

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	AVR
Core Size	32-Bit Single-Core
Speed	66MHz
Connectivity	CANbus, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	45
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 11x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at32uc3c2512c-z2ut

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

 Table 3-1.
 GPIO Controller Function Multiplexing

TQFP				G					GPIO fu	unction		
/ QFN 64	TQFP 100	LQFP 144	PIN	P I O	Supply	Pin Type (1)	А	в	с	D	E	F
33	51	73	PC02	66	VDDIO2	x1	TWIMS0 - TWD	SPI0 - NPCS[3]	USART2 - RXD	TC1 - CLK1	MACB - MDC	
34	52	74	PC03	67	VDDIO2	x1	TWIMS0 - TWCK	EIC - EXTINT[1]	USART2 - TXD	TC1 - B1	MACB - MDIO	
37	55	77	PC04	68	VDDIO2	x1	TWIMS1 - TWD	EIC - EXTINT[3]	USART2 - TXD	TC0 - B1		
38	56	78	PC05	69	VDDIO2	x1	TWIMS1 - TWCK	EIC - EXTINT[4]	USART2 - RXD	TC0 - A2		
	57	79	PC06	70	VDDIO2	x1	PEVC - PAD_EVT [15]	USART2 - CLK	USART2 - CTS	TC0 - CLK2	TWIMS2 - TWD	TWIMS0 - TWALM
	58	80	PC07	71	VDDIO2	x1	PEVC - PAD_EVT [2]	EBI - NCS[3]	USART2 - RTS	TC0 - B2	TWIMS2 - TWCK	TWIMS1 - TWALM
		81	PC08	72	VDDIO2	x1/x2	PEVC - PAD_EVT [13]	SPI1 - NPCS[1]	EBI - NCS[0]		USART4 - TXD	
		82	PC09	73	VDDIO2	x1/x2	PEVC - PAD_EVT [14]	SPI1 - NPCS[2]	EBI - ADDR[23]		USART4 - RXD	
		83	PC10	74	VDDIO2	x1/x2	PEVC - PAD_EVT [15]	SPI1 - NPCS[3]	EBI - ADDR[22]			
	59	84	PC11	75	VDDIO2	x1/x2	PWM - PWMH[3]	CANIF - RXLINE[1]	EBI - ADDR[21]	TC0 - CLK0		
	60	85	PC12	76	VDDIO2	x1/x2	PWM - PWML[3]	CANIF - TXLINE[1]	EBI - ADDR[20]	USART2 - CLK		
	61	86	PC13	77	VDDIO2	x1/x2	PWM - PWMH[2]	EIC - EXTINT[7]		USART0- RTS		
	62	87	PC14	78	VDDIO2	x1/x2	PWM - PWML[2]	USART0 - CLK	EBI - SDCKE	USART0- CTS		
39	63	88	PC15	79	VDDIO2	x1/x2	PWM - PWMH[1]	SPI0 - NPCS[0]	EBI - SDWE	USART0- RXD	CANIF - RXLINE[1]	
40	64	89	PC16	80	VDDIO2	x1/x2	PWM - PWML[1]	SPI0 - NPCS[1]	EBI - CAS	USART0- TXD	CANIF - TXLINE[1]	
41	65	90	PC17	81	VDDIO2	x1/x2	PWM - PWMH[0]	SPI0 - NPCS[2]	EBI - RAS	IISC - ISDO		USART3 - TXD
42	66	91	PC18	82	VDDIO2	x1/x2	PWM - PWML[0]	EIC - EXTINT[5]	EBI - SDA10	IISC - ISDI		USART3 - RXD
43	67	92	PC19	83	VDDIO3	x1/x2	PWM - PWML[2]	SCIF - GCLK[0]	EBI - DATA[0]	IISC - IMCK		USART3 - CTS
44	68	93	PC20	84	VDDIO3	x1/x2	PWM - PWMH[2]	SCIF - GCLK[1]	EBI - DATA[1]	IISC - ISCK		USART3 - RTS
45	69	94	PC21	85	VDDIO3	x1/x2	PWM - EXT_ FAULTS[0]	CANIF - RXLINE[0]	EBI - DATA[2]	IISC - IWS		
46	70	95	PC22	86	VDDIO3	x1/x2	PWM - EXT_ FAULTS[1]	CANIF - TXLINE[0]	EBI - DATA[3]		USART3 - CLK	
	71	96	PC23	87	VDDIO3	x1/x2	QDEC1 - QEPB	CANIF - RXLINE[1]	EBI - DATA[4]	PEVC - PAD_EVT [3]		

Table 3-1.	GPIO Controller Function Multiplexing
------------	---------------------------------------

