
Microchip Technology - AT32UC3C264C-Z2UR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 32-Bit Single-Core

Speed 66MHz

Connectivity CANbus, Ethernet, I²C, IrDA, LINbus, SPI, UART/USART, USB

Peripherals Brown-out Detect/Reset, DMA, I²S, POR, PWM, WDT

Number of I/O 45

Program Memory Size 64KB (64K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 16K x 8

Voltage - Supply (Vcc/Vdd) 3V ~ 5.5V

Data Converters A/D 11x12b; D/A 2x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 64-VFQFN Exposed Pad

Supplier Device Package 64-QFN (9x9)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/at32uc3c264c-z2ur

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/at32uc3c264c-z2ur-4413251
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

7
32117DS–AVR-01/12

AT32UC3C

Analog Comparators 4 4 2

JTAG 1

aWire 1

Max Frequency 66 MHz

Package LQFP144 TQFP100 TQFP64/QFN64

Table 2-1. Configuration Summary

Feature

AT32UC3C0512C/
AT32UC3C0256C/
AT32UC3C0128C/
AT32UC3C064C

AT32UC3C1512C/
AT32UC3C1256C/
AT32UC3C1128C/
AT32UC3C164C

AT32UC3C2512C/
AT32UC3C2256C/
AT32UC3C2128C/
AT32UC3C264C

18
32117DS–AVR-01/12

AT32UC3C

depending on the configuration of the OCD AXS register. For details, see the AVR32UC Techni-
cal Reference Manual.

3.2.6 Other Functions
The functions listed in Table 3-6 are not mapped to the normal GPIO functions. The aWire DATA
pin will only be active after the aWire is enabled. The aWire DATAOUT pin will only be active
after the aWire is enabled and the 2_PIN_MODE command has been sent.

3.3 Signals Description
The following table give details on the signal name classified by peripherals.

Table 3-5. Nexus OCD AUX port connections

Pin AXS=0 AXS=1 AXS=2

EVTI_N PA08 PB19 PA10

MDO[5] PC05 PC31 PB06

MDO[4] PC04 PC12 PB15

MDO[3] PA23 PC11 PB14

MDO[2] PA22 PB23 PA27

MDO[1] PA19 PB22 PA26

MDO[0] PA09 PB20 PA19

EVTO_N PD29 PD29 PD29

MCKO PD13 PB21 PB26

MSEO[1] PD30 PD08 PB25

MSEO[0] PD14 PD07 PB18

Table 3-6. Other Functions

QFN64/
TQFP64 pin TQFP100 pin LQFP144 pin Pad Oscillator pin

64 98 142 RESET_N aWire DATA

3 3 3 PA02 aWire DATAOUT

Table 3-7. Signal Description List

Signal Name Function Type
Active
Level Comments

Power

VDDIO1
VDDIO2

VDDIO3

I/O Power Supply
Power
Input

4.5V to 5.5V
or

3.0V to 3.6 V

VDDANA Analog Power Supply
Power
Input

4.5V to 5.5V

or

3.0V to 3.6 V

27
32117DS–AVR-01/12

AT32UC3C

Figure 4-1. Overview of the AVR32UC CPU

4.3.1 Pipeline Overview
AVR32UC has three pipeline stages, Instruction Fetch (IF), Instruction Decode (ID), and Instruc-
tion Execute (EX). The EX stage is split into three parallel subsections, one arithmetic/logic
(ALU) section, one multiply (MUL) section, and one load/store (LS) section.

Instructions are issued and complete in order. Certain operations require several clock cycles to
complete, and in this case, the instruction resides in the ID and EX stages for the required num-
ber of clock cycles. Since there is only three pipeline stages, no internal data forwarding is
required, and no data dependencies can arise in the pipeline.

Figure 4-2 on page 28 shows an overview of the AVR32UC pipeline stages.

AVR32UC CPU pipeline

Instruction memory controller

MPU

H
ig

h
Sp

ee
d

Bu
s

H
ig

h
Sp

ee
d

Bu
s

OCD
system

O
C

D
 in

te
rfa

ce

In
te

rru
pt

 c
on

tro
lle

r i
nt

er
fa

ce

High
Speed

Bus slave

H
ig

h
Sp

ee
d

Bu
s

High Speed Bus master

Power/
Reset
control

R
es

et
 in

te
rfa

ce

CPU Local
Bus

master

C
P

U
 L

oc
al

 B
us

Data memory controller

CPU RAMHigh Speed
Bus master

34
32117DS–AVR-01/12

AT32UC3C

4.5 Exceptions and Interrupts
In the AVR32 architecture, events are used as a common term for exceptions and interrupts.
AVR32UC incorporates a powerful event handling scheme. The different event sources, like Ille-
gal Op-code and interrupt requests, have different priority levels, ensuring a well-defined
behavior when multiple events are received simultaneously. Additionally, pending events of a
higher priority class may preempt handling of ongoing events of a lower priority class.

