

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	AVR
Core Size	32-Bit Single-Core
Speed	66MHz
Connectivity	CANbus, Ethernet, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	45
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 11x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at32uc3c264c-a2ut

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 3-3. LQFP144 Pinout

Table 3-1.	GPIO Controller Function Multiplexing
------------	---------------------------------------

TQFP				G			GPIO function					
/ QFN 64	TQFP 100	LQFP 144	PIN	P I O	Supply	Pin Type (1)	А	в	с	D	Е	F
		124	PD15	111	VDDIO3	x1/x2	TC0 - A0	USART3 - TXD	EBI - ADDR[11]			
		125	PD16	112	VDDIO3	x1/x2	TC0 - B0	USART3 - RXD	EBI - ADDR[12]			
		126	PD17	113	VDDIO3	x1/x2	TC0 - A1	USART3 - CTS	EBI - ADDR[13]	USART3- CLK		
		127	PD18	114	VDDIO3	x1/x2	TC0 - B1	USART3 - RTS	EBI - ADDR[14]			
		128	PD19	115	VDDIO3	x1/x2	TC0 - A2		EBI - ADDR[15]			
		129	PD20	116	VDDIO3	x1/x2	TC0 - B2		EBI - ADDR[16]			
57	88	130	PD21	117	VDDIO3	x1/x2	USART3 - TXD	EIC - EXTINT[0]	EBI - ADDR[17]	QDEC1 - QEPI		
	89	131	PD22	118	VDDIO1	x1/x2	USART3 - RXD	TC0 - A2	EBI - ADDR[18]	SCIF - GCLK[0]		
	90	132	PD23	119	VDDIO1	x1/x2	USART3 - CTS	USART3 - CLK	EBI - ADDR[19]	QDEC1 - QEPA		
	91	133	PD24	120	VDDIO1	x1/x2	USART3 - RTS	EIC - EXTINT[8]	EBI - NWE1	QDEC1 - QEPB		
		134	PD25	121	VDDIO1	x1/x2	TC0 - CLK0	USBC - ID	EBI - NWE0		USART4 - CLK	
		135	PD26	122	VDDIO1	x1/x2	TC0 - CLK1	USBC - VBOF	EBI - NRD			
58	92	136	PD27	123	VDDIO1	x1/x2	USART0 - TXD	CANIF - RXLINE[0]	EBI - NCS[1]	TC0 - A0	MACB - RX_ER	
59	93	137	PD28	124	VDDIO1	x1/x2	USART0 - RXD	CANIF - TXLINE[0]	EBI - NCS[2]	TC0 - B0	MACB - RX_DV	
60	94	138	PD29	125	VDDIO1	x1/x2	USART0 - CTS	EIC - EXTINT[6]	USART0 - CLK	TC0 - CLK0	MACB - TX_CLK	
61	95	139	PD30	126	VDDIO1	x1/x2	USART0 - RTS	EIC - EXTINT[3]	EBI - NWAIT	TC0 - A1	MACB - TX_EN	

Note: 1. Refer to "Electrical Characteristics" on page 50 for a description of the electrical properties of the pin types used. See Section 3.3 for a description of the various peripheral signals.

3.2.2 Peripheral Functions

Each GPIO line can be assigned to one of several peripheral functions. The following table describes how the various peripheral functions are selected. The last listed function has priority in case multiple functions are enabled on the same pin.

Function	Description
GPIO Controller Function multiplexing	GPIO and GPIO peripheral selection A to F
Nexus OCD AUX port connections	OCD trace system

depending on the configuration of the OCD AXS register. For details, see the AVR32UC Technical Reference Manual.

Pin	AXS=0	AXS=1	AXS=2
EVTI_N	PA08	PB19	PA10
MDO[5]	PC05	PC31	PB06
MDO[4]	PC04	PC12	PB15
MDO[3]	PA23	PC11	PB14
MDO[2]	PA22	PB23	PA27
MDO[1]	PA19	PB22	PA26
MDO[0]	PA09	PB20	PA19
EVTO_N	PD29	PD29	PD29
МСКО	PD13	PB21	PB26
MSEO[1]	PD30	PD08	PB25
MSEO[0]	PD14	PD07	PB18

Table 3-5. Nexus OCD AUX port connections

3.2.6 Other Functions

The functions listed in Table 3-6 are not mapped to the normal GPIO functions. The aWire DATA pin will only be active after the aWire is enabled. The aWire DATAOUT pin will only be active after the aWire is enabled and the 2_PIN_MODE command has been sent.

