - Voltage reference applied on ADCREFP	1		V _{VDDANA} -0.7		
V _{ADCREFN}	ADCREFN input voltage	Voltage reference applied on ADCREFN		GNDANA		V	
	Internal 1V reference			1.0		V	
	Internal 0.6*VDDANA reference			0.6*V _{VDDANA}		V	




7.9.3 USART in SPI Mode Timing

7.9.3.1 Master mode

SPCK

Figure 7-6. USART in SPI Master Mode With (CPOL= CPHA= 0) or (CPOL= CPHA= 1)

Table 7-46. USART in SPI Mode Timing, Master	· Mode ⁽¹⁾
--	-----------------------

Symbol	Parameter	Conditions	Min	Max	Units
USPI0	MISO setup time before SPCK rises		26+ t _{SAMPLE} ⁽²⁾		ns
USPI1	MISO hold time after SPCK rises		0		ns
USPI2	SPCK rising to MOSI delay	external		11	ns
USPI3	MISO setup time before SPCK falls	capacitor = 40pF	26+ t _{SAMPLE} ⁽²⁾		ns
USPI4	MISO hold time after SPCK falls		0		ns
USPI5	SPCK falling to MOSI delay			11.5	ns

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

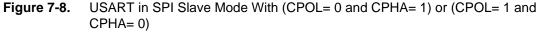
2. Where:
$$t_{SAMPLE} = t_{SPCK} - \left(\left[\frac{t_{SPCK}}{2 \times t_{CLKUSART}} \right] \frac{1}{2} \right) \times t_{CLKUSART} \right)$$

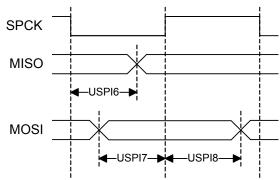
Maximum SPI Frequency, Master Output

The maximum SPI master output frequency is given by the following formula:

$$f_{SPCKMAX} = MIN(f_{PINMAX}, \frac{1}{SPIn}, \frac{f_{CLKSPI} \times 2}{9})$$

Where *SPIn* is the MOSI delay, USPI2 or USPI5 depending on CPOL and NCPHA. f_{PINMAX} is the maximum frequency of the SPI pins. Please refer to the I/O Pin Characteristics section for the maximum frequency of the pins. f_{CLKSPI} is the maximum frequency of the CLK_SPI. Refer to the SPI chapter for a description of this clock.


Maximum SPI Frequency, Master Input


The maximum SPI master input frequency is given by the following formula:

$$f_{SPCKMAX} = MIN(\frac{1}{SPIn + t_{VALID}}, \frac{f_{CLKSPI} \times 2}{9})$$

Where *SPIn* is the MISO setup and hold time, USPI0 + USPI1 or USPI3 + USPI4 depending on CPOL and NCPHA. T_{VALID} is the SPI slave response time. Please refer to the SPI slave datasheet for T_{VALID} . f_{CLKSPI} is the maximum frequency of the CLK_SPI. Refer to the SPI chapter for a description of this clock.

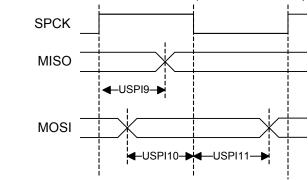

7.9.3.2 Slave mode

Figure 7-9. USART in SPI Slave Mode With (CPOL= CPHA= 0) or (CPOL= CPHA= 1)

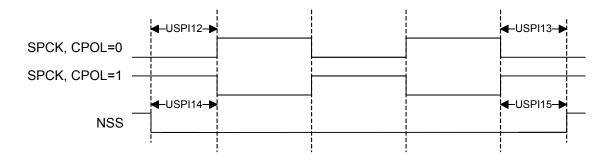


 Table 7-47.
 USART in SPI mode Timing, Slave Mode⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Units
USPI6	SPCK falling to MISO delay			27	ns
USPI7	MOSI setup time before SPCK rises		$t_{SAMPLE}^{(2)} + t_{CLK_USART}$		ns
USPI8	MOSI hold time after SPCK rises		0		ns
USPI9	SPCK rising to MISO delay			28	ns
USPI10	MOSI setup time before SPCK falls	external	$t_{SAMPLE}^{(2)} + t_{CLK_USART}$		ns
USPI11	MOSI hold time after SPCK falls	capacitor = 40pF	0		ns
USPI12	NSS setup time before SPCK rises		33		ns
USPI13	NSS hold time after SPCK falls		0		ns
USPI14	NSS setup time before SPCK falls		33		ns
USPI15	NSS hold time after SPCK rises		0		ns

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

2. Where:
$$t_{SAMPLE} = t_{SPCK} - \left(\left\lfloor \frac{t_{SPCK}}{2 \times t_{CLKUSART}} \right\rfloor + \frac{1}{2} \right) \times t_{CLKUSART}$$

7.9.4.2 Slave mode

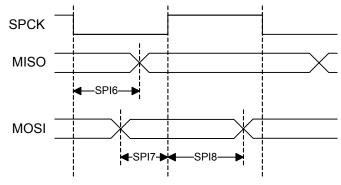


Figure 7-13. SPI Slave Mode With (CPOL= 0 and NCPHA= 1) or (CPOL= 1 and NCPHA= 0)