When an event occurs, the execution of the instruction stream is halted, and execution is passed
to an event handler at an address specified in Table 4-4 on page 38. Most of the handlers are
placed sequentially in the code space starting at the address specified by EVBA, with four bytes
between each handler. This gives ample space for a jump instruction to be placed there, jump-
ing to the event routine itself. A few critical handlers have larger spacing between them, allowing
the entire event routine to be placed directly at the address specified by the EVBA-relative offset
generated by hardware. All interrupt sources have autovectored interrupt service routine (ISR)
addresses. This allows the interrupt controller to directly specify the ISR address as an address

90 360 MPUPSR2 MPU Privilege Select Register region 2

91 364 MPUPSR3 MPU Privilege Select Register region 3

92 368 MPUPSR4 MPU Privilege Select Register region 4

93 372 MPUPSR5 MPU Privilege Select Register region 5

94 376 MPUPSR6 MPU Privilege Select Register region 6

95 380 MPUPSR7 MPU Privilege Select Register region 7

96 384 MPUCRA Unused in this version of AVR32UC

97 388 MPUCRB Unused in this version of AVR32UC

98 392 MPUBRA Unused in this version of AVR32UC

99 396 MPUBRB Unused in this version of AVR32UC

100 400 MPUAPRA MPU Access Permission Register A

101 404 MPUAPRB MPU Access Permission Register B

102 408 MPUCR MPU Control Register

103 412 SS_STATUS Secure State Status Register

104 416 SS_ADRF Secure State Address Flash Register

105 420 SS_ADRR Secure State Address RAM Register

106 424 SS_ADR0 Secure State Address 0 Register

107 428 SS_ADR1 Secure State Address 1 Register

108 432 SS_SP_SYS Secure State Stack Pointer System Register

109 436 SS_SP_APP Secure State Stack Pointer Application Register

110 440 SS_RAR Secure State Return Address Register

111 444 SS_RSR Secure State Return Status Register

112-191 448-764 Reserved Reserved for future use

192-255 768-1020 IMPL IMPLEMENTATION DEFINED

Table 4-3. System Registers (Continued)

Reg # Address Name Function

36
32117DS–AVR-01/12

AT32UC3C

4.5.3 Supervisor Calls
The AVR32 instruction set provides a supervisor mode call instruction. The scall instruction is
designed so that privileged routines can be called from any context. This facilitates sharing of
code between different execution modes. The scall mechanism is designed so that a minimal
execution cycle overhead is experienced when performing supervisor routine calls from time-
critical event handlers.

The scall instruction behaves differently depending on which mode it is called from. The behav-
iour is detailed in the instruction set reference. In order to allow the scall routine to return to the
correct context, a return from supervisor call instruction, rets, is implemented. In the AVR32UC
CPU, scall and rets uses the system stack to store the return address and the status register.

4.5.4 Debug Requests
The AVR32 architecture defines a dedicated Debug mode. When a debug request is received by
the core, Debug mode is entered. Entry into Debug mode can be masked by the DM bit in the
status register. Upon entry into Debug mode, hardware sets the SR.D bit and jumps to the
Debug Exception handler. By default, Debug mode executes in the exception context, but with
dedicated Return Address Register and Return Status Register. These dedicated registers
remove the need for storing this data to the system stack, thereby improving debuggability. The
Mode bits in the Status Register can freely be manipulated in Debug mode, to observe registers
in all contexts, while retaining full privileges.

Debug mode is exited by executing the retd instruction. This returns to the previous context.

4.5.5 Entry Points for Events
Several different event handler entry points exist. In AVR32UC, the reset address is
0x80000000. This places the reset address in the boot flash memory area.

TLB miss exceptions and scall have a dedicated space relative to EVBA where their event han-
dler can be placed. This speeds up execution by removing the need for a jump instruction placed
at the program address jumped to by the event hardware. All other exceptions have a dedicated
event routine entry point located relative to EVBA. The handler routine address identifies the
exception source directly.

AVR32UC uses the ITLB and DTLB protection exceptions to signal a MPU protection violation.
ITLB and DTLB miss exceptions are used to signal that an access address did not map to any of
the entries in the MPU. TLB multiple hit exception indicates that an access address did map to
multiple TLB entries, signalling an error.