Table 3-0. Other Functions	Table 3-6.	Other Functions
----------------------------	------------	-----------------

QFN64/ TQFP64 pin	TQFP100 pin	LQFP144 pin	Pad	Oscillator pin
64	98	142	RESET_N	aWire DATA
3	3	3	PA02	aWire DATAOUT

3.3 Signals Description

The following table give details on the signal name classified by peripherals.

Table 3-7. Signal Description List

Signal Name	Function	Туре	Active Level	Comments
	Power			
VDDIO1 VDDIO2 VDDIO3	I/O Power Supply	Power Input		4.5V to 5.5V or 3.0V to 3.6 V
VDDANA	Analog Power Supply	Power Input		4.5V to 5.5V or 3.0V to 3.6 V

Table 3-7.Signal Description List

Signal Name	Signal Name Function		Active Level	Comments
VDDIN_5 1.8V Voltage Regulator Input		Power Input		Power Supply: 4.5V to 5.5V or 3.0V to 3.6 V
VDDIN_33 USB I/O power supply		Power Output/ Input		Capacitor Connection for the 3.3V voltage regulator or power supply: 3.0V to 3.6 V
VDDCORE	1.8V Voltage Regulator Output	Power output		Capacitor Connection for the 1.8V voltage regulator
GNDIO1 GNDIO2 GNDIO3	I/O Ground	Ground		
GNDANA	Analog Ground	Ground		
GNDCORE	Ground of the core	Ground		
GNDPLL	Ground of the PLLs	Ground		
	Analog Comparator Interf	ace - ACIFA	0/1	
AC0AN1/AC0AN0	Negative inputs for comparator AC0A	Analog		
AC0AP1/AC0AP0	Positive inputs for comparator AC0A	Analog		
AC0BN1/AC0BN0	Negative inputs for comparator AC0B	Analog		
AC0BP1/AC0BP0	Positive inputs for comparator AC0B	Analog		
AC1AN1/AC1AN0	Negative inputs for comparator AC1A	Analog		
AC1AP1/AC1AP0	Positive inputs for comparator AC1A	Analog		
AC1BN1/AC1BN0	Negative inputs for comparator AC1B	Analog		
AC1BP1/AC1BP0	Positive inputs for comparator AC1B	Analog		
ACAOUT/ACBOUT	analog comparator outputs	output		
	ADC Interface - A	DCIFA		
ADCIN[15:0]	ADC input pins	Analog		
ADCREF0	Analog positive reference 0 voltage input	Analog		
ADCREF1	Analog positive reference 1 voltage input	Analog		
ADCVREFP	Analog positive reference connected to external capacitor	Analog		

4.3.1 Pipeline Overview

AVR32UC has three pipeline stages, Instruction Fetch (IF), Instruction Decode (ID), and Instruction Execute (EX). The EX stage is split into three parallel subsections, one arithmetic/logic (ALU) section, one multiply (MUL) section, and one load/store (LS) section.

Instructions are issued and complete in order. Certain operations require several clock cycles to complete, and in this case, the instruction resides in the ID and EX stages for the required number of clock cycles. Since there is only three pipeline stages, no internal data forwarding is required, and no data dependencies can arise in the pipeline.

Figure 4-2 on page 28 shows an overview of the AVR32UC pipeline stages.

relative to EVBA. The autovector offset has 14 address bits, giving an offset of maximum 16384 bytes. The target address of the event handler is calculated as (EVBA | event_handler_offset), not (EVBA + event_handler_offset), so EVBA and exception code segments must be set up appropriately. The same mechanisms are used to service all different types of events, including interrupt requests, yielding a uniform event handling scheme.

An interrupt controller does the priority handling of the interrupts and provides the autovector offset to the CPU.

