

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	37
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 9x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f302cbt6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32F302xB/STM32F302xC microcontrollers.

This STM32F302xB/STM32F302xC datasheet should be read in conjunction with the STM32F302xx reference manual (RM0365). The reference manual is available from the STMicroelectronics website *www.st.com*.

For information on the Cortex[®]-M4 core with FPU, please refer to:

- **Cortex[®]-M4 with FPU Technical Reference Manual**, available from ARM website www.arm.com.
- STM32F3xxx and STM32F4xxx Cortex[®]-M4 programming manual (PM0214) available from our website *www.st.com*.

Interconnect source	Interconnect destination	Interconnect action
GPIO RTCCLK HSE/32 MC0	TIM16	Clock source used as input channel for HSI and LSI calibration
CSS CPU (hard fault) COMPx PVD GPIO	TIM1, TIM15, 16, 17	Timer break
	TIMx	External trigger, timer break
GPIO	ADCx DAC1	Conversion external trigger
DAC1	COMPx	Comparator inverting input

Table 4. STM32F302xB/STM32F302xC peripheral interconnect matrix (continued)

Note: For more details about the interconnect actions, please refer to the corresponding sections in the reference manual (RM0365.

3.9 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example with failure of an indirectly used external oscillator).

Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the high speed APB domains is 72 MHz, while the maximum allowed frequency of the low speed APB domain is 36 MHz.

I2C features ⁽¹⁾	I2C1	I2C2
SMBus	Х	Х
Wakeup from STOP	Х	х

Table 7. STM32F302xB/STM32F302xC I ² C implementation (continued))
--	---

1. X = supported.

3.20 Universal synchronous/asynchronous receiver transmitter (USART)

The STM32F302xB/STM32F302xC devices have three embedded universal synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3).

The USART interfaces are able to communicate at speeds of up to 9 Mbits/s.

They provide hardware management of the CTS and RTS signals, they support IrDA SIR ENDEC, the multiprocessor communication mode, the single-wire half-duplex communication mode and have LIN Master/Slave capability. The USART interfaces can be served by the DMA controller.

3.21 Universal asynchronous receiver transmitter (UART)

The STM32F302xB/STM32F302xC devices have 2 embedded universal asynchronous receiver transmitters (UART4, and UART5). The UART interfaces support IrDA SIR ENDEC, multiprocessor communication mode and single-wire half-duplex communication mode. The UART4 interface can be served by the DMA controller.

Refer to Table 8 for the features available in all U(S)ART interfaces.

USART modes/features ⁽¹⁾	USART1	USART2	USART3	UART4	UART5
Hardware flow control for modem	Х	Х	Х	-	-
Continuous communication using DMA	Х	Х	Х	Х	-
Multiprocessor communication	Х	Х	Х	Х	Х
Synchronous mode	Х	Х	Х	-	-
Smartcard mode	Х	Х	Х	-	-
Single-wire half-duplex communication	Х	Х	Х	Х	Х
IrDA SIR ENDEC block	Х	Х	Х	Х	Х
LIN mode	Х	Х	Х	Х	Х
Dual clock domain and wakeup from Stop mode	Х	Х	Х	Х	Х
Receiver timeout interrupt	Х	Х	Х	Х	Х
Modbus communication	Х	Х	Х	Х	х
Auto baud rate detection	Х	Х	Х	-	-
Driver Enable	Х	Х	Х	-	-