All interrupt requests have entry points located at an offset relative to EVBA. This autovector off-
set is specified by an interrupt controller. The programmer must make sure that none of the
autovector offsets interfere with the placement of other code. The autovector offset has 14
address bits, giving an offset of maximum 16384 bytes.

Special considerations should be made when loading EVBA with a pointer. Due to security con-
siderations, the event handlers should be located in non-writeable flash memory, or optionally in
a privileged memory protection region if an MPU is present.

If several events occur on the same instruction, they are handled in a prioritized way. The priority
ordering is presented in Table 4-4 on page 38. If events occur on several instructions at different
locations in the pipeline, the events on the oldest instruction are always handled before any
events on any younger instruction, even if the younger instruction has events of higher priority

40
32117DS–AVR-01/12

AT32UC3C

5.2 Physical Memory Map
The system bus is implemented as a bus matrix. All system bus addresses are fixed, and they
are never remapped in any way, not even in boot. Note that AVR32UC CPU uses unsegmented
translation, as described in the AVR32 Architecture Manual. The 32-bit physical address space
is mapped as follows:

Table 5-1. AT32UC3C Physical Memory Map

Device
Start Address

AT32UC3 Derivatives

C0512C
C1512C
C2512C

C0256C
C1256C
C2256C

C0128C
C1128C
C2128C

C064C
C164C
C264C

Embedded
SRAM

0x0000_0000 64 KB 64 KB 64 KB 64 KB 32 KB 32 KB 16 KB 16 KB

Embedded
Flash

0x8000_0000 512 KB 512 KB 256 KB 256 KB 128 KB 128 KB 64 KB 64 KB

SAU 0x9000_0000 1 KB 1 KB 1 KB 1 KB 1 KB 1 KB 1 KB 1 KB

HSB
SRAM

0xA000_0000 4 KB 4 KB 4 KB 4 KB 4 KB 4 KB 4 KB 4 KB

EBI SRAM
CS0

0xC000_0000 16 MB - 16 MB - 16 MB - 16 MB -

EBI SRAM
CS2

0xC800_0000 16 MB - 16 MB - 16 MB - 16 MB -

EBI SRAM
CS3

0xCC00_0000 16 MB - 16 MB - 16 MB - 16 MB -

EBI SRAM

/SDRAM
CS1

0xD000_0000 128 MB - 128 MB - 128 MB - 128 MB -

HSB-PB
Bridge C

0xFFFD_0000 64 KB 64 KB 64 KB 64 KB 64 KB 64 KB 64 KB 64 KB

HSB-PB
Bridge B

0xFFFE_0000 64 KB 64 KB 64 KB 64 KB 64 KB 64 KB 64 KB 64 KB

HSB-PB
Bridge A

0xFFFF_0000 64 KB 64 KB 64 KB 64 KB 64 KB 64 KB 64 KB 64 KB

42
32117DS–AVR-01/12

AT32UC3C

0xFFFE0000
HFLASHC Flash Controller - HFLASHC

0xFFFE1000
USBC USB 2.0 OTG Interface - USBC

0xFFFE2000
HMATRIX HSB Matrix - HMATRIX

0xFFFE2400
SAU Secure Access Unit - SAU

0xFFFE2800
SMC Static Memory Controller - SMC

0xFFFE2C00
SDRAMC SDRAM Controller - SDRAMC

0xFFFE3000
MACB Ethernet MAC - MACB

0xFFFF0000
INTC Interrupt controller - INTC

0xFFFF0400
PM Power Manager - PM

0xFFFF0800
SCIF System Control Interface - SCIF

0xFFFF0C00
AST Asynchronous Timer - AST

0xFFFF1000
WDT Watchdog Timer - WDT

0xFFFF1400
EIC External Interrupt Controller - EIC

0xFFFF1800
FREQM Frequency Meter - FREQM

0xFFFF2000
GPIO General Purpose Input/Output Controller - GPIO

0xFFFF2800
USART0

Universal Synchronous/Asynchronous
Receiver/Transmitter - USART0

0xFFFF2C00
USART2

Universal Synchronous/Asynchronous
Receiver/Transmitter - USART2

0xFFFF3000
USART3

Universal Synchronous/Asynchronous
Receiver/Transmitter - USART3

0xFFFF3400
SPI1 Serial Peripheral Interface - SPI1

Table 5-3. Peripheral Address Mapping

44
32117DS–AVR-01/12

AT32UC3C

The following GPIO registers are mapped on the local bus:

Table 5-4. Local bus mapped GPIO registers

Port Register Mode
Local Bus
Address Access

A Output Driver Enable Register (ODER) WRITE 0x40000040 Write-only

SET 0x40000044 Write-only

CLEAR 0x40000048 Write-only

TOGGLE 0x4000004C Write-only

Output Value Register (OVR) WRITE 0x40000050 Write-only

SET 0x40000054 Write-only

CLEAR 0x40000058 Write-only

TOGGLE 0x4000005C Write-only

Pin Value Register (PVR) - 0x40000060 Read-only

B Output Driver Enable Register (ODER) WRITE 0x40000140 Write-only

SET 0x40000144 Write-only

CLEAR 0x40000148 Write-only

TOGGLE 0x4000014C Write-only

Output Value Register (OVR) WRITE 0x40000150 Write-only

SET 0x40000154 Write-only

CLEAR 0x40000158 Write-only

TOGGLE 0x4000015C Write-only

Pin Value Register (PVR) - 0x40000160 Read-only

C Output Driver Enable Register (ODER) WRITE 0x40000240 Write-only

SET 0x40000244 Write-only

CLEAR 0x40000248 Write-only

TOGGLE 0x4000024C Write-only

Output Value Register (OVR) WRITE 0x40000250 Write-only

SET 0x40000254 Write-only

CLEAR 0x40000258 Write-only

TOGGLE 0x4000025C Write-only

Pin Value Register (PVR) - 0x40000260 Read-only

50
32117DS–AVR-01/12

AT32UC3C

7. Electrical Characteristics

7.1 Absolute Maximum Ratings*

Notes: 1. VVDD corresponds to either VVDDIO1, VVDDIO2, VVDDIO3, or VVDDANA, depending on the supply for the pin. Refer to Section 3-1
on page 11 for details.

7.2 Supply Characteristics

The following characteristics are applicable to the operating temperature range: TA = -40°C to 85°C, unless otherwise spec-
ified and are valid for a junction temperature up to TJ = 100°C. Please refer to Section 6. ”Supply and Startup
Considerations” on page 46.

Operating temperature..................................... -40°C to +85°C *NOTICE: Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and
functional operation of the device at these or
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect
device reliability.

Storage temperature...................................... -60°C to +150°C

Voltage on any pin except DM/DP/VBUS
with respect to ground -0.3V to VVDD

(1)+0.3V

Voltage on DM/DP with respect to ground.........-0.3V to +3.6V

Voltage on VBUS with respect to ground...........-0.3V to +5.5V

Maximum operating voltage (VDDIN_5) 5.5V

Maximum operating voltage (VDDIO1, VDDIO2, VDDIO3,
VDDANA).. 5.5V

Maximum operating voltage (VDDIN_33) 3.6V

Total DC output current on all I/O pins- VDDIO1 120 mA

Total DC output current on all I/O pins- VDDIO2 120 mA

Total DC output current on all I/O pins- VDDIO3 120 mA

Total DC output current on all I/O pins- VDDANA........ 120 mA

Table 7-1. Supply Characteristics

Symbol Parameter Condition

Voltage

Min Max Unit

VVDDIN_5 DC supply internal regulators
3V range 3.0 3.6

V
5V range 4.5 5.5

VVDDIN_33 DC supply USB I/O only in 3V range 3.0 3.6 V

VVDDANA
DC supply peripheral I/O and
analog part

3V range 3.0 3.6
V

5V range 4.5 5.5

VVDDIO1

VVDDIO2

VVDDIO2

DC supply peripheral I/O

3V range 3.0 3.6

V
5V range 4.5 5.5

54
32117DS–AVR-01/12

AT32UC3C

– PLL1 stopped

• Clocks

– External clock on XIN0 as main clock source.

– CPU, HSB, and PB clocks undivided

Consumption active is the added current consumption when the module clock is turned on and
when the module is doing a typical set of operations.

Notes: 1. Includes the current consumption on VDDANA.

2. These numbers are valid for the measured condition only and must not be extrapolated to
other frequencies.

Table 7-5. Typical Current Consumption by Peripheral(2)

Peripheral Typ Consumption Active Unit

ACIFA(1) 3

µA/MHz

ADCIFA(1) 7

AST 3

CANIF 25

DACIFB(1) 3

EBI 23

EIC 0.5

FREQM 0.5

GPIO 37

INTC 3

MDMA 4

PDCA 24

PEVC 15

PWM 40

QDEC 3

SAU 3

SDRAMC 2

SMC 9

SPI 5

TC 8

TWIM 2

TWIS 2

USART 10

USBC 5

WDT 2

56
32117DS–AVR-01/12

AT32UC3C

Note: 1. VVDD corresponds to either VVDDIO1, VVDDIO2, VVDDIO3, or VVDDANA, depending on the supply for the pin. Refer to Section 3-1
on page 11 for details.