4.5.1 System Stack Issues

Event handling in AVR32UC uses the system stack pointed to by the system stack pointer, SP_SYS, for pushing and popping R8-R12, LR, status register, and return address. Since event code may be timing-critical, SP_SYS should point to memory addresses in the IRAM section, since the timing of accesses to this memory section is both fast and deterministic.

The user must also make sure that the system stack is large enough so that any event is able to push the required registers to stack. If the system stack is full, and an event occurs, the system will enter an UNDEFINED state.

4.5.2 Exceptions and Interrupt Requests

When an event other than *scall* or debug request is received by the core, the following actions are performed atomically:

- 1. The pending event will not be accepted if it is masked. The I3M, I2M, I1M, I0M, EM, and GM bits in the Status Register are used to mask different events. Not all events can be masked. A few critical events (NMI, Unrecoverable Exception, TLB Multiple Hit, and Bus Error) can not be masked. When an event is accepted, hardware automatically sets the mask bits corresponding to all sources with equal or lower priority. This inhibits acceptance of other events of the same or lower priority, except for the critical events listed above. Software may choose to clear some or all of these bits after saving the necessary state if other priority schemes are desired. It is the event source's responsability to ensure that their events are left pending until accepted by the CPU.
- 2. When a request is accepted, the Status Register and Program Counter of the current context is stored to the system stack. If the event is an INT0, INT1, INT2, or INT3, registers R8-R12 and LR are also automatically stored to stack. Storing the Status Register ensures that the core is returned to the previous execution mode when the current event handling is completed. When exceptions occur, both the EM and GM bits are set, and the application may manually enable nested exceptions if desired by clearing the appropriate bit. Each exception handler has a dedicated handler address, and this address uniquely identifies the exception source.
- 3. The Mode bits are set to reflect the priority of the accepted event, and the correct register file bank is selected. The address of the event handler, as shown in Table 4-4 on page 38, is loaded into the Program Counter.

The execution of the event handler routine then continues from the effective address calculated.

The *rete* instruction signals the end of the event. When encountered, the Return Status Register and Return Address Register are popped from the system stack and restored to the Status Register and Program Counter. If the *rete* instruction returns from INT0, INT1, INT2, or INT3, registers R8-R12 and LR are also popped from the system stack. The restored Status Register contains information allowing the core to resume operation in the previous execution mode. This concludes the event handling.

5. Memories

5.1 Embedded Memories

- Internal High-Speed Flash (See Table 5-1 on page 40)
 - 512 Kbytes
 - 256 Kbytes
 - 128 Kbytes
 - 64 Kbytes
 - 0 Wait State Access at up to 33 MHz in Worst Case Conditions
 - 1 Wait State Access at up to 66 MHz in Worst Case Conditions
 - Pipelined Flash Architecture, allowing burst reads from sequential Flash locations, hiding penalty of 1 wait state access
 - Pipelined Flash Architecture typically reduces the cycle penalty of 1 wait state operation to only 15% compared to 0 wait state operation
 - 100 000 Write Cycles, 15-year Data Retention Capability
 - Sector Lock Capabilities, Bootloader Protection, Security Bit
 - 32 Fuses, Erased During Chip Erase
 - User Page For Data To Be Preserved During Chip Erase
- Internal High-Speed SRAM, Single-cycle access at full speed (See Table 5-1 on page 40)
 - 64 Kbytes
 - 32 Kbytes
 - 16 Kbytes
- Supplementary Internal High-Speed System SRAM (HSB RAM), Single-cycle access at full speed
 - Memory space available on System Bus for peripherals data.
 - 4 Kbytes

Figure 7-1. Measurement Schematic

7.4.1 Peripheral Power Consumption

The values in Table 7-5 are measured values of power consumption under the following conditions.