Table 8. USART features

1. X = supported.

	Pin nu	umber		13. 51 WI32				Pin functions			
WLCSP100	LQFP100	LQFP64	LQFP48	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions		
E2	70	44	32	PA11	I/O	FT	-	USART1_CTS, USB_DM, CAN_RX, TIM1_CH1N, TIM1_CH4, TIM1_BKIN2, TIM4_CH1, COMP1_OUT, EVENTOUT	-		
D1	71	45	33	PA12	I/O	FT	-	USART1_RTS_DE, USB_DP, CAN_TX, TIM1_CH2N, TIM1_ETR, TIM4_CH2, TIM16_CH1, COMP2_OUT, EVENTOUT	-		
E3	72	46	34	PA13	I/O	FT	-	USART3_CTS, TIM4_CH3, TIM16_CH1N, TSC_G4_IO3, IR_OUT, SWDIO-JTMS, EVENTOUT	-		
C1	73	-	-	PF6	I/O	FTf	(1)	I2C2_SCL, USART3_RTS_DE, TIM4_CH4, EVENTOUT	-		
A1, A2, B1	74	47	35	VSS	S	-	-	Gro	und		
D2	75	48	36	VDD	S	-	-	Digital pov	wer supply		
C2	76	49	37	PA14	I/O	FTf	-	I2C1_SDA, USART2_TXTIM1_BKIN, TSC_G4_IO4, SWCLK-JTCK, EVENTOUT	-		
B2	77	50	38	PA15	I/O	FTf	-	I2C1_SCL, SPI1_NSS, SPI3_NSS, I2S3_WS, JTDI, USART2_RX, TIM1_BKIN, TIM2_CH1_ETR, EVENTOUT	-		
E4	78	51	-	PC10	I/O	FT	(1)	SPI3_SCK, I2S3_CK, USART3_TX, UART4_TX, EVENTOUT	-		
D3	79	52	-	PC11	I/O	FT	(1)	SPI3_MISO, I2S3ext_SD, USART3_RX, UART4_RX, EVENTOUT	-		
A3	80	53	-	PC12	I/O	FT	(1)	EVENTOUT	-		
B3	81	-	-	PD0	I/O	FT	(1)	CAN_RX, EVENTOUT	-		

50/144

Table 19. Alternate functions for port F									
Port & Pin Name	AF1	AF2	AF3	AF4	AF5	AF6	AF7		
PF0	-	-	-	I2C2_SDA	-	TIM1_CH3N	-		
PF1	-	-	-	I2C2_SCL	-	-	-		
PF2	EVENTOUT	-	-	-	-	-	-		
PF4	EVENTOUT	COMP1_OUT	-	-	-	-	-		
PF6	EVENTOUT	TIM4_CH4	-	I2C2_SCL	-	-	USART3_RTS_DE		
PF9	EVENTOUT	-	TIM15_CH1	-	SPI2_SCK	-	-		
PF10	EVENTOUT	-	TIM15_CH2	-	SPI2_SCK	-	-		

6.1.6 Power supply scheme

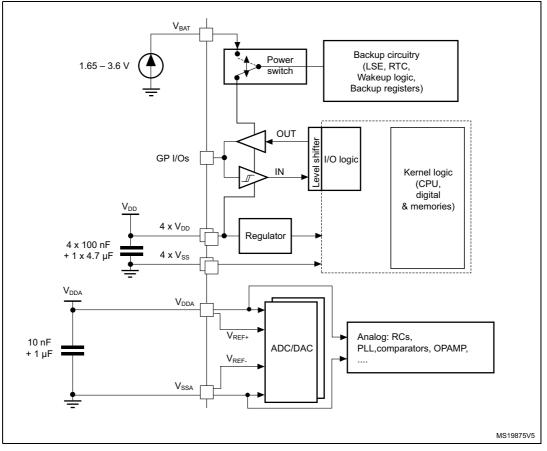


Figure 11. Power supply scheme

1. Dotted lines represent the internal connections on low pin count packages, joining the dedicated supply pins.

Caution: Each power supply pair (V_{DD}/V_{SS}, V_{DDA}/V_{SSA} etc..) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below the appropriate pins on the underside of the PCB to ensure the good functionality of the device.