TQFP				G					GPIO fu	unction		
/ QFN 64	TQFP 100	LQFP 144	PIN	P I O	Supply	Pin Type (1)	А	В	с	D	E	F
		124	PD15	111	VDDIO3	x1/x2	TC0 - A0	USART3 - TXD	EBI - ADDR[11]			
		125	PD16	112	VDDIO3	x1/x2	TC0 - B0	USART3 - RXD	EBI - ADDR[12]			
		126	PD17	113	VDDIO3	x1/x2	TC0 - A1	USART3 - CTS	EBI - ADDR[13]	USART3- CLK		
		127	PD18	114	VDDIO3	x1/x2	TC0 - B1	USART3 - RTS	EBI - ADDR[14]			
		128	PD19	115	VDDIO3	x1/x2	TC0 - A2		EBI - ADDR[15]			
		129	PD20	116	VDDIO3	x1/x2	TC0 - B2		EBI - ADDR[16]			
57	88	130	PD21	117	VDDIO3	x1/x2	USART3 - TXD	EIC - EXTINT[0]	EBI - ADDR[17]	QDEC1 - QEPI		
	89	131	PD22	118	VDDIO1	x1/x2	USART3 - RXD	TC0 - A2	EBI - ADDR[18]	SCIF - GCLK[0]		
	90	132	PD23	119	VDDIO1	x1/x2	USART3 - CTS	USART3 - CLK	EBI - ADDR[19]	QDEC1 - QEPA		
	91	133	PD24	120	VDDIO1	x1/x2	USART3 - RTS	EIC - EXTINT[8]	EBI - NWE1	QDEC1 - QEPB		
		134	PD25	121	VDDIO1	x1/x2	TC0 - CLK0	USBC - ID	EBI - NWE0		USART4 - CLK	
		135	PD26	122	VDDIO1	x1/x2	TC0 - CLK1	USBC - VBOF	EBI - NRD			
58	92	136	PD27	123	VDDIO1	x1/x2	USART0 - TXD	CANIF - RXLINE[0]	EBI - NCS[1]	TC0 - A0	MACB - RX_ER	
59	93	137	PD28	124	VDDIO1	x1/x2	USART0 - RXD	CANIF - TXLINE[0]	EBI - NCS[2]	TC0 - B0	MACB - RX_DV	
60	94	138	PD29	125	VDDIO1	x1/x2	USART0 - CTS	EIC - EXTINT[6]	USART0 - CLK	TC0 - CLK0	MACB - TX_CLK	
61	95	139	PD30	126	VDDIO1	x1/x2	USART0 - RTS	EIC - EXTINT[3]	EBI - NWAIT	TC0 - A1	MACB - TX_EN	

Note: 1. Refer to "Electrical Characteristics" on page 50 for a description of the electrical properties of the pin types used. See Section 3.3 for a description of the various peripheral signals.

3.2.2 Peripheral Functions

Each GPIO line can be assigned to one of several peripheral functions. The following table describes how the various peripheral functions are selected. The last listed function has priority in case multiple functions are enabled on the same pin.

Table 3-2.	Peripheral Functions
------------	----------------------

Function	Description
GPIO Controller Function multiplexing	GPIO and GPIO peripheral selection A to F
Nexus OCD AUX port connections	OCD trace system

depending on the configuration of the OCD AXS register. For details, see the AVR32UC Technical Reference Manual.

Pin	AXS=0	AXS=1	AXS=2
EVTI_N	PA08	PB19	PA10
MDO[5]	PC05	PC31	PB06
MDO[4]	PC04	PC12	PB15
MDO[3]	PA23	PC11	PB14
MDO[2]	PA22	PB23	PA27
MDO[1]	PA19	PB22	PA26
MDO[0]	PA09	PB20	PA19
EVTO_N	PD29	PD29	PD29
МСКО	PD13	PB21	PB26
MSEO[1]	PD30	PD08	PB25
MSEO[0]	PD14	PD07	PB18

Table 3-5. Nexus OCD AUX port connections

3.2.6 Other Functions

The functions listed in Table 3-6 are not mapped to the normal GPIO functions. The aWire DATA pin will only be active after the aWire is enabled. The aWire DATAOUT pin will only be active after the aWire is enabled and the 2_PIN_MODE command has been sent.

Table 3-6. Othe	r Functions
-----------------	-------------

QFN64/ TQFP64 pin	TQFP100 pin	LQFP144 pin	Pad	Oscillator pin
64	98	142	RESET_N	aWire DATA
3	3	3	PA02	aWire DATAOUT

3.3 Signals Description

The following table give details on the signal name classified by peripherals.

