

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Operating Temperature Mounting Type	-40°C ~ 85°C (TA) Surface Mount
Oscillator Type	
Data Converters	A/D 9x12b; D/A 1x12b
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
RAM Size	40K x 8
EEPROM Size	
Program Memory Type	FLASH
Program Memory Size	256KB (256K x 8)
Number of I/O	37
Peripherals	DMA, I ² S, POR, PWM, WDT
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Speed	72MHz
Core Size	32-Bit Single-Core
Core Processor	ARM® Cortex®-M4
Product Status	Active

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1	Intro	luction
2	Desc	ription
3	Func	tional overview
	3.1	$\text{ARM}^{\textcircled{\text{B}}}$ Cortex $\textcircled{\text{B}}$ -M4 core with FPU with embedded Flash and SRAM \ldots 13
	3.2	Memory protection unit (MPU) 13
	3.3	Embedded Flash memory
	3.4	Embedded SRAM
	3.5	Boot modes
	3.6	Cyclic redundancy check (CRC) 14
	3.7	Power management
		3.7.1 Power supply schemes
		3.7.2 Power supply supervision
		3.7.3 Voltage regulator
		3.7.4 Low-power modes
	3.8	Interconnect matrix
	3.9	Clocks and startup
	3.10	General-purpose input/outputs (GPIOs) 19
	3.11	Direct memory access (DMA) 19
	3.12	Interrupts and events
		3.12.1 Nested vectored interrupt controller (NVIC)
	3.13	Fast analog-to-digital converter (ADC) 20
		3.13.1 Temperature sensor
		3.13.2 Internal voltage reference (V _{REFINT})
		3.13.3 V _{BAT} battery voltage monitoring
		3.13.4 OPAMP reference voltage (VREFOPAMP)
	3.14	Digital-to-analog converter (DAC) 21
	3.15	Operational amplifier (OPAMP) 21
	3.16	Fast comparators (COMP) 21
	3.17	Timers and watchdogs 22
		3.17.1 Advanced timer (TIM1)

Perip	heral	STM32	F302Cx	STM32	F302Rx	STM32F	302Vx		
Flash (Kbytes)		128	256	128	256	128	256		
SRAM (Kbytes)	on data bus	32	40	32	40	32	40		
	Advanced control	1 (16-bit)							
Timers	General purpose	5 (16-bit) 1 (32-bit)							
	Basic			1 (16-t	oit)				
PWM channels (all) ⁽¹⁾			26					
PWM channels (complementary)	except			20					
SPI (I2S) ⁽²⁾				3 (2)					
l ² C				2					
Communication	USART								
interfaces	UART		0	2					
	CAN	1							
	USB	1							
	Normal I/Os (TC, TTa)	20		27		45 in LQ 37 in WLC			
GPIOs	5-volt tolerant I/Os (FT, FTf)	17		25		42 in LQFP100 40 in WLCSP100			
DMA channels		12							
Capacitive sensi	ng channels	1	7	18 24					
12-bit ADCs				2					
Number of chanr	nels		9	16		17			
12-bit DAC chan	nels	1							
Analog comparat	tor	4							
Operational amp	lifiers	2							
CPU frequency		72 MHz							
Operating voltage		2.0 to 3.6 V							
Operating temperature		Ambient operating temperature: - 40 to 85 °C / - 40 to 105 °C Junction temperature: - 40 to 125 °C					05 °C		
Packages		LQF	-P48	LQF	P64	LQFP WLCSI			

Table 2. STM32F302xx family device features and peripheral counts

1. This total number considers also the PWMs generated on the complementary output channels

2. The SPI interfaces can work in an exclusive way in either the SPI mode or the I²S audio mode.

3.7 **Power management**

3.7.1 **Power supply schemes**

- V_{SS} , V_{DD} = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator. It is provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} = 2.0 to 3.6 V: external analog power supply for ADC, DAC, comparators operational amplifiers, reset blocks, RCs and PLL. The minimum voltage to be applied to V_{DDA} differs from one analog peripheral to another. *Table 3* provides the summary of the V_{DDA} ranges for analog peripherals. The V_{DDA} voltage level must be always greater or equal to the V_{DD} voltage level and must be provided first.
- V_{BAT} = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