6.3 Operating conditions

6.3.1 General operating conditions

Table 24.	General	operating	conditions
-----------	---------	-----------	------------

Symbol	Parameter	Conditions	Min	Max	Unit
f _{HCLK}	Internal AHB clock frequency	-	0	72	
f _{PCLK1}	Internal APB1 clock frequency	-	0	36	MHz
f _{PCLK2}	Internal APB2 clock frequency	-	0	72	
V _{DD}	Standard operating voltage	-	2	3.6	V
	Analog operating voltage (OPAMP and DAC not used)	Must have a potential	2	3.6	V
V _{DDA}	Analog operating voltage (OPAMP and DAC used)	equal to or higher than V _{DD}	2.4	3.6	V
V _{BAT}	Backup operating voltage	-	1.65	3.6	V
	I/O input voltage	TC I/O	-0.3	V _{DD} +0.3	V
V _{IN}		TTa I/O	-0.3	V _{DDA} +0.3	
		FT and FTf I/O ⁽¹⁾	-0.3	5.5	
		BOOT0	0	5.5	
		WLCSP100	-	500	mW
Р	Power dissipation at $T_A =$ 85 °C for suffix 6 or $T_A =$ 105 °C for suffix 7 ⁽²⁾	LQFP100	-	488	
P_{D}		LQFP64	-	444	
		LQFP48	-	364	
	Ambient temperature for 6 Maximum power dissipation		-40	85	°C
т.	suffix version	Low-power dissipation ⁽³⁾	-40	105	
TA	Ambient temperature for 7	Maximum power dissipation	-40	105	°C
	suffix version	Low-power dissipation ⁽³⁾	-40	125	
т.	lunction tomporature range	6 suffix version	-40	105	°C
TJ	Junction temperature range	7 suffix version	-40	125	U

1. To sustain a voltage higher than V_{DD} +0.3 V, the internal pull-up/pull-down resistors must be disabled.

If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} (see Section 7.5: Thermal characteristics).

 In low-power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} (see Section 7.5: Thermal characteristics).

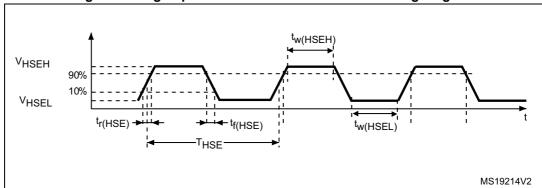
On-chip peripheral current consumption

The MCU is placed under the following conditions:

- all I/O pins are in analog input configuration
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
- ambient operating temperature at 25°C and $V_{DD} = V_{DDA} = 3.3$ V.

Table 38. Peripheral current consumption

Derinherol	Typical consumption ⁽¹⁾	Unit
Peripheral	I _{DD}	Onit
BusMatrix ⁽²⁾	12.6	
DMA1	7.6	
DMA2	6.1	
CRC	2.1	
GPIOA	10.0	
GPIOB	10.3	
GPIOC	2.2	
GPIOD	8.8	
GPIOE	3.3	
GPIOF	3.0	
TSC	5.5	
ADC1&2	17.3	
APB2-Bridge ⁽³⁾	3.6	
SYSCFG	7.3	μA/MHz
TIM1	40.0	
SPI1	8.8	
USART1	23.3	
TIM15	17.1	
TIM16	10.1	
TIM17	11.0	
APB1-Bridge ⁽³⁾	6.1	
TIM2	49.1	
TIM3	38.8	
TIM4	38.3	


6.3.7 External clock source characteristics

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in *Section 6.3.14*. However, the recommended clock input waveform is shown in *Figure 14*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency ⁽¹⁾		1	8	32	MHz
V _{HSEH}	OSC_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage	-	V _{SS}	-	$0.3V_{DD}$	
t _{w(HSEH)} t _{w(HSEL)}	OSC_IN high or low time ⁽¹⁾		15	-	-	20
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time ⁽¹⁾		-	-	20	ns

1. Guaranteed by design.

Figure 14. High-speed external clock source AC timing diagram

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +105$ °C conforming to JESD78A	II level A

6.3.13 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of -5μ A/+0 μ A range), or other functional failure (for example reset occurrence or oscillator frequency deviation).