Table 3-7. Signal Description List

Signal Name	Function	Туре	Active Level	Comments
	Power			
VDDIO1 VDDIO2 VDDIO3	I/O Power Supply	Power Input		4.5V to 5.5V or 3.0V to 3.6 V
VDDANA	Analog Power Supply	Power Input		4.5V to 5.5V or 3.0V to 3.6 V

Table 3-7.Signal Description List

Signal Name	Function	Туре	Active Level	Comments					
SDCK	SDRAM Clock	Output							
SDCKE	SDRAM Clock Enable	Output							
SDWE	SDRAM Write Enable	Output	Low						
	External Interrupt Co	ntroller - EIC							
EXTINT[8:1]	External Interrupt Pins	Input							
NMI_N = EXTINT[0]	Non-Maskable Interrupt Pin	Input	Low						
	General Purpose Input/Output - GP	IOA, GPIOB,	GPIOC, GPI	OD					
PA[29:19] - PA[16:0]	Parallel I/O Controller GPIOA	I/O							
PB[31:0]	Parallel I/O Controller GPIOB	I/O							
PC[31:0]	Parallel I/O Controller GPIOC	I/O							
PD[30:0]	Parallel I/O Controller GPIOD	I/O							
	Inter-IC Sound (I2S) C	ontroller - IIS	С						
IMCK	I2S Master Clock	Output							
ISCK	I2S Serial Clock	I/O							
ISDI	I2S Serial Data In	Input							
ISDO	I2S Serial Data Out	Output							
IWS	I2S Word Select	I/O							
	JTAG								
тск	Test Clock	Input							
TDI	Test Data In	Input							
TDO	Test Data Out	Output							
TMS	Test Mode Select	Input							
	Ethernet MAC - MACB								
COL	Collision Detect	Input							
CRS	Carrier Sense and Data Valid	Input							
MDC	Management Data Clock	Output							
MDIO	Management Data Input/Output	I/O							
RXD[3:0]	Receive Data	Input							

Table 3-7.Signal Description List

Signal Name	Function	Туре	Active Level	Comments
DP	USB Device Port Data +	Analog		
VBUS	USB VBUS Monitor and OTG Negociation	Analog Input		
ID	ID Pin of the USB Bus	Input		
VBOF	USB VBUS On/off: bus power control port	output		

3.4 I/O Line Considerations

3.4.1 JTAG pins

The JTAG is enabled if TCK is low while the RESET_N pin is released. The TCK, TMS, and TDI pins have pull-up resistors when JTAG is enabled. The TCK pin always have pull-up enabled during reset. The TDO pin is an output, driven at VDDIO1, and has no pull-up resistor. The JTAG pins can be used as GPIO pins and muxed with peripherals when the JTAG is disabled. Please refer to Section 3.2.4 for the JTAG port connections.

3.4.2 RESET_N pin

The RESET_N pin integrates a pull-up resistor to VDDIO1. As the product integrates a power-on reset cell, the RESET_N pin can be left unconnected in case no reset from the system needs to be applied to the product.

The RESET_N pin is also used for the aWire debug protocol. When the pin is used for debugging, it must not be driven by external circuitry.

3.4.3 TWI pins

When these pins are used for TWI, the pins are open-drain outputs with slew-rate limitation and inputs with inputs with spike-filtering. When used as GPIO-pins or used for other peripherals, the pins have the same characteristics as GPIO pins.

3.4.4 GPIO pins

All I/O lines integrate programmable pull-up and pull-down resistors. Most I/O lines integrate drive strength control, see Table 3-1. Programming of this pull-up and pull-down resistor or this drive strength is performed independently for each I/O line through the GPIO Controllers.

After reset, I/O lines default as inputs with pull-up/pull-down resistors disabled. After reset, output drive strength is configured to the lowest value to reduce global EMI of the device.

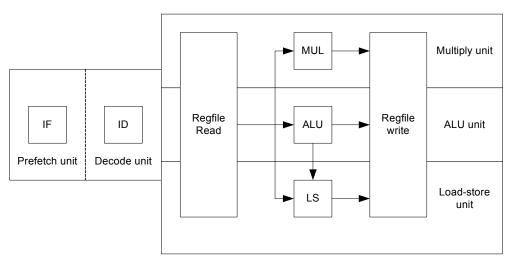
When the I/O line is configured as analog function (ADC I/O, AC inputs, DAC I/O), the pull-up and pull-down resistors are automatically disabled.

single cycle. Load and store instructions have several different formats in order to reduce code size and speed up execution.

The register file is organized as sixteen 32-bit registers and includes the Program Counter, the Link Register, and the Stack Pointer. In addition, register R12 is designed to hold return values from function calls and is used implicitly by some instructions.