2. drive x1 capability pins are: PB00, PB01, PB02, PB03, PB30, PB31, PC02, PC03, PC04, PC05, PC06, PC07 - drive x2 /x4
capability pins are: PB06, PB21, PB26, PD02, PD06, PD13 - drive x1/x2 capability pins are the remaining PA, PB, PC, PD
pins. The drive strength is programmable through ODCR0, ODCR0S, ODCR0C, ODCR0T registers of GPIO.

3. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same pro-
cess technology. These values are not covered by test limits in production.

tRISE Rise time(3)

VVDD = 3.0V

load = 10pF, pin drive x1(2) 7.7

ns

load = 10pF, pin drive x2(2) 3.4

load = 10pF, pin drive x4(2) 1.9

load = 30pF, pin drive x1(2) 16

load = 30pF, pin drive x2(2) 7.5

load = 30pF, pin drive x4(2) 3.8

VVDD = 4.5V

load = 10pF, pin drive x1(2) 5.3

load = 10pF, pin drive x2(2) 2.4

load = 10pF, pin drive x4(2) 1.3

load = 30pF, pin drive x1(2) 11.1

load = 30pF, pin drive x2(2) 5.2

load = 30pF, pin drive x4(2) 2.7

tFALL Fall time(3)

VVDD = 3.0V

load = 10pF, pin drive x1(2) 7.6

ns

load = 10pF, pin drive x2(2) 3.5

load = 10pF, pin drive x4(2) 1.9

load = 30pF, pin drive x1(2) 15.8

load = 30pF, pin drive x2(2) 7.3

load = 30pF, pin drive x4(2) 3.8

VVDD = 4.5V

load = 10pF, pin drive x1(2) 5.2

load = 10pF, pin drive x2(2) 2.4

load = 10pF, pin drive x4(2) 1.4

load = 30pF, pin drive x1(2) 10.9

load = 30pF, pin drive x2(2) 5.1

load = 30pF, pin drive x4(2) 2.7

ILEAK Input leakage current Pull-up resistors disabled 1.0 µA

CIN Input capacitance

PA00-PA29, PB00-PB31, PC00-PC01,
PC08-PC31, PD00-PD30

7.5
pF

PC02, PC03, PC04, PC05, PC06, PC07 2

Table 7-6. Normal I/O Pin Characteristics(1)

Symbol Parameter Condition Min Typ Max Units

59
32117DS–AVR-01/12

AT32UC3C

7.6.3 Phase Lock Loop (PLL0 and PLL1) Characteristics

7.6.4 120MHz RC Oscillator (RC120M) Characteristics

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same pro-
cess technology. These values are not covered by test limits in production.

7.6.5 System RC Oscillator (RCSYS) Characteristics

7.6.6 8MHz/1MHz RC Oscillator (RC8M) Characteristics

Notes: 1. Please refer to the SCIF chapter for details.

Table 7-11. PLL Characteristics

Symbol Parameter Conditions Min Typ Max Unit

fVCO Output frequency 80 240 MHz

fIN Input frequency 4 16 MHz

IPLL Current consumption
Active mode, fVCO = 80MHz 250

µA
Active mode, fVCO = 240MHz 600

tSTARTUP

Startup time, from enabling
the PLL until the PLL is
locked

Wide Bandwidth mode disabled 15
µs

Wide Bandwidth mode enabled 45

Table 7-12. Internal 120MHz RC Oscillator Characteristics

Symbol Parameter Conditions Min Typ Max Unit

fOUT Output frequency(1) 88 120 152 MHz

IRC120M Current consumption 1.85 mA

tSTARTUP Startup time 3 µs

Table 7-13. System RC Oscillator Characteristics

Symbol Parameter Conditions Min Typ Max Unit

fOUT Output frequency

Calibrated at TA = 85°C 110 115.2 120

kHzTA = 25°C 105 109 115

TA = -40°C 100 104 108

Table 7-14. 8MHz/1MHz RC Oscillator Characteristics

Symbol Parameter Conditions Min Typ Max Unit

fOUT Output frequency
SCIF.RCCR8.FREQMODE = 0(1) 7.6 8 8.4

MHz
SCIF.RCCR8.FREQMODE = 1(1) 0.955 1 1.045

tSTARTUP Startup time 20 µs

72
32117DS–AVR-01/12

AT32UC3C

7.9.3 USART in SPI Mode Timing

7.9.3.1 Master mode

Figure 7-6. USART in SPI Master Mode With (CPOL= CPHA= 0) or (CPOL= CPHA= 1)

Figure 7-7. USART in SPI Master Mode With (CPOL= 0 and CPHA= 1) or (CPOL= 1 and
CPHA= 0)

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same pro-
cess technology. These values are not covered by test limits in production.