Figure 7-14. SPI Slave Mode With (CPOL= NCPHA= 0) or (CPOL= NCPHA= 1)

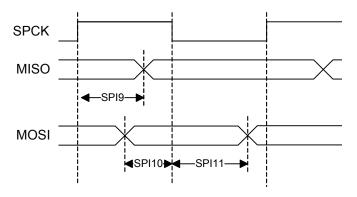
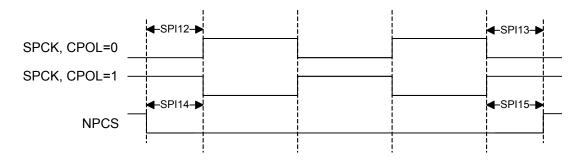
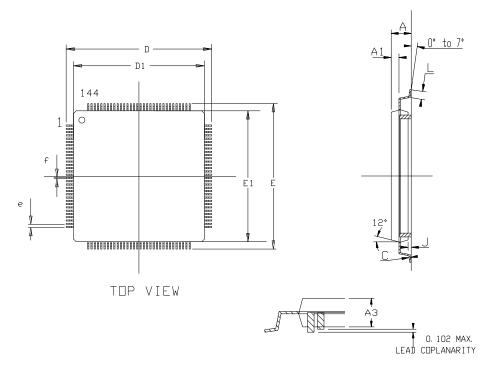



Figure 7-15. SPI Slave Mode NPCS Timing



Symbol	Parameter	Conditions	Min	Units
SDRAMC ₁	SDCKE high before SDCK rising edge		5.6	
SDRAMC ₂	SDCKE low after SDCK rising edge		7.3	
SDRAMC ₃	SDCKE low before SDCK rising edge		6.8	
SDRAMC ₄	SDCKE high after SDCK rising edge		8.3	
SDRAMC ₅	SDCS low before SDCK rising edge		6.1	
SDRAMC ₆	SDCS high after SDCK rising edge		8.4	
SDRAMC ₇	RAS low before SDCK rising edge		7	
SDRAMC ₈	RAS high after SDCK rising edge		7.7	
SDRAMC ₉	SDA10 change before SDCK rising edge		6.4	-
SDRAMC ₁₀	SDA10 change after SDCK rising edge		7.1	
SDRAMC ₁₁	Address change before SDCK rising edge	$V_{VDD} = 3.0V,$	4.7	
SDRAMC ₁₂	Address change after SDCK rising edge	drive strength of the pads set to the highest,	4.4	
SDRAMC ₁₃	Bank change before SDCK rising edge	external capacitor = 40pF on	6.2	
SDRAMC ₁₄	Bank change after SDCK rising edge	SDRAM pins except 8 pF on SDCK pins	6.9	-
SDRAMC ₁₅	CAS low before SDCK rising edge		6.6	
SDRAMC ₁₆	CAS high after SDCK rising edge		7.8	
SDRAMC ₁₇	DQM change before SDCK rising edge		6	-
SDRAMC ₁₈	DQM change after SDCK rising edge		6.7	-
SDRAMC ₁₉	D0-D15 in setup before SDCK rising edge		6.4	-
SDRAMC ₂₀	D0-D15 in hold after SDCK rising edge		0	1
SDRAMC ₂₃	SDWE low before SDCK rising edge		7	
SDRAMC ₂₄	SDWE high after SDCK rising edge		7.4	
SDRAMC ₂₅	D0-D15 Out valid before SDCK rising edge		5.2	
SDRAMC ₂₆	D0-D15 Out valid after SDCK rising edge		5.6	1

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

Figure 8-4. LQFP-144 package drawing

	Min	MM Nom	Ma×	Min	INCH Nom	Ma×
A	-	-	1.60	-	-	. 063
С	0, 09	-	0, 20	, 004	-	. 008
A3	1. 35	1.40	1.45	, 053	. 055	. 057
D	21.90	22. 00	22.10	, 862	. 866	. 870
D1	19.90	20, 00	20.10	, 783	. 787	. 791
E	21.90	22. 00	22. 10	. 862	. 866	. 870
E1	19.90	20. 00	20.10	. 783	. 787	. 791
J	0. 05	-	0.15	. 002	-	. 006
L	0.45	0. 60	0. 75	. 018	. 024	. 030
e	0. 50 BSC . 0197 BSC					
f	0. 22 BSC . 009 BSC					

Table 8-11. Device and Package Maximum Weight

1300		mg	mg		
Table 8-12.	Package Characteristics				
Moisture Se	nsitivity Level	Jdec J-STD0-20D - MSL 3	Jdec J-STD0-20D - MSL 3		
Table 8-13.	Package Reference				
	wing Deference	MS 026			