		••••
Analog peripheral	Minimum V_{DDA} supply	Maximum V _{DDA} supply
ADC / COMP	2.0 V	3.6 V
DAC / OPAMP	2.4 V	3.6V

 Table 3. External analog supply values for analog peripherals

3.7.2 Power supply supervision

The device has an integrated power-on reset (POR) and power-down reset (PDR) circuits. They are always active, and ensure proper operation above a threshold of 2 V. The device remains in reset mode when the monitored supply voltage is below a specified threshold, VPOR/PDR, without the need for an external reset circuit.

- The POR monitors only the V_{DD} supply voltage. During the startup phase it is required that V_{DDA} should arrive first and be greater than or equal to V_{DD}.
- The PDR monitors both the V_{DD} and V_{DDA} supply voltages, however the V_{DDA} power supply supervisor can be disabled (by programming a dedicated Option bit) to reduce the power consumption if the application design ensures that V_{DDA} is higher than or equal to V_{DD}.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD} power supply and compares it to the VPVD threshold. An interrupt can be generated when V_{DD} drops below the V_{PVD} threshold and/or when V_{DD} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.7.3 Voltage regulator

The regulator has three operation modes: main (MR), low-power (LPR), and power-down.

- The MR mode is used in the nominal regulation mode (Run)
- The LPR mode is used in Stop mode.
- The power-down mode is used in Standby mode: the regulator output is in high impedance, and the kernel circuitry is powered down thus inducing zero consumption.

The voltage regulator is always enabled after reset. It is disabled in Standby mode.

• 17-bit Auto-reload counter for periodic interrupt with wakeup from STOP/STANDBY capability.

The RTC clock sources can be:

- A 32.768 kHz external crystal
- A resonator or oscillator
- The internal low-power RC oscillator (typical frequency of 40 kHz)
- The high-speed external clock divided by 32.

3.19 Inter-integrated circuit interface (I²C)

Up to two I^2C bus interfaces can operate in multimaster and slave modes. They can support standard (up to 100 KHz), fast (up to 400 KHz) and fast mode + (up to 1 MHz) modes.

Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2 addresses, 1 with configurable mask). They also include programmable analog and digital noise filters.

	Analog filter	Digital filter
Pulse width of suppressed spikes	50 ns	Programmable length from 1 to 15 I2C peripheral clocks
Benefits	Available in Stop mode	 Extra filtering capability vs. standard requirements. Stable length
Drawbacks	Variations depending on temperature, voltage, process	Wakeup from Stop on address match is not available when digital filter is enabled.

Table 6. Comparison of I2C analog and digital filters

In addition, they provide hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management. They also have a clock domain independent from the CPU clock, allowing the I2Cx (x=1,2) to wake up the MCU from Stop mode on address match.

The I2C interfaces can be served by the DMA controller.

Refer to *Table 7* for the features available in I2C1 and I2C2.

Table 7. STM32F302xB/STM32F302xC I ² C	c implem	nentation
---	----------	-----------

I2C features ⁽¹⁾	I2C1	I2C2
7-bit addressing mode	Х	Х
10-bit addressing mode	Х	Х
Standard mode (up to 100 kbit/s)	х	Х
Fast mode (up to 400 kbit/s)	Х	Х
Fast Mode Plus with 20mA output drive I/Os (up to 1 Mbit/s)	Х	Х
Independent clock	Х	Х

3.22 Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I2S)

Up to three SPIs are able to communicate up to 18 Mbits/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits.