The test results are given in Table 53.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
Driver characteristics									
t _r	Rise time ⁽²⁾	C _L = 50 pF	4	-	20	ns			
t _f	Fall time ⁽²⁾	C _L = 50 pF	4	-	20	ns			
t _{rfm}	Rise/ fall time matching	t _r /t _f	90	-	110	%			
V _{CRS}	Output signal crossover voltage	-	1.3	-	2.0	V			
Output driver Impedance ⁽³⁾	Z _{DRV}	driving high and low	28	40	44	Ω			

Table 67. USB: Full-speed electrical characteristics⁽¹⁾

1. Guaranteed by design.

 Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0).

3. No external termination series resistors are required on USB_DP (D+) and USB_DM (D-), the matching impedance is already included in the embedded driver.

CAN (controller area network) interface

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX).

S
TM
132
Ξ
02
Ň
ŝ
T
13:
2F
30
STM32F302xB STM32F302xC
C

Symbol	Parameter	Conditions	Min	Тур	Мах	U	
f _{ADC}	ADC clock frequency	-	0.14	-	72	Ν	
		Resolution = 12 bits, Fast Channel	0.01	-	5.14		
f _S ⁽¹⁾	Sampling rate	Resolution = 10 bits, Fast Channel	0.012	-	6	MSI	
IS' '	Sampling rate	Resolution = 8 bits, Fast Channel	0.014	-	7.2		
		Resolution = 6 bits, Fast Channel	0.0175	-	9		
f _{TRIG} ⁽¹⁾ E	External trigger frequency	f _{ADC} = 72 MHz Resolution = 12 bits	-	-	5.14	N	
		Resolution = 12 bits	-	-	14	1/	
V _{AIN}	Conversion voltage range ⁽²⁾	-	0	-	V _{REF+}		
R _{AIN} ⁽¹⁾	External input impedance	-	-	-	100		
C _{ADC} ⁽¹⁾	Internal sample and hold capacitor	-	-	5	-		
t _{STAB} ⁽¹⁾	Power-up time	-	· · ·	1			
t _{CAL} (1)	Calibration time	f _{ADC} = 72 MHz	1.56				
^I CAL`′		-	112			1/	
		CKMODE = 00	1.5	2	2.5	1/	
t _{latr} (1)	Trigger conversion latency Regular and injected channels	CKMODE = 01	-	-	2	1/	
'latr` '	without conversion abort	CKMODE = 10	-	-	2.25	1/	
		CKMODE = 11	-	-	2.125	1/	
		CKMODE = 00	2.5	3	3.5	1/	
t _{latrinj} (1)	Trigger conversion latency Injected channels aborting a regular	CKMODE = 01	-	-	3	1/	
"Hatrinj`	conversion	CKMODE = 10	-	-	3.25	1/	
		CKMODE = 11	-	-	3.125	1/	

103/144

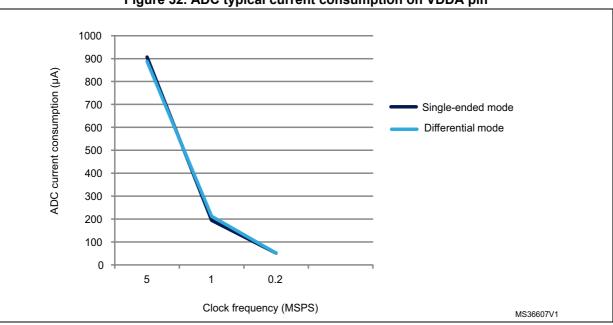
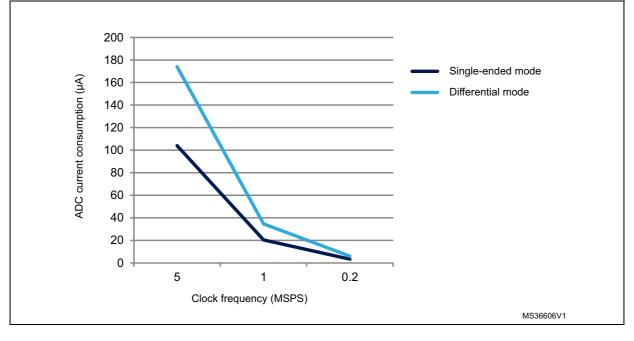