• Operating conditions core supply (Figure 7-1)

 $-V_{VDDIN_5} = V_{DDIN_{33}} = 3.3V$

- $-V_{VDDCORE} = 1.85V$, supplied by the internal regulator
- V_{VDDIO1} = V_{VDDIO2} = V_{VDDIO3} = 3.3V
- $-V_{VDDANA} = 3.3V$
- Internal 3.3V regulator is off.
- TA = 25°C
- I/Os are configured as inputs, with internal pull-up enabled.
- Oscillators
 - OSC0/1 (crystal oscillator) stopped
 - OSC32K (32KHz crystal oscillator) stopped
 - PLL0 running

Table 7-6. Normal I/O Pin Characteristics⁽¹⁾

Symbol	Parameter	Condition		Min	Тур	Max	Units	
			load = 10pF, pin drive $x1^{(2)}$			7.7		
			load = 10pF, pin drive $x2^{(2)}$			3.4		
			load = 10pF, pin drive $x4^{(2)}$			1.9		
		$V_{VDD} = 3.0 V$	load = 30pF, pin drive x1 ⁽²⁾			16	1	
t _{RISE}			load = 30 pF , pin drive $x2^{(2)}$			7.5		
			load = 30 pF , pin drive $x4^{(2)}$			3.8	1	
	Rise time ⁽⁰⁾		load = 10pF, pin drive $x1^{(2)}$			5.3	ns	
			load = 10pF, pin drive $x2^{(2)}$			2.4		
			load = 10pF, pin drive $x4^{(2)}$			1.3		
		V _{VDD} = 4.5V	load = 30pF, pin drive x1 ⁽²⁾			11.1		
			load = 30 pF , pin drive $x2^{(2)}$			5.2		
			load = 30 pF , pin drive $x4^{(2)}$			2.7		
		V _{VDD} = 3.0V	load = 10pF, pin drive x1 ⁽²⁾			7.6	ns	
			load = 10pF, pin drive $x2^{(2)}$			3.5		
			load = 10pF, pin drive $x4^{(2)}$			1.9		
			load = 30pF, pin drive x1 ⁽²⁾			15.8		
			load = 30 pF , pin drive $x2^{(2)}$			7.3		
			load = 30 pF , pin drive $x4^{(2)}$			3.8		
t _{FALL}			load = 10pF, pin drive x1 ⁽²⁾			5.2		
			load = 10pF, pin drive $x2^{(2)}$			2.4		
			load = 10pF, pin drive $x4^{(2)}$			1.4		
		$V_{VDD} = 4.5 V$	load = 30pF, pin drive x1 ⁽²⁾			10.9	1	
			load = 30 pF , pin drive $x2^{(2)}$			5.1		
			load = 30 pF , pin drive $x4^{(2)}$			2.7		
I _{LEAK}	Input leakage current	Pull-up resiste	ors disabled			1.0	μA	
C _{IN}	Input capacitance	PA00-PA29, F PC08-PC31,	PB00-PB31, PC00-PC01, PD00-PD30		7.5		pF	
		PC02, PC03, PC04, PC05, PC06, PC07			2		۲'	

Note: 1. V_{VDD} corresponds to either V_{VDDIO1}, V_{VDDIO2}, V_{VDDIO3}, or V_{VDDANA}, depending on the supply for the pin. Refer to Section 3-1 on page 11 for details.

drive x1 capability pins are: PB00, PB01, PB02, PB03, PB30, PB31, PC02, PC03, PC04, PC05, PC06, PC07 - drive x2 /x4 capability pins are: PB06, PB21, PB26, PD02, PD06, PD13 - drive x1/x2 capability pins are the remaining PA, PB, PC, PD pins. The drive strength is programmable through ODCR0, ODCR0S, ODCR0C, ODCR0T registers of GPIO.

3. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

7.8 Analog Characteristics

7.8.1 1.8V Voltage Regulator Characteristics

 Table 7-18.
 1.8V Voltage Regulator Electrical Characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Units	
V _{VDDIN_5}		5V range	4.5		5.5		
	input voltage range	3V range	3.0		3.6	V	
V _{VDDCORE}	Output voltage, calibrated value			1.85		V	
I _{OUT}	DC output current				80	mA	

Table 7-19. Decoupling Requirements

Symbol	Parameter	Condition	Тур	Techno.	Units
C _{IN1}	Input regulator capacitor 1		1	NPO	nF
C _{IN2}	Input regulator capacitor 2		4.7	X7R	uF
C _{OUT1}	Output regulator capacitor 1		470	NPO	pf
C _{OUT2}	Output regulator capacitor 2		2.2	X7R	uF

7.8.2 3.3V Voltage Regulator Characteristics

 Table 7-20.
 3.3V Voltage Regulator Electrical Characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{VDDIN_5}	Input voltage range		4.5		5.5	V
V _{VDDIN_33}	Output voltage, calibrated value			3.4		V
I _{OUT}	DC output current				35	mA
I _{VREG}	Static current of regulator	Low power mode		10		μA

7.8.3 1.8V Brown Out Detector (BOD18) Characteristics

The values in Table 7-21 describe the values of the BOD.LEVEL in the SCIF module.