Two standard I2S interfaces (multiplexed with SPI2 and SPI3) supporting four different audio standards can operate as master or slave at half-duplex and full duplex communication modes. They can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can be set by 8-bit programmable linear prescaler. When operating in master mode it can output a clock for an external audio component at 256 times the sampling frequency.

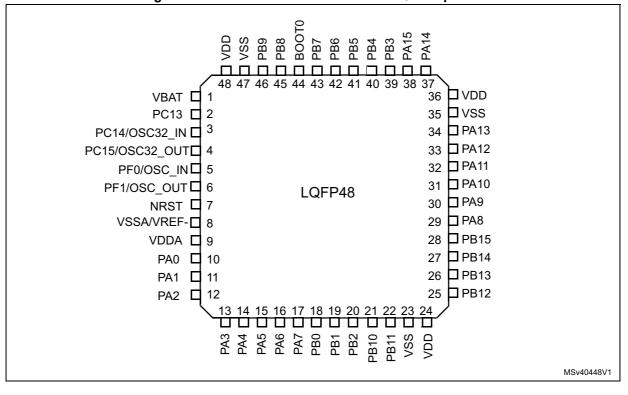
Refer to Table 9 for the features available in SPI1, SPI2 and SPI3.

SPI features ⁽¹⁾	SPI1	SPI2	SPI3
Hardware CRC calculation	Х	Х	Х
Rx/Tx FIFO	Х	Х	Х
NSS pulse mode	Х	Х	Х
I2S mode	-	Х	Х
TI mode	Х	Х	Х

Table 9. STM32F302xB/STM32F302xC SPI/I2S implementation

1. X = supported.

3.23 Controller area network (CAN)


The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks.

3.24 Universal serial bus (USB)

The STM32F302xB/STM32F302xC devices embed an USB device peripheral compatible with the USB full-speed 12 Mbs. The USB interface implements a full-speed (12 Mbit/s) function interface. It has software-configurable endpoint setting and suspend/resume support. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HSE crystal oscillator). The USB has a dedicated 512-bytes SRAM memory for data transmission and reception.

4 Pinouts and pin description

STM32F302xB STM32F302xC

Pinouts and pin description

Port & Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF14	AF1
PA0	-	TIM2_ CH1_ ETR	-	TSC_ G1_IO1	-	-	-	USART2_ CTS	COMP1 _OUT			-	-	-	EVEI OUT
PA1	RTC_ REFIN	TIM2_ CH2	-	TSC_ G1_IO2	-	-	-	USART2_ RTS_DE		TIM15_ CH1N	-	-	-	-	EVE OUT
PA2	-	TIM2_ CH3	-	TSC_ G1_IO3	-	-	-	USART2_ TX	COMP2 _OUT	TIM15_ CH1	-	-	-	-	EVE OUT
PA3	-	TIM2_ CH4	-	TSC_ G1_IO4	-	-	-	USART2_ RX	-	TIM15_ CH2	-	-	-	-	EVE OU1
PA4	-	-	TIM3_ CH2	TSC_ G2_IO1	-	SPI1_ NSS	SPI3_NSS, I2S3_WS	USART2_ CK	-	-	-	-	-	-	EVE OU1
PA5	-	TIM2_ CH1_ ETR	-	TSC_ G2_IO2	-	SPI1_ SCK	-	-	-	-	-	-	-	-	EVE OU1
PA6	-	TIM16_ CH1	TIM3_ CH1	TSC_ G2_IO3		SPI1_ MISO	TIM1_BKIN	-	COMP1 _OUT	-	-	-	-	-	EVE OU ⁻
PA7	-	TIM17_ CH1	TIM3_ CH2	TSC_ G2_IO4		SPI1_ MOSI	TIM1_CH1N	-	COMP2 _OUT	-	-	-	-	-	EVE OU1
PA8	МСО	-	-	-	I2C2_ SMBA	I2S2_ MCK	TIM1_CH1	USART1_ CK		-	TIM4_ ETR	-	-	-	EVE OU1
PA9	-	-	-	TSC_ G4_IO1	I2C2_ SCL	I2S3_ MCK	TIM1_CH2	USART1_ TX		TIM15_ BKIN	TIM2_ CH3	-	-	-	EVE OU1
PA10	-	TIM17_ BKIN	-	TSC_ G4_IO2	I2C2_ SDA	-	TIM1_CH3	USART1_ RX	COMP6 _OUT	-	TIM2_ CH4		-	-	EVE OU1
PA11	-	-	-	-	-	-	TIM1_CH1N	USART1_ CTS	COMP1 OUT	CAN_RX	TIM4_ CH1	TIM1_CH4	TIM1_ BKIN2	USB_ DM	EVE OU1