Figure 32. ADC typical current consumption on VDDA pin

Figure 33. ADC typical current consumption on VREF+ pin

Electrical characteristics

	Sampling	Sampling		R _{AIN} max (kΩ)		
Resolution	cycle @ 72 MHz	time [ns] @ 72 MHz	Fast channels ⁽²⁾	Slow channels	Other channels ⁽³⁾	
	1.5	20.83	0.018	NA	NA	
	2.5	34.72	0.150	NA	0.022	
	4.5	62.50	0.470	0.220	0.180	
10 hite	7.5	104.17	0.820	0.560	0.470	
12 bits	19.5	270.83	2.70	1.80	1.50	
	61.5	854.17	8.20	6.80	4.70	
	181.5	2520.83	22.0	18.0	15.0	
	601.5	8354.17	82.0	68.0	47.0	
	1.5	20.83	0.082	NA	NA	
	2.5	34.72	0.270	0.082	0.100	
	4.5	62.50	0.560	0.390	0.330	
	7.5	104.17	1.20	0.82	0.68	
10 bits	19.5	270.83	3.30	2.70	2.20	
	61.5	854.17	10.0	8.2	6.8	
	181.5	2520.83	33.0	27.0	22.0	
	601.5	8354.17	100.0	82.0	68.0	
	1.5	20.83	0.150	NA	0.039	
	2.5	34.72	0.390	0.180	0.180	
	4.5	62.50	0.820	0.560	0.470	
• • • •	7.5	104.17	1.50	1.20	1.00	
8 bits	19.5	270.83	3.90	3.30	2.70	
	61.5	854.17	12.00	12.00	8.20	
	181.5	2520.83	39.00	33.00	27.00	
	601.5	8354.17	100.00	100.00	82.00	
	1.5	20.83	0.270	0.100	0.150	
	2.5	34.72	0.560	0.390	0.330	
	4.5	62.50	1.200	0.820	0.820	
0.1.11	7.5	104.17	2.20	1.80	1.50	
6 bits	19.5	270.83	5.60	4.70	3.90	
	61.5	854.17	18.0	15.0	12.0	
	181.5	2520.83	56.0	47.0	39.0	
	601.5	8354.17	100.00	100.0	100.0	