4.3 The AVR32UC CPU

The AVR32UC CPU targets low- and medium-performance applications, and provides an advanced On-Chip Debug (OCD) system, no caches, and a Memory Protection Unit (MPU). A hardware Floating Point Unit (FPU) is also provided through the coprocessor instruction space. Java acceleration hardware is not implemented.


AVR32UC provides three memory interfaces, one High Speed Bus master for instruction fetch, one High Speed Bus master for data access, and one High Speed Bus slave interface allowing other bus masters to access data RAMs internal to the CPU. Keeping data RAMs internal to the CPU allows fast access to the RAMs, reduces latency, and guarantees deterministic timing. Also, power consumption is reduced by not needing a full High Speed Bus access for memory accesses. A dedicated data RAM interface is provided for communicating with the internal data RAMs.

A local bus interface is provided for connecting the CPU to device-specific high-speed systems, such as floating-point units and I/O controller ports. This local bus has to be enabled by writing a one to the LOCEN bit in the CPUCR system register. The local bus is able to transfer data between the CPU and the local bus slave in a single clock cycle. The local bus has a dedicated memory range allocated to it, and data transfers are performed using regular load and store instructions. Details on which devices that are mapped into the local bus space is given in the CPU Local Bus section in the Memories chapter.

Figure 4-1 on page 27 displays the contents of AVR32UC.

Figure 4-2. The AVR32UC Pipeline

4.3.2 AVR32A Microarchitecture Compliance

AVR32UC implements an AVR32A microarchitecture. The AVR32A microarchitecture is targeted at cost-sensitive, lower-end applications like smaller microcontrollers. This microarchitecture does not provide dedicated hardware registers for shadowing of register file registers in interrupt contexts. Additionally, it does not provide hardware registers for the return address registers and return status registers. Instead, all this information is stored on the system stack. This saves chip area at the expense of slower interrupt handling.

4.3.2.1 Interrupt Handling

Upon interrupt initiation, registers R8-R12 are automatically pushed to the system stack. These registers are pushed regardless of the priority level of the pending interrupt. The return address and status register are also automatically pushed to stack. The interrupt handler can therefore use R8-R12 freely. Upon interrupt completion, the old R8-R12 registers and status register are restored, and execution continues at the return address stored popped from stack.

The stack is also used to store the status register and return address for exceptions and *scall*. Executing the *rete* or *rets* instruction at the completion of an exception or system call will pop this status register and continue execution at the popped return address.

4.3.2.2 Java Support

AVR32UC does not provide Java hardware acceleration.

4.3.2.3 Floating Point Support

A fused multiply-accumulate Floating Point Unit (FPU), performing a multiply and accumulate as a single operation with no intermediate rounding, therby increasing precision is provided. The floating point hardware conforms to the requirements of the C standard, which is based on the IEEE 754 floating point standard.

4.3.2.4 Memory Protection

The MPU allows the user to check all memory accesses for privilege violations. If an access is attempted to an illegal memory address, the access is aborted and an exception is taken. The MPU in AVR32UC is specified in the AVR32UC Technical Reference manual.

than the oldest instruction. An instruction B is younger than an instruction A if it was sent down the pipeline later than A.

The addresses and priority of simultaneous events are shown in Table 4-4 on page 38. Some of the exceptions are unused in AVR32UC since it has no MMU, coprocessor interface, or floating-point unit.

6. Supply and Startup Considerations

6.1 Supply Considerations

6.1.1 Power Supplies

The AT32UC3C has several types of power supply pins:

- VDDIO pins (VDDIO1, VDDIO2, VDDIO3): Power I/O lines. Two voltage ranges are available: 5V or 3.3V nominal. The VDDIO pins should be connected together.
- VDDANA: Powers the Analog part of the device (Analog I/Os, ADC, ACs, DACs). 2 voltage ranges available: 5V or 3.3V nominal.
- VDDIN_5: Input voltage for the 1.8V and 3.3V regulators. Two Voltage ranges are available: 5V or 3.3V nominal.
- VDDIN_33:
 - USB I/O power supply
 - if the device is 3.3V powered: Input voltage, voltage is 3.3V nominal.
 - if the device is 5V powered: stabilization for the 3.3V voltage regulator, requires external capacitors
- VDDCORE: Stabilization for the 1.8V voltage regulator, requires external capacitors.
- GNDCORE: Ground pins for the voltage regulators and the core.
- GNDANA: Ground pin for Analog part of the design
- GNDPLL: Ground pin for the PLLs
- GNDIO pins (GNDIO1, GNDIO2, GNDIO3): Ground pins for the I/O lines. The GNDIO pins should be connected together.