2. Where:

USPI0 USPI1

MISO

SPCK

MOSI

USPI2

USPI3 USPI4

MISO

SPCK

MOSI

USPI5

Table 7-46. USART in SPI Mode Timing, Master Mode(1)

Symbol Parameter Conditions Min Max Units

USPI0 MISO setup time before SPCK rises

external
capacitor =

40pF

26+ tSAMPLE
(2) ns

USPI1 MISO hold time after SPCK rises 0 ns

USPI2 SPCK rising to MOSI delay 11 ns

USPI3 MISO setup time before SPCK falls 26+ tSAMPLE
(2) ns

USPI4 MISO hold time after SPCK falls 0 ns

USPI5 SPCK falling to MOSI delay 11.5 ns

tSAMPLE tSPCK
tSPCK

2 tCLKUSART×

1
2
---⎝ ⎠

⎛ ⎞ tCLKUSART×–=

73
32117DS–AVR-01/12

AT32UC3C

Maximum SPI Frequency, Master Output

The maximum SPI master output frequency is given by the following formula:

Where is the MOSI delay, USPI2 or USPI5 depending on CPOL and NCPHA. is
the maximum frequency of the SPI pins. Please refer to the I/O Pin Characteristics section for
the maximum frequency of the pins. is the maximum frequency of the CLK_SPI. Refer
to the SPI chapter for a description of this clock.

Maximum SPI Frequency, Master Input

The maximum SPI master input frequency is given by the following formula:

Where is the MISO setup and hold time, USPI0 + USPI1 or USPI3 + USPI4 depending

on CPOL and NCPHA. is the SPI slave response time. Please refer to the SPI slave

datasheet for . is the maximum frequency of the CLK_SPI. Refer to the SPI

chapter for a description of this clock.
7.9.3.2 Slave mode

Figure 7-8. USART in SPI Slave Mode With (CPOL= 0 and CPHA= 1) or (CPOL= 1 and
CPHA= 0)

fSPCKMAX MIN fPINMAX
1

SPIn

fCLKSPI 2×
9

-----------------------------,(,)=

SPIn fPINMAX

fCLKSPI

fSPCKMAX MIN 1
SPIn tVALID+

fCLKSPI 2×
9

-----------------------------(,)=

SPIn

TVALID
TVALID fCLKSPI

USPI7 USPI8

MISO

SPCK

MOSI

USPI6

74
32117DS–AVR-01/12

AT32UC3C

Figure 7-9. USART in SPI Slave Mode With (CPOL= CPHA= 0) or (CPOL= CPHA= 1)

Figure 7-10. USART in SPI Slave Mode NPCS Timing

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same pro-
cess technology. These values are not covered by test limits in production.

2. Where:

USPI10 USPI11

MISO

SPCK

MOSI

USPI9

USPI14

USPI12

USPI15

USPI13

NSS

SPCK, CPOL=0

SPCK, CPOL=1

Table 7-47. USART in SPI mode Timing, Slave Mode(1)

Symbol Parameter Conditions Min Max Units

USPI6 SPCK falling to MISO delay

external
capacitor =

40pF

27 ns

USPI7 MOSI setup time before SPCK rises tSAMPLE
(2) + tCLK_USART ns

USPI8 MOSI hold time after SPCK rises 0 ns

USPI9 SPCK rising to MISO delay 28 ns

USPI10 MOSI setup time before SPCK falls tSAMPLE
(2) + tCLK_USART ns

USPI11 MOSI hold time after SPCK falls 0 ns

USPI12 NSS setup time before SPCK rises 33 ns

USPI13 NSS hold time after SPCK falls 0 ns

USPI14 NSS setup time before SPCK falls 33 ns

USPI15 NSS hold time after SPCK rises 0 ns

tSAMPLE tSPCK
tSPCK

2 tCLKUSART×

1
2
---+⎝ ⎠

⎛ ⎞ tCLKUSART×–=

76
32117DS–AVR-01/12

AT32UC3C

Figure 7-12. SPI Master Mode With (CPOL= 0 and NCPHA= 1) or (CPOL= 1 and NCPHA= 0)

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same pro-
cess technology. These values are not covered by test limits in production.