Table 69. Maximum ADC R_{AIN} ⁽¹⁾

1. Guaranteed by characterization results.

2. All fast channels, expect channels on PA2, PA6.

STM32F302xB STM32F302xC

3. Channels available on PA2, PA6.

Symbol	Parameter	Conditions				Тур	Max (3)	Unit	
		0	Cingle ended	Fast channel 5.1 Ms	-	±3.5	±4.5		
ET	Total	adjusted	Single ended -	Slow channel 4.8 Ms	-	<u>+</u> 4	±4.5		
	error		Differential	Fast channel 5.1 Ms	-	±3	±3		
			Dillerential	Slow channel 4.8 Ms	-	±3	±3		
			Single ended	Fast channel 5.1 Ms	-	±1	±1.5		
EO	Offset error		Single ended	Slow channel 4.8 Ms	-	±1	±2.5		
LO	Olisetenoi		Differential	Fast channel 5.1 Ms	-	±1	±1.5		
			Dillerential	Slow channel 4.8 Ms	-	±1	±1.5		
			Single ended	Fast channel 5.1 Ms	-	±3	±4	_	
EG	Gain error	or	Single ended	Slow channel 4.8 Ms	-	±3.5	±4		
EG			Differential	Fast channel 5.1 Ms	-	±1.5	±2.5		
				Slow channel 4.8 Ms	-	±2	±2.5		
	Differential linearity error	linearity $V_{DDA} = V_{REF+} = 3.3 V$	Single ended	Fast channel 5.1 Ms	-	±1	±1.5		
ED				Slow channel 4.8 Ms	-	±1	±1.5		
ED			Differential	Fast channel 5.1 Ms	-	±1	±1		
				Slow channel 4.8 Ms	-	±1	±1		
				Single ended	Fast channel 5.1 Ms	-	±1.5	±2	
EL	Integral	Integral linearity error	Silligie endeu	Slow channel 4.8 Ms	-	±1.5	±3	-	
LL			Differential	Fast channel 5.1 Ms	-	±1	±1.5		
				Slow channel 4.8 Ms	-	±1	±1.5		
			Single ended	Fast channel 5.1 Ms	10.7	10.8	-		
ENOB ⁽⁴⁾	Effective number of		Single ended	Slow channel 4.8 Ms	10.7	10.8	-	hite	
ENOB.	bits		Differential	Fast channel 5.1 Ms	11.2	11.3	-	- bits	
			Dillerential	Slow channel 4.8 Ms	11.1	11.3	-		
	Signal-to-		Single ended	Fast channel 5.1 Ms	66	67	-		
SINAD ⁽⁴⁾	noise and		Single ended	Slow channel 4.8 Ms	66	67	-	dB	
SINAD: /	distortion ratio		Differential	Fast channel 5.1 Ms	69	70	-		
	1000		Differential	Slow channel 4.8 Ms	69	70	-		

Table 70. ADC accuracy - limited test conditions, 100-pin pac	kages ⁽¹⁾⁽²⁾
---	-------------------------

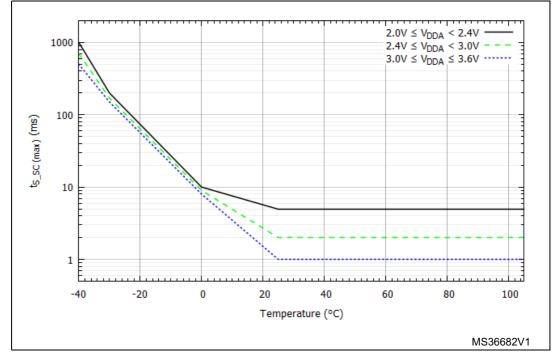
Symbol	Parameter	Conditions				Тур	Max (3)	Unit
			Cingle ended	Fast channel 5.1 Ms	-	±4	±4.5	
CT.	Total	unadjusted	Single ended	Slow channel 4.8 Ms	-	±5.5	±6	
ET	error		Differential	Fast channel 5.1 Ms	-	±3.5	±4	
			Differential	Slow channel 4.8 Ms	-	±3.5	±4	
				Fast channel 5.1 Ms	-	±2	±2	
50	Offeet error		Single ended	Slow channel 4.8 Ms	-	±1.5	±2	
EO	Offset error		Differential	Fast channel 5.1 Ms	-	±1.5	±2	
			Differential	Slow channel 4.8 Ms	-	±1.5	±2	
				Fast channel 5.1 Ms	-	±3	±4	
50	Gain error	ain error -	Single ended	Slow channel 4.8 Ms	-	±5	±5.5	- LSB
EG			Differential	Fast channel 5.1 Ms	-	±3	±3	
				Slow channel 4.8 Ms	-	±3	±3.5	
	Differential linearity error	ADC clock freq. ≤72 MHz	Single ended	Fast channel 5.1 Ms	-	±1	±1	
		nearity $V_{DDA} = 3.3 V$		Slow channel 4.8 Ms	-	±1	±1	
ED			Differential	Fast channel 5.1 Ms	-	±1	±1	
				Slow channel 4.8 Ms	-	±1	±1	
	Integral		Oin als surds d	Fast channel 5.1 Ms	-	±1.5	±2	
-		Single ended	Slow channel 4.8 Ms	-	±2	±3	1	
EL	error	linearity error		Fast channel 5.1 Ms	-	±1.5	±1.5	-
			Differential	Slow channel 4.8 Ms	-	±1.5	±2	
			Cingle and d	Fast channel 5.1 Ms	10.8	10.8	-	
ENOB	Effective		Single ended	Slow channel 4.8 Ms	10.8	10.8	-	L. 14
(4)	number of bits		Differential	Fast channel 5.1 Ms	11.2	11.3	-	bit
			Differential	Slow channel 4.8 Ms	11.2	11.3	-	
	Circul to			Fast channel 5.1 Ms	66	67	-	
SINAD	Signal-to- noise and		Single ended	Slow channel 4.8 Ms	66	67	-	d٦
(4)	distortion		Differential	Fast channel 5.1 Ms	69	70	-	dB
	ratio		Differential	Slow channel 4.8 Ms	69	70	-	