Table 7-21.	BODLEVEL	Values
-------------	----------	--------

BODLEVEL Value	Parameter	Min	Max	Units
0		1.29	1.58	
20		1.36	1.63	
26	threshold at power-up sequence	1.42	1.69	
28		1.43	1.72	V
32		1.48	1.77	
36		1.53	1.82	
40		1.56	1.88	

Symbol	Parameter	Conditions	Min	Тур	Max	Units
RES	Resolution	Differential mode,			10	Bit
INL	Integral Non-Linearity	$V_{VDDANA} = 5V,$			1.5	LSB
DNL	Differential Non-Linearity	$V_{ADCREF0} = 3V,$			1.5	LSB
	Offset error		-25		25	mV
	Gain error	$(F_{adc} = 1.5 MHz)$	-15		15	mV

Table 7-36. ADC and S/H Transfer Characteristics (Continued)10-bit Resolution Mode and S/H gain from 1 to 16⁽¹⁾

Note: 1. The measures are done without any I/O activity on VDDANA/GNDANA power domain.

7.8.7 Digital to Analog Converter (DAC) Characteristics

 Table 7-37.
 Channel Conversion Time and DAC Clock

Symbol	Parameter	Conditions	Min	Тур	Max	Units
f _{DAC}	DAC clock frequency				1	MHz
t _{STARTUP}	Startup time				3	μs
		No S/H enabled, internal DAC			1	μs
t _{CONV}	Conversion time (latency)	One S/H			1.5	μs
		Two S/H			2	μs
	Throughput rate				1/t _{CONV}	MSPS

Table 7-38. External Voltage Reference Input

Symbol	Parameter	Conditions	Min	Тур	Мах	Units
V _{DACREF}	DACREF input voltage range		1.2		V _{VDDANA} -0.7	V

Table 7-39. DAC Outputs

Symbol	Parameter	Conditions	Min	Тур	Max	Units
		with external DAC reference	0.2		VDACREF	V
	Output lange	with internal DAC reference	0.2		V _{VDDANA} -0.7	v
C _{LOAD}	Output capacitance		0		100	pF
R _{LOAD}	Output resitance		2			kΩ

Maximum SPI Frequency, Master Output

The maximum SPI master output frequency is given by the following formula:

$$f_{SPCKMAX} = MIN(f_{PINMAX}, \frac{1}{SPIn}, \frac{f_{CLKSPI} \times 2}{9})$$

Where *SPIn* is the MOSI delay, USPI2 or USPI5 depending on CPOL and NCPHA. f_{PINMAX} is the maximum frequency of the SPI pins. Please refer to the I/O Pin Characteristics section for the maximum frequency of the pins. f_{CLKSPI} is the maximum frequency of the CLK_SPI. Refer to the SPI chapter for a description of this clock.

Maximum SPI Frequency, Master Input

The maximum SPI master input frequency is given by the following formula:

$$f_{SPCKMAX} = MIN(\frac{1}{SPIn + t_{VALID}}, \frac{f_{CLKSPI} \times 2}{9})$$

Where *SPIn* is the MISO setup and hold time, USPI0 + USPI1 or USPI3 + USPI4 depending on CPOL and NCPHA. T_{VALID} is the SPI slave response time. Please refer to the SPI slave datasheet for T_{VALID} . f_{CLKSPI} is the maximum frequency of the CLK_SPI. Refer to the SPI chapter for a description of this clock.