Maximum SPI Frequency, Master Output

The maximum SPI master output frequency is given by the following formula:

Where is the MOSI delay, SPI2 or SPI5 depending on CPOL and NCPHA. is the
maximum frequency of the SPI pins. Please refer to the I/O Pin Characteristics section for the
maximum frequency of the pins.

Maximum SPI Frequency, Master Input

The maximum SPI master input frequency is given by the following formula:

Where is the MISO setup and hold time, SPI0 + SPI1 or SPI3 + SPI4 depending on
CPOL and NCPHA. is the SPI slave response time. Please refer to the SPI slave
datasheet for .

SPI3 SPI4

MISO

SPCK

MOSI

SPI5

Table 7-48. SPI Timing, Master Mode(1)

Symbol Parameter Conditions Min Max Units

SPI0 MISO setup time before SPCK rises

external
capacitor =

40pF

28.5+ (tCLK_SPI)/2 ns

SPI1 MISO hold time after SPCK rises 0 ns

SPI2 SPCK rising to MOSI delay 10.5 ns

SPI3 MISO setup time before SPCK falls 28.5 + (tCLK_SPI)/2 ns

SPI4 MISO hold time after SPCK falls 0 ns

SPI5 SPCK falling to MOSI delay 10.5 ns

fSPCKMAX MIN fPINMAX
1

SPIn
------------(,)=

SPIn fPINMAX

fSPCKMAX
1

SPIn tVALID+
------------------------------------=

SPIn
tVALID

tVALID

88
32117DS–AVR-01/12

AT32UC3C

Figure 7-20. Ethernet MAC MII Mode

MAC4

MAC2

MAC5

MAC1

MDIO

MDC

COL

MAC3

TX_CLK

MAC6 MAC7

CRS

TX_ER

MAC8

MAC9

TX_EN
MAC10

TXD[3:0]

RX_CLK

MAC11 MAC12

RXD[3:0]

MAC13 MAC14

MAC15 MAC16

RX_ER

RX_DV

100
32117DS–AVR-01/12

AT32UC3C

Fix/Workaround
None.

3 In host mode, the disconnection during OUT transition is not supported
In USB host mode, a pipe can not work if the previous USB device disconnection has
occurred during a USB transfer.
Fix/Workaround
Reset the USBC (USBCON.USB=0 and =1) after a device disconnection (UHINT.DDISCI).

4 In USB host mode, entering suspend mode can fail
In USB host mode, entering suspend mode can fail when UHCON.SOFE=0 is done just
after a SOF reception (UHINT.HSOFI).
Fix/Workaround
Check that UHNUM.FLENHIGH is below 185 in Full speed and below 21 in Low speed
before clearing UHCON.SOFE.

5 In USB host mode, entering suspend mode for low speed device can fail when the
USB freeze (USBCON.FRZCLK=1) is done just after UHCON.SOFE=0.
Fix/Workaround
When entering suspend mode (UHCON.SOFE is cleared), check that USBFSM.DRDSTATE
is not equal to three before freezing the clock (USBCON.FRZCLK=1).

10.1.11 WDT

1 WDT Control Register does not have synchronization feedback
When writing to the Timeout Prescale Select (PSEL), Time Ban Prescale Select (TBAN),
Enable (EN), or WDT Mode (MODE) fieldss of the WDT Control Register (CTRL), a synchro-
nizer is started to propagate the values to the WDT clcok domain. This synchronization
takes a finite amount of time, but only the status of the synchronization of the EN bit is
reflected back to the user. Writing to the synchronized fields during synchronization can lead
to undefined behavior.
Fix/Workaround
-When writing to the affected fields, the user must ensure a wait corresponding to 2 clock
cycles of both the WDT peripheral bus clock and the selected WDT clock source.
-When doing writes that changes the EN bit, the EN bit can be read back until it reflects the
written value.

102
32117DS–AVR-01/12

AT32UC3C

2 Requesting clocks in idle sleep modes will mask all other PB clocks than the
requested
In idle or frozen sleep mode, all the PB clocks will be frozen if the TWIS or the AST need to
wake the cpu up.
Fix/Workaround
Disable the TWIS or the AST before entering idle or frozen sleep mode.

3 TWIS may not wake the device from sleep mode
If the CPU is put to a sleep mode (except Idle and Frozen) directly after a TWI Start condi-
tion, the CPU may not wake upon a TWIS address match. The request is NACKed.
Fix/Workaround
When using the TWI address match to wake the device from sleep, do not switch to sleep
modes deeper than Frozen. Another solution is to enable asynchronous EIC wake on the
TWIS clock (TWCK) or TWIS data (TWD) pins, in order to wake the system up on bus
events.