Table 72. ADC accuracy - limited test conditions, 64-pin packages⁽¹⁾⁽²⁾

6.3.19 DAC electrical specifications

Symbol	Parameter	с	onditions	Min	Тур	Мах	Unit
V _{DDA}	Analog supply voltage		-	2.4	-	3.6	V
R _{LOAD} ⁽¹⁾	Resistive load	DAC output Connected to V _{SSA}		5	5		kΩ
INLOAD		buffer ON	Connected to V_{DDA}	25	-	-	K22
$R_0^{(1)}$	Output impedance	DAC output	buffer OFF	-	-	15	kΩ
C _{LOAD} ⁽¹⁾	Capacitive load	DAC output	buffer ON	-	-	50	pF
V _{DAC_OUT} ⁽¹⁾	Voltage on DAC_OUT output	code (0x0E) V _{DDA} = 3.6 and (0x155)	s to 12-bit input 0) to (0xF1C) at V and (0xEAB) at V DAC output buffer	0.2	-	V _{DDA} – 0.2	V
		DAC output	buffer OFF	-	0.5	V _{DDA} - 1LSB	mV
I _{DDA} ⁽³⁾	DAC DC current consumption in quiescent	With no load (0x800) on t	d, middle code he input.	-	-	380	μA
'DDA'	mode (Standby mode) ⁽²⁾	With no load, worst code (0xF1C) on the input.		-	-	480	μA
- (3)	Differential non linearity	Given for a 10-bit input code		-	-	±0.5	LSB
DNL ⁽³⁾	Difference between two consecutive code-1LSB)	Given for a 12-bit input code		-	-	±2	LSB
	Integral non linearity	Given for a	10-bit input code	-	-	±1	LSB
INL ⁽³⁾	(difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095)	Given for a 12-bit input code		_	-	±4	LSB
		-		-	-	±10	mV
Offset ⁽³⁾	Offset error (difference between measured value at Code (0x800) and the ideal	Given for a 10-bit input code at V _{DDA} = 3.6 V		-	-	±3	LSB
	value = $V_{DDA}/2$)	Given for a V _{DDA} = 3.6	12-bit input code at V	-	-	±12	LSB
Gain error ⁽³⁾	Gain error	Given for a	12-bit input code	-	-	±0.5	%
t _{SETTLING} ⁽³⁾	Settling time (full scale: for a 12-bit input code transition between the lowest and the highest input codes when DAC_OUT reaches final value ±1LSB	C _{LOAD} ≤50 pF, R _{LOAD} ≥ 5 kΩ		-	3	4	μs
Update rate ⁽³⁾	Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB)	C _{LOAD}		-	-	1	MS/s