See "Electrical Characteristics" on page 50 for power consumption on the various supply pins.

For decoupling recommendations for the different power supplies, please refer to the schematic checklist.

6.1.2 Voltage Regulators

The AT32UC3C embeds two voltage regulators:

- One 1.8V internal regulator that converts from VDDIN_5 to 1.8V. The regulator supplies the output voltage on VDDCORE.
- One 3.3V internal regulator that converts from VDDIN_5 to 3.3V. The regulator supplies the USB pads on VDDIN_33. If the USB is not used or if VDDIN_5 is within the 3V range, the 3.3V regulator can be disabled through the VREG33CTL field of the VREGCTRL SCIF register.

6.1.3 Regulators Connection

The AT32UC3C supports two power supply configurations.

- 5V single supply mode
- 3.3V single supply mode

6.1.3.1 5V Single Supply Mode

In 5V single supply mode, the 1.8V internal regulator is connected to the 5V source (VDDIN_5 pin) and its output feeds VDDCORE.

- PLL1 stopped
- Clocks
 - External clock on XIN0 as main clock source.
 - CPU, HSB, and PB clocks undivided

Consumption active is the added current consumption when the module clock is turned on and when the module is doing a typical set of operations.

Peripheral	Typ Consumption Active	Unit
ACIFA ⁽¹⁾	3	
ADCIFA ⁽¹⁾	7	
AST	3	-
CANIF	25	-
DACIFB ⁽¹⁾	3	-
EBI	23	-
EIC	0.5	
FREQM	0.5	_
GPIO	37	-
INTC	3	-
MDMA	4	-
PDCA	24	-
PEVC	15	-
PWM	40	-
QDEC	3	µA/MHz
SAU	3	
SDRAMC	2	
SMC	9	
SPI	5	
тс	8	
ТШМ	2	
TWIS	2	
USART	10	
USBC	5	
WDT	2	

 Table 7-5.
 Typical Current Consumption by Peripheral⁽²⁾

Notes: 1. Includes the current consumption on VDDANA.

2. These numbers are valid for the measured condition only and must not be extrapolated to other frequencies.

AT32UC3C

7.8.4 3.3V Brown Out Detector (BOD33) Characteristics

The values in Table 7-23 describe the values of the BOD33.LEVEL field in the SCIF module.

BOD33.LEVEL Value	Parameter	Min	Max	Units
17		2.21	2.55	
22		2.30	2.64	
27		2.39	2.74	
31	threshold at power-up sequence	2.46	2.82	
33		2.50	2.86	
39		2.60	2.98	V
44		2.69	3.08	
49		2.78	3.18	
53		2.85	3.27	
60		2.98	3.41	

Table 7-23. BOD33.LEVEL Values

7.8.5 5V Brown Out Detector (BOD50) Characteristics

The values in Table 7-25 describe the values of the BOD50.LEVEL field in the SCIF module.

Table 7-25.	BOD50.LEVEL Values
-------------	--------------------

BOD50.LEVEL Value	Parameter	Min	Max	Units
16		3.20	3.65	
25		3.42	3.92	
35		3.68	4.22	
44		3.91	4.48	V
53		4.15	4.74	
61		4.36	4.97	

7.9 Timing Characteristics

7.9.1 Startup, Reset, and Wake-up Timing

The startup, reset, and wake-up timings are calculated using the following formula:

$$t = t_{CONST} + N_{CPU} \times t_{CPU}$$

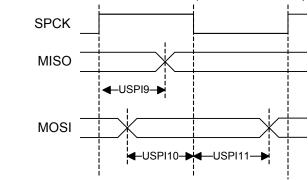

Where t_{CONST} and N_{CPU} are found in Table 7-44. t_{CONST} is the delay relative to RCSYS, t_{CPU} is the period of the CPU clock. If another clock source than RCSYS is selected as CPU clock the startup time of the oscillator, $t_{OSCSTART}$, must be added to the wake-up time in the stop, deepstop, and static sleep modes. Please refer to the source for the CPU clock in the "Oscillator Characteristics" on page 57 for more details about oscillator startup times.