10.2.6 SCIF

1 PLLCOUNT value larger than zero can cause PLLEN glitch
Initializing the PLLCOUNT with a value greater than zero creates a glitch on the PLLEN sig-
nal during asynchronous wake up.
Fix/Workaround
The lock-masking mechanism for the PLL should not be used.
The PLLCOUNT field of the PLL Control Register should always be written to zero.

2 PLL lock might not clear after disable
Under certain circumstances, the lock signal from the Phase Locked Loop (PLL) oscillator
may not go back to zero after the PLL oscillator has been disabled. This can cause the prop-
agation of clock signals with the wrong frequency to parts of the system that use the PLL
clock.
Fix/Workaround
PLL must be turned off before entering STOP, DEEPSTOP or STATIC sleep modes. If PLL
has been turned off, a delay of 30us must be observed after the PLL has been enabled
again before the SCIF.PLL0LOCK bit can be used as a valid indication that the PLL is
locked.

3 BOD33 reset locks the device
If BOD33 is enabled as a reset source (SCIF.BOD33.CTRL=0x1) and when VDDIN_33
power supply voltage falls below the BOD33 voltage (SCIF.BOD33.LEVEL), the device is
locked permanently under reset even if the power supply goes back above BOD33 reset
level. In order to unlock the device, an external reset event should be applied on RESET_N.
Fix/Workaround
Use an external BOD on VDDIN_33 or an external reset source.

10.2.7 SPI

1 SPI data transfer hangs with CSR0.CSAAT==1 and MR.MODFDIS==0
When CSR0.CSAAT==1 and mode fault detection is enabled (MR.MODFDIS==0), the SPI
module will not start a data transfer.
Fix/Workaround
Disable mode fault detection by writing a one to MR.MODFDIS.

103
32117DS–AVR-01/12

AT32UC3C

2 Disabling SPI has no effect on the SR.TDRE bit
Disabling SPI has no effect on the SR.TDRE bit whereas the write data command is filtered
when SPI is disabled. Writing to TDR when SPI is disabled will not clear SR.TDRE. If SPI is
disabled during a PDCA transfer, the PDCA will continue to write data to TDR until its buffer
is empty, and this data will be lost.
Fix/Workaround
Disable the PDCA, add two NOPs, and disable the SPI. To continue the transfer, enable the
SPI and PDCA.

3 SPI disable does not work in SLAVE mode
SPI disable does not work in SLAVE mode.
Fix/Workaround
Read the last received data, then perform a software reset by writing a one to the Software
Reset bit in the Control Register (CR.SWRST).

4 SPI bad serial clock generation on 2nd chip_select when SCBR=1, CPOL=1, and
NCPHA=0
When multiple chip selects (CS) are in use, if one of the baudrates equal 1 while one
(CSRn.SCBR=1) of the others do not equal 1, and CSRn.CPOL=1 and CSRn.NCPHA=0,
then an additional pulse will be generated on SCK.
Fix/Workaround
When multiple CS are in use, if one of the baudrates equals 1, the others must also equal 1
if CSRn.CPOL=1 and CSRn.NCPHA=0.

10.2.8 TC

1 Channel chaining skips first pulse for upper channel
When chaining two channels using the Block Mode Register, the first pulse of the clock
between the channels is skipped.
Fix/Workaround
Configure the lower channel with RA = 0x1 and RC = 0x2 to produce a dummy clock cycle
for the upper channel. After the dummy cycle has been generated, indicated by the
SR.CPCS bit, reconfigure the RA and RC registers for the lower channel with the real
values.

10.2.9 TWIM

1 SMBALERT bit may be set after reset
For TWIM0 and TWIM1 modules, the SMBus Alert (SMBALERT) bit in the Status Register
(SR) might be erroneously set after system reset.
Fix/Workaround
After system reset, clear the SR.SMBALERT bit before commencing any TWI transfer.

For TWIM2 module, the SMBus Alert (SMBALERT) is not implemented but the bit in the Sta-
tus Register (SR) is erroneously set once TWIM2 is enabled.
Fix/Workaround
None.

2 TWIM TWALM polarity is wrong
The TWALM signal in the TWIM is active high instead of active low.
Fix/Workaround
Use an external inverter to invert the signal going into the TWIM. When using both TWIM
and TWIS on the same pins, the TWALM cannot be used.