Table 75. DAC characteristics



Symbol	Parameter	Conditio	Min	Тур	Max	Unit	
		No hysteresis (COMPxHYST[1:0]=00)	-	-	0	-	
			High speed mode	3		13	
	Nys Comparator hysteresis Medium hysteresis (COMPxHYST[1:0]=10	(COMPxHYST[1:0]=01)	All other power modes	5	8	10	mV
V _{hys}		Medium hysteresis (COMPxHYST[1:0]=10)	High speed mode	7	15	26	
			All other power modes	9		19	
		High hystoropia	High speed mode	18		49	
		(COMPxHYST[1:0]=11)	All other power modes	19	31	40	

Table 76. Comparator characteristics ⁽¹⁾ ((continued)
---	-------------

1. Data guaranteed by design.

2. For more details and conditions, see Figure 37 Maximum V_{REFINT} scaler startup time from power down.

Figure 37. Maximum V_{REFINT} scaler startup time from power down

7.3 LQFP48 – 7 x 7 mm, low-profile quad flat package information

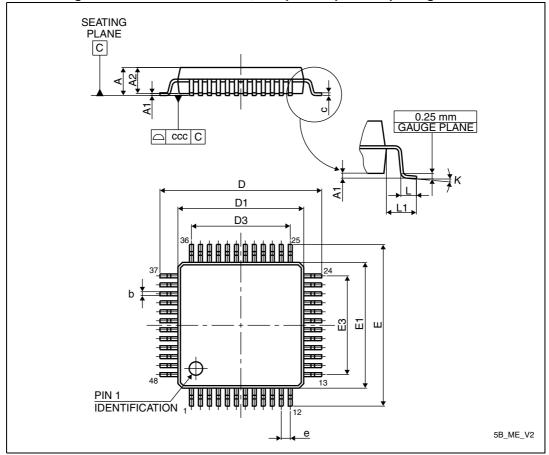
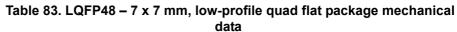
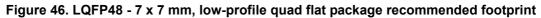
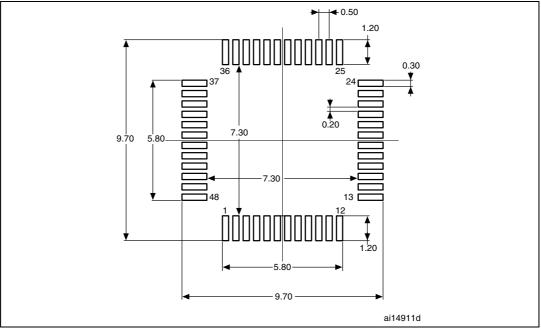



Figure 45. LQFP48 – 7 x 7 mm, low-profile quad flat package outline

1. Drawing is not to scale.


Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах
А	-	-	1.60	-	-	0.0630
A1	0.05	-	0.15	0.0020	-	0.0059
A2	1.35	1.40	1.45	0.0531	0.0551	0.0571
b	0.17	0.22	0.27	0.0067	0.0087	0.0106
С	0.09	-	0.20	0.0035	-	0.0079
D	8.80	9.00	9.20	0.3465	0.3543	0.3622
D1	6.80	7.00	7.20	0.2677	0.2756	0.2835
D3	-	5.50	-	-	0.2165	-
Е	8.80	9.00	9.20	0.3465	0.3543	0.3622



(••••••••)						
Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Max
E1	6.80	7.00	7.20	0.2677	0.2756	0.2835
E3	-	5.50	-	-	0.2165	-
е	-	0.50	-	-	0.0197	-
L	0.45	0.60	0.75	0.0177	0.0236	0.0295
L1	-	1.00	-	-	0.0394	-
K	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.08	-	-	0.0031

Table 83. LQFP48 – 7 x 7 mm, low-profile quad flat package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are in millimeters.