7.9.3.2 Slave mode

Figure 7-9. USART in SPI Slave Mode With (CPOL= CPHA= 0) or (CPOL= CPHA= 1)

 Table 7-47.
 USART in SPI mode Timing, Slave Mode⁽¹⁾

Symbol	Parameter	Conditions	Min	Мах	Units
USPI6	SPCK falling to MISO delay			27	ns
USPI7	MOSI setup time before SPCK rises		$t_{SAMPLE}^{(2)} + t_{CLK_USART}$		ns
USPI8	MOSI hold time after SPCK rises		0		ns
USPI9	SPCK rising to MISO delay			28	ns
USPI10	MOSI setup time before SPCK falls	external	$t_{SAMPLE}^{(2)} + t_{CLK_USART}$		ns
USPI11	MOSI hold time after SPCK falls	40pF	0		ns
USPI12	NSS setup time before SPCK rises		33		ns
USPI13	NSS hold time after SPCK falls		0		ns
USPI14	NSS setup time before SPCK falls		33		ns
USPI15	NSS hold time after SPCK rises		0		ns

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

2. Where:
$$t_{SAMPLE} = t_{SPCK} - \left(\left\lfloor \frac{t_{SPCK}}{2 \times t_{CLKUSART}} \right\rfloor + \frac{1}{2} \right) \times t_{CLKUSART}$$

TWIM and TWIS user interface registers. Please refer to the TWIM and TWIS sections for more information.

Table 7-50. **TWI-Bus Timing Requirements**

			Minin	num	Maximum		
Symbol	Parameter	Mode	Requirement	Device	Requirement	Device	Unit
		Standard ⁽¹⁾	-		10	00	
t _r	TWCK and TWD rise time	Fast ⁽¹⁾	20 + 0	.1 C _b	300		ns
		Standard ⁽¹⁾	-		30	0	
t _f	TWCK and TWD fall time	Fast ⁽¹⁾	20 + 0	.1 C _b	30	0	ns
		Standard ⁽¹⁾	4.0				
t _{HD-STA}	(Repeated) START hold time	Fast ⁽¹⁾	0.6	t _{clkpb}	-		μS
		Standard ⁽¹⁾	4.7				
t _{SU-STA}	(Repeated) START set-up time	Fast ⁽¹⁾	0.6	t _{clkpb}	-		μS
		Standard ⁽¹⁾	4.0		-		
t _{SU-STO}	STOP set-up time	Fast ⁽¹⁾	0.6	4t _{clkpb}			μs
	Data hold time	Standard ⁽¹⁾	0.0(2)	2t _{clkpb}	3.45	00	
t _{HD-DAT}		Fast ⁽¹⁾	0.3(2)		0.9	??	μS
	Data ant un time -	Standard ⁽¹⁾	250	01			
t _{SU-DAT-I2C}	Data set-up time	Fast ⁽¹⁾	100	2t _{clkpb}	-		ns
t _{SU-DAT}		-	-	t _{clkpb}	-		-
	TMOK LOW Pariad	Standard ⁽¹⁾	4.7	44			
LOW-I2C	TWCK LOW period	Fast ⁽¹⁾	1.3	4t _{clkpb}	-		μs
t _{LOW}		-	-	t _{clkpb}	-		-
	TWOKLICLING	Standard ⁽¹⁾	4.0	04			
^t HIGH	TWCK HIGH period	Fast ⁽¹⁾	0.6	8t _{clkpb}	-		μs
£		Standard ⁽¹⁾		1	100	1	
TWCK		Fast ⁽¹⁾	-		400	^{12t} clkpb	KEIZ

Notes: 1. Standard mode: $f_{TWCK} \le 100 \text{ kHz}$; fast mode: $f_{TWCK} > 100 \text{ kHz}$. 2. A device must internally provide a hold time of at least 300 ns for TWD with reference to the falling edge of TWCK.

Notations:

C_b = total capacitance of one bus line in pF

 t_{clkpb} = period of TWI peripheral bus clock

 $t_{prescaled}$ = period of TWI internal prescaled clock (see chapters on TWIM and TWIS)

The maximum $t_{HD;DAT}$ has only to be met if the device does not stretch the LOW period ($t_{LOW-I2C}$) of TWCK.