Table 7-44. Maximum Reset and Wake-up Timing

Parameter		Measuring	Max <i>t_{CONST}</i> (in µs)	Max N _{CPU}
Startup time from power-up, using regulator VDDIN_5 rising (10 mV/ms) Time from V _{VDDIN_5} =0 to the first instruction entering the decode stage of CPU. VDDCORE is supplied by the internal regulator.		2600	0	
•		Time from releasing a reset source (except POR, BOD18, and BOD33) to the first instruction entering the decode stage of CPU.	1240	0
	Idle		0	19
	Frozen		268	209
	Standby	From wake-up event to the first instruction entering	268	209
Wake-up	Stop	the decode stage of the CPU.	268+ t _{OSCSTART}	212
	Deepstop		268+ t _{OSCSTART}	212
	Static		268+ t _{OSCSTART}	212

Figure 7-9. USART in SPI Slave Mode With (CPOL= CPHA= 0) or (CPOL= CPHA= 1)

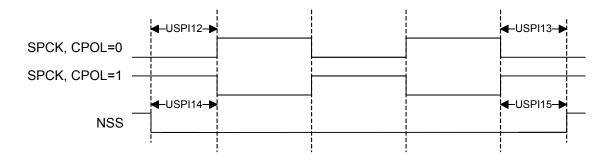


 Table 7-47.
 USART in SPI mode Timing, Slave Mode⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Units
USPI6	SPCK falling to MISO delay			27	ns
USPI7	MOSI setup time before SPCK rises		$t_{SAMPLE}^{(2)} + t_{CLK_USART}$		ns
USPI8	MOSI hold time after SPCK rises		0		ns
USPI9	SPCK rising to MISO delay			28	ns
USPI10	MOSI setup time before SPCK falls	external	$t_{SAMPLE}^{(2)} + t_{CLK_USART}$		ns
USPI11	MOSI hold time after SPCK falls	capacitor = 40pF	0		ns
USPI12	NSS setup time before SPCK rises		33		ns
USPI13	NSS hold time after SPCK falls		0		ns
USPI14	NSS setup time before SPCK falls		33		ns
USPI15	NSS hold time after SPCK rises		0		ns

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

2. Where:
$$t_{SAMPLE} = t_{SPCK} - \left(\left\lfloor \frac{t_{SPCK}}{2 \times t_{CLKUSART}} \right\rfloor + \frac{1}{2} \right) \times t_{CLKUSART}$$

7.9.4.2 Slave mode

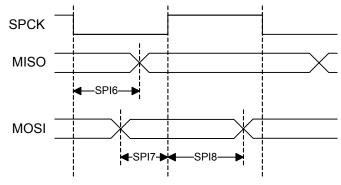


Figure 7-13. SPI Slave Mode With (CPOL= 0 and NCPHA= 1) or (CPOL= 1 and NCPHA= 0)

Figure 7-14. SPI Slave Mode With (CPOL= NCPHA= 0) or (CPOL= NCPHA= 1)

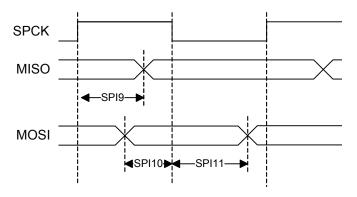
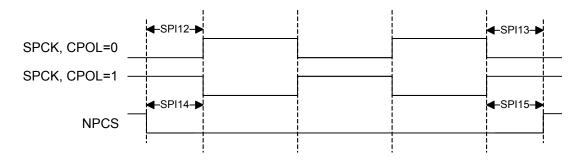



Figure 7-15. SPI Slave Mode NPCS Timing

7.9.6 JTAG Timing

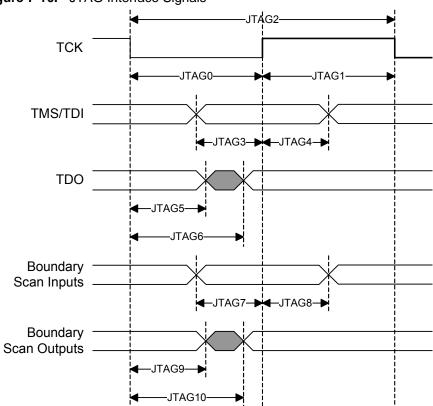


Figure 7-16. JTAG Interface Signals

Table 7-	51.	JTAG	Timings ⁽¹	I)
----------	-----	------	-----------------------	----

Symbol	Parameter	Conditions	Min	Max	Units
JTAG0	TCK Low Half-period		21.5		ns
JTAG1	TCK High Half-period		8.5		ns
JTAG2	TCK Period		29		ns
JTAG3	TDI, TMS Setup before TCK High		6.5		ns
JTAG4	TDI, TMS Hold after TCK High	external	0		ns
JTAG5	TDO Hold Time	capacitor =	12.5		ns
JTAG6	TCK Low to TDO Valid	40pF		21.5	ns
JTAG7	Boundary Scan Inputs Setup Time		0		ns
JTAG8	Boundary Scan Inputs Hold Time		4.5		ns
JTAG9	Boundary Scan Outputs Hold Time		11		ns
JTAG10	TCK to Boundary Scan Outputs Valid			18	ns