JEDEC Drawing Reference	MS-026
JESD97 Classification	E3

9. Ordering Information Table 9-1.

9-1. Ordering Information

Table 9-1. Ordering Information							
Device	Ordering Code	Carrier Type	Package	Temperature Operating Range			
AT32UC3C0512C	AT32UC3C0512C-ALUT	Tray					
A132003003120	AT32UC3C0512C-ALUR	Tape & Reel					
AT32UC3C0256C	AT32UC3C0256C-ALUT	Tray					
A132003002300	AT32UC3C0256C-ALUR	Tape & Reel	– LQFP 144				
AT32UC3C0128C	AT32UC3C0128C-ALUT	Tray					
A132003001200	AT32UC3C0128C-ALUR	Tape & Reel					
AT32UC3C064C	AT32UC3C064C-ALUT	Tray					
A13200300040	AT32UC3C064C-ALUR	Tape & Reel					
AT32UC3C1512C	AT32UC3C1512C-AUT	Tray					
A132003013120	AT32UC3C1512C-AUR	Tape & Reel					
AT32UC3C1256C	AT32UC3C1256C-AUT	Tray					
A1320C3C1230C	AT32UC3C1256C-AUR	Tape & Reel	- TQFP 100				
AT32UC3C1128C	AT32UC3C1128C-AUT	Tray					
A1320C3C1126C	AT32UC3C1128C-AUR	Tape & Reel	-	Industrial (-40°C to 85°C)			
AT20110204640	AT32UC3C164C-AUT	Tray	_				
AT32UC3C164C	AT32UC3C164C-AUR	Tape & Reel					
	AT32UC3C2512C-A2UT	Tray	TQFP 64				
AT32UC3C2512C	AT32UC3C2512C-A2UR	Tape & Reel					
A1320C3C2512C	AT32UC3C2512C-Z2UT	Tray	QFN 64				
	AT32UC3C2512C-Z2UR	Tape & Reel					
	AT32UC3C2256C-A2UT	Tray					
AT32UC3C2256C	AT32UC3C2256C-A2UR	Tape & Reel	TQFP 64				
AT320C3C2230C	AT32UC3C2256C-Z2UT	Tray					
	AT32UC3C2256C-Z2UR	Tape & Reel	QFN 64				
	AT32UC3C2128C-A2UT	Tray		_			
AT201102004000	AT32UC3C2128C-A2UR	Tape & Reel	– TQFP 64				
AT32UC3C2128C	AT32UC3C2128C-Z2UT	Tray					
	AT32UC3C2128C-Z2UR	Tape & Reel	– QFN 64				
	AT32UC3C264C-A2UT	Tray					
AT20110200040	AT32UC3C264C-A2UR	Tape & Reel	– TQFP 64				
AT32UC3C264C	AT32UC3C264C-Z2UT	Tray					
	AT32UC3C264C-Z2UR	Tape & Reel	– QFN 64				

		4	SPI bad serial clock generation on 2nd chip_select when SCBR=1, CPOL=1, and NCPHA=0
			When multiple chip selects (CS) are in use, if one of the baudrates equal 1 while one (CSRn.SCBR=1) of the others do not equal 1, and CSRn.CPOL=1 and CSRn.NCPHA=0, then an additional pulse will be generated on SCK. Fix/Workaround
			When multiple CS are in use, if one of the baudrates equals 1, the others must also equal 1 if CSRn.CPOL=1 and CSRn.NCPHA=0.
10.1.7	тс		
		1	 Channel chaining skips first pulse for upper channel When chaining two channels using the Block Mode Register, the first pulse of the clock between the channels is skipped. Fix/Workaround Configure the lower channel with RA = 0x1 and RC = 0x2 to produce a dummy clock cycle
			for the upper channel. After the dummy cycle has been generated, indicated by the SR.CPCS bit, reconfigure the RA and RC registers for the lower channel with the real values.
10.1.8	тwiм		
		1	SMBALERT bit may be set after reset For TWIM0 and TWIM1 modules, the SMBus Alert (SMBALERT) bit in the Status Register (SR) might be erroneously set after system reset. Fix/Workaround
			After system reset, clear the SR.SMBALERT bit before commencing any TWI transfer.
			For TWIM2 module, the SMBus Alert (SMBALERT) is not implemented but the bit in the Sta- tus Register (SR) is erroneously set once TWIM2 is enabled. Fix/Workaround None.
10.1.9	TWIS		
		1	Clearing the NAK bit before the BTF bit is set locks up the TWI bus When the TWIS is in transmit mode, clearing the NAK Received (NAK) bit of the Status Reg- ister (SR) before the end of the Acknowledge/Not Acknowledge cycle will cause the TWIS to attempt to continue transmitting data, thus locking up the bus. Fix/Workaround
			Clear SR.NAK only after the Byte Transfer Finished (BTF) bit of the same register has been set.
10.1.10	USBC		
		1	UPINRQx.INRQ field is limited to 8-bits In Host mode, when using the UPINRQx.INRQ feature together with the multi-packet mode to launch a finite number of packet among multi-packet, the multi-packet size (located in the descriptor table) is limited to the UPINRQx.INRQ value multiply by the pipe size. Fix/Workaround
			UPINRQx.INRQ value shall be less than the number of configured multi-packet.

2 In USB host mode, downstream resume feature does not work (UHCON.RESUME=1).