Symbol	Parameter	Conditions	Min.	Max.	Unit
MAC ₂₁	TX_EN toggling from TX_CLK rising		11.7	12.5	ns
MAC ₂₂	TXD toggling from TX_CLK rising	-	11.7	12.5	ns
MAC ₂₃	Setup for RXD from TX_CLK	V _{VDD} = 3.0V,	4.5		ns
MAC ₂₄	Hold for RXD from TX_CLK	drive strength of the pads set to the	0		ns
MAC ₂₅	Setup for RX_ER from TX_CLK	external capacitor = 10pF on MACB	3.4		ns
MAC ₂₆	Hold for RX_ER from TX_CLK	pins	0		ns
MAC ₂₇	Setup for RX_DV from TX_CLK		4.4		ns
MAC ₂₈	Hold for RX_DV from TX_CLK		0		ns

Table 7-61. Ethernet MAC RMII Specific Signals⁽¹⁾

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

8. Mechanical Characteristics

8.1 Thermal Considerations

8.1.1 Thermal Data

Table 8-1 summarizes the thermal resistance data depending on the package.

Symbol	Parameter	Condition	Package	Тур	Unit
θ_{JA}	Junction-to-ambient thermal resistance	No air flow	QFN64	20.0	°C/M
θ_{JC}	Junction-to-case thermal resistance		QFN64	0.8	-0/00
θ_{JA}	Junction-to-ambient thermal resistance	No air flow	TQFP64	40.5	00444
θ_{JC}	Junction-to-case thermal resistance		TQFP64	8.7	-0/00
θ_{JA}	Junction-to-ambient thermal resistance	No air flow	TQFP100	39.3	°C/M
θ_{JC}	Junction-to-case thermal resistance		TQFP100	8.5	-0/00
θ_{JA}	Junction-to-ambient thermal resistance	No air flow	LQFP144	38.1	00444
θ_{JC}	Junction-to-case thermal resistance		LQFP144	8.4	°C/w

 Table 8-1.
 Thermal Resistance Data

8.1.2 Junction Temperature

The average chip-junction temperature, T_J, in °C can be obtained from the following:

1.
$$T_J = T_A + (P_D \times \theta_{JA})$$

2. $T_J = T_A + (P_D \times (\theta_{HEATSINK} + \theta_{JC}))$

where:

- θ_{JA} = package thermal resistance, Junction-to-ambient (°C/W), provided in Table 8-1 on page 90.
- θ_{JC} = package thermal resistance, Junction-to-case thermal resistance (°C/W), provided in Table 8-1 on page 90.
- $\theta_{HEAT SINK}$ = cooling device thermal resistance (°C/W), provided in the device datasheet.
- P_D = device power consumption (W) estimated from data provided in the section "Power Consumption" on page 51.
- T_A = ambient temperature (°C).

From the first equation, the user can derive the estimated lifetime of the chip and decide if a cooling device is necessary or not. If a cooling device is to be fitted on the chip, the second equation should be used to compute the resulting average chip-junction temperature T_J in °C.

Figure 8-3. TQFP-100 package drawing

SYMBOL	Min Max		NDTES				
А	1. 20						
A1	0, 95	1. 05					
С	0, 09	0, 20					
D	16. 0						
D 1	14.0						
E	16. 0						
E1	14.0						
J	0. 05	0.15					
L	0.45	0, 75					
e	0, 5						
f	0.17	0. 27					

Table 8-8. Device and Package Maximum Weight

500	mg

Table 8-9. Package Characteristics

Moisture Sensitivity Level	Jdec J-STD0-20D - MSL 3
----------------------------	-------------------------

Table 8-10. Package Reference

JEDEC Drawing Reference	MS-026
JESD97 Classification	E3

10. Errata

10.1 rev E

10.1.1 ADCIFA

1 ADCREFP/ADCREFN can not be selected as an external ADC reference by setting the ADCIFA.CFG.EXREF bit to one Fix/Workaround

A voltage reference can be applied on ADCREFP/ADCREFN pins if the ADCIFA.CFG.EXREF bit is set to zero, the ADCIFA.CFG.RS bit is set to zero and the voltage reference applied on ADCREFP/ADCREFN pins is higher than the internal 1V reference.