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

Symbol	Parameter	Conditions	Min	Units	
		NRD Controlled (READ_MODE = 1)			
SMC ₁₉	Data setup before NRD high	V _{VDD} = 3.0V,	32.5		
SMC ₂₀	Data hold after NRD high	drive strength of the pads set to the lowest, external capacitor = 40pF	0	ns	
	NRD Controlled (READ_MODE = 0)				
SMC ₂₁	Data setup before NCS high	V _{VDD} = 3.0V,	28.5		
SMC ₂₂	Data hold after NCS high	drive strength of the pads set to the lowest, external capacitor = 40pF	0	ns	

Table 7-54. SMC Read Signals with no Hold Settings⁽¹⁾

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

Symbol	Parameter	Conditions	Min	Units	
	NRD Controlled (READ_MODE = 1)				
SMC ₂₃	Data Out valid before NWE high		(nwe pulse length - 1) * tcpsмc - 1.4		
SMC ₂₄	Data Out valid after NWE high ⁽²⁾		nwe pulse length * tCPSMC - 4.7		
SMC ₂₅	NWE high to NBS0/A0 change ⁽²⁾	V _{VDD} = 3.0V,	nwe pulse length * tcpsmc - 2.7		
SMC ₂₉	NWE high to NBS2/A1 change ⁽²⁾	drive strength of the pads set	nwe pulse length * tcpsmc - 0.7	ns	
SMC ₃₁	NWE high to A2 - A25 change ⁽²⁾	to the lowest, external capacitor = 40pF	nwe pulse length * tcpsmc - 6.8	110	
SMC ₃₂	NWE high to NCS inactive ⁽²⁾		(nwe hold pulse - ncs wr hold length) * tcpsmc - 2.5	-	
SMC ₃₃	NWE pulse width	_	nwe pulse length * tcpsmc - 0.2		
	N	RD Controlled (READ_MODE =	0)		
SMC ₃₄	Data Out valid before NCS high	V _{VDD} = 3.0V,	(ncs wr pulse length - 1) * tCPSMC - 2.2		
SMC ₃₅	Data Out valid after NCS high ⁽²⁾	drive strength of the pads set	ncs wr hold length * tcpsмc - 5.1	ns	
SMC ₃₆	NCS high to NWE inactive ⁽²⁾	to the lowest, external capacitor = 40pF	(ncs wr hold length - nwe hold length) * tcPSMC - 2	113	

Table 7-55. SMC Write Signals with Hold Settings⁽¹⁾

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

2. hold length = total cycle duration - setup duration - pulse duration. "hold length" is for "ncs wr hold length" or "nwe hold length"

AT32UC3C

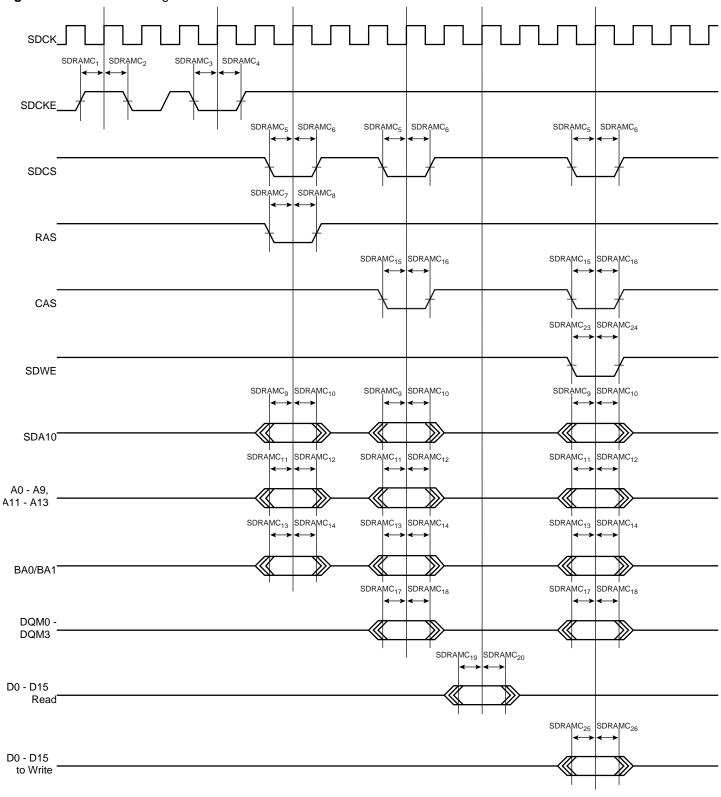
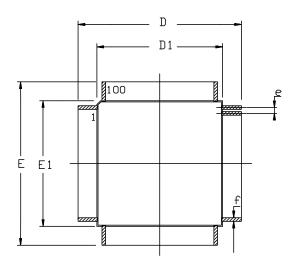
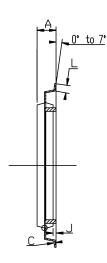




Figure 7-19. SDRAMC Signals relative to SDCK.