10.1.2 AST

1 AST wake signal is released one AST clock cycle after the BUSY bit is cleared After writing to the Status Clear Register (SCR) the wake signal is released one AST clock cycle after the BUSY bit in the Status Register (SR.BUSY) is cleared. If entering sleep mode directly after the BUSY bit is cleared the part will wake up immediately. Fix/Workaround

Read the Wake Enable Register (WER) and write this value back to the same register. Wait for BUSY to clear before entering sleep mode.

10.1.3 aWire

1 aWire MEMORY_SPEED_REQUEST command does not return correct CV

The aWire MEMORY_SPEED_REQUEST command does not return a CV corresponding to the formula in the aWire Debug Interface chapter.

Fix/Workaround

Issue a dummy read to address 0x10000000 before issuing the MEMORY_SPEED_REQUEST command and use this formula instead:

$$f_{sab} = \frac{7f_{aw}}{CV-3}$$

10.1.4 Power Manager

1 TWIS may not wake the device from sleep mode

If the CPU is put to a sleep mode (except Idle and Frozen) directly after a TWI Start condition, the CPU may not wake upon a TWIS address match. The request is NACKed. **Fix/Workaround**

When using the TWI address match to wake the device from sleep, do not switch to sleep modes deeper than Frozen. Another solution is to enable asynchronous EIC wake on the TWIS clock (TWCK) or TWIS data (TWD) pins, in order to wake the system up on bus events.

10.2 rev D

10.2.1 ADCIFA

1 ADCREFP/ADCREFN can not be selected as an external ADC reference by setting the ADCIFA.CFG.EXREF bit to one Fix/Workaround

A voltage reference can be applied on ADCREFP/ADCREFN pins if the ADCIFA.CFG.EXREF bit is set to zero, the ADCIFA.CFG.RS bit is set to zero and the voltage reference applied on ADCREFP/ADCREFN pins is higher than the internal 1V reference.

10.2.2 AST

1 AST wake signal is released one AST clock cycle after the BUSY bit is cleared After writing to the Status Clear Register (SCR) the wake signal is released one AST clock cycle after the BUSY bit in the Status Register (SR.BUSY) is cleared. If entering sleep mode directly after the BUSY bit is cleared the part will wake up immediately. Fix/Workaround Read the Wake Enable Register (WER) and write this value back to the same register. Wait

Read the Wake Enable Register (WER) and write this value back to the same register. Wait for BUSY to clear before entering sleep mode.

10.2.3 aWire

1 aWire MEMORY_SPEED_REQUEST command does not return correct CV The aWire MEMORY_SPEED_REQUEST command does not return a CV corresponding to

the formula in the aWire Debug Interface chapter.

Fix/Workaround

Issue a dummy read to address 0x10000000 before issuing the MEMORY_SPEED_REQUEST command and use this formula instead:

$$f_{sab} = \frac{7f_{aw}}{CV-3}$$

10.2.4 GPIO

1 Clearing Interrupt flags can mask other interrupts

When clearing interrupt flags in a GPIO port, interrupts on other pins of that port, happening in the same clock cycle will not be registered.

Fix/Workaround

Read the PVR register of the port before and after clearing the interrupt to see if any pin change has happened while clearing the interrupt. If any change occurred in the PVR between the reads, they must be treated as an interrupt.

10.2.5 Power Manager

1 Clock Failure Detector (CFD) can be issued while turning off the CFD

While turning off the CFD, the CFD bit in the Status Register (SR) can be set. This will change the main clock source to RCSYS.

Fix/Workaround

Solution 1: Enable CFD interrupt. If CFD interrupt is issues after turning off the CFD, switch back to original main clock source.

Solution 2: Only turn off the CFD while running the main clock on RCSYS.

AT32UC3C

	7.9	Timing Characteristics	70
8	Mecha	nical Characteristics	90
	8.1	Thermal Considerations	90
	8.2	Package Drawings	91
	8.3	Soldering Profile	95
9	Orderii	ng Information	96
10	Errata		97
	10.1	rev E	97
	10.2	rev D	101
11	11 Datasheet Revision History		106
	11.1	Rev. D – 01/12	106
	11.2	Rev. C – 08/11	106
	11.3	Rev. B – 03/11	106
	11.4	Rev. A – 10/10	107