Figure 8-3. TQFP-100 package drawing

	COMMON DIMENSIONS IN MM				
SYMBOL	Min	Max	NDTES		
А		1. 20			
A1	0, 95	1. 05			
С	0. 09	0, 20			
D	16. 0	O BSC			
D1	14,00 BSC				
E	16. 0				
E1	14.0	O BSC			
J	0. 05	0.15			
L	0. 45 0. 75				
e	0. 5				
f	0.17	0. 27			

0. 102 max. LEAD COPLANARITY

Table 8-8. Device and Package Maximum Weight

500	mg

Table 8-9. Package Characteristics

loisture Sensitivity Level	Jdec J-STD0-20D - MSL 3
----------------------------	-------------------------

Table 8-10. Package Reference

JEDEC Drawing Reference	MS-026
JESD97 Classification	E3

10.2 rev D

10.2.1 ADCIFA

1 ADCREFP/ADCREFN can not be selected as an external ADC reference by setting the ADCIFA.CFG.EXREF bit to one Fix/Workaround

A voltage reference can be applied on ADCREFP/ADCREFN pins if the ADCIFA.CFG.EXREF bit is set to zero, the ADCIFA.CFG.RS bit is set to zero and the voltage reference applied on ADCREFP/ADCREFN pins is higher than the internal 1V reference.

10.2.2 AST

1 AST wake signal is released one AST clock cycle after the BUSY bit is cleared After writing to the Status Clear Register (SCR) the wake signal is released one AST clock cycle after the BUSY bit in the Status Register (SR.BUSY) is cleared. If entering sleep mode directly after the BUSY bit is cleared the part will wake up immediately. Fix/Workaround Read the Wake Enable Register (WER) and write this value back to the same register. Wait

Read the Wake Enable Register (WER) and write this value back to the same register. Wait for BUSY to clear before entering sleep mode.

10.2.3 aWire

1 aWire MEMORY_SPEED_REQUEST command does not return correct CV The aWire MEMORY_SPEED_REQUEST command does not return a CV corresponding to

the formula in the aWire Debug Interface chapter.

Fix/Workaround

Issue a dummy read to address 0x10000000 before issuing the MEMORY_SPEED_REQUEST command and use this formula instead:

$$f_{sab} = \frac{7f_{aw}}{CV-3}$$

10.2.4 GPIO

1 Clearing Interrupt flags can mask other interrupts

When clearing interrupt flags in a GPIO port, interrupts on other pins of that port, happening in the same clock cycle will not be registered.

Fix/Workaround

Read the PVR register of the port before and after clearing the interrupt to see if any pin change has happened while clearing the interrupt. If any change occurred in the PVR between the reads, they must be treated as an interrupt.

10.2.5 Power Manager

1 Clock Failure Detector (CFD) can be issued while turning off the CFD

While turning off the CFD, the CFD bit in the Status Register (SR) can be set. This will change the main clock source to RCSYS.

Fix/Workaround

Solution 1: Enable CFD interrupt. If CFD interrupt is issues after turning off the CFD, switch back to original main clock source.

Solution 2: Only turn off the CFD while running the main clock on RCSYS.

10.2.12 WDT

1 Clearing the Watchdog Timer (WDT) counter in second half of timeout period will issue a Watchdog reset

If the WDT counter is cleared in the second half of the timeout period, the WDT will immediately issue a Watchdog reset.

Fix/Workaround

Use twice as long timeout period as needed and clear the WDT counter within the first half of the timeout period. If the WDT counter is cleared after the first half of the timeout period, you will get a Watchdog reset immediately. If the WDT counter is not cleared at all, the time before the reset will be twice as long as needed.

2 WDT Control Register does not have synchronization feedback

When writing to the Timeout Prescale Select (PSEL), Time Ban Prescale Select (TBAN), Enable (EN), or WDT Mode (MODE) fieldss of the WDT Control Register (CTRL), a synchronizer is started to propagate the values to the WDT clcok domain. This synchronization takes a finite amount of time, but only the status of the synchronization of the EN bit is reflected back to the user. Writing to the synchronized fields during synchronization can lead to undefined behavior.

Fix/Workaround

-When writing to the affected fields, the user must ensure a wait corresponding to 2 clock cycles of both the WDT peripheral bus clock and the selected WDT clock source.

-When doing writes that changes the EN bit, the EN bit can be read back until it reflects the written value.