DocID025186 Rev 7

43/144

নি

6.3 Operating conditions

6.3.1 General operating conditions

Table 24.	General	operating	conditions
-----------	---------	-----------	------------

Symbol	Parameter	Conditions	Min	Max	Unit	
f _{HCLK}	Internal AHB clock frequency	-	0	72		
f _{PCLK1}	Internal APB1 clock frequency	-	0	36	MHz	
f _{PCLK2}	Internal APB2 clock frequency	-	0	72		
V _{DD}	Standard operating voltage	-	2	3.6	V	
	Analog operating voltage (OPAMP and DAC not used)	Must have a potential	2	3.6	V	
V _{DDA}	Analog operating voltage (OPAMP and DAC used)	equal to or higher than V _{DD}	2.4	3.6	V	
V _{BAT}	Backup operating voltage	-	1.65	3.6	V	
		TC I/O	-0.3	V _{DD} +0.3	v	
V	I/O input voltage	TTa I/O	-0.3	V _{DDA} +0.3		
V _{IN}		FT and FTf I/O ⁽¹⁾	-0.3	5.5		
		BOOT0	0	5.5		
		WLCSP100	-	500		
Р	Power dissipation at $T_A =$ 85 °C for suffix 6 or $T_A =$	LQFP100	-	488		
P_{D}	105 °C for suffix $7^{(2)}$	LQFP64	-	444	mW	
		LQFP48	-	364		
	Ambient temperature for 6 dissipation	Maximum power dissipation	-40	85	°C	
т.	suffix version	Low-power dissipation ⁽³⁾	-40	105		
	Ambient temperature for 7	Maximum power dissipation	-40	105	°C	
	suffix version	Low-power dissipation ⁽³⁾	-40	125		
т.	lunction tomporature range	6 suffix version	-40	105	°C	
TJ	Junction temperature range	7 suffix version	-40	125	U	

1. To sustain a voltage higher than V_{DD} +0.3 V, the internal pull-up/pull-down resistors must be disabled.

If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} (see Section 7.5: Thermal characteristics).

 In low-power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} (see Section 7.5: Thermal characteristics).

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit	
N/	DVD three hold 0	Rising edge	2.1	2.18	2.26		
V _{PVD0}	PVD threshold 0	Falling edge	2	2.08	2.16		
M	PVD threshold 1	Rising edge	2.19	2.28	2.37		
V _{PVD1}	PVD theshold 1	Falling edge	2.09	2.18	2.27		
V	PVD threshold 2	Rising edge	2.28	2.38	2.48		
V _{PVD2}	PVD threshold 2	Falling edge	2.18	2.28	2.38		
V	PVD threshold 3	Rising edge	2.38	2.48	2.58		
V _{PVD3}		Falling edge	2.28	2.38	2.48	V	
V	PVD threshold 4	Rising edge	2.47	2.58	2.69	v	
V _{PVD4}		Falling edge	2.37	2.48	2.59		
N/	PVD threshold 5	Rising edge	2.57	2.68	2.79		
V _{PVD5}		Falling edge	2.47	2.58	2.69		
M	PVD threshold 6	Rising edge	2.66	2.78	2.9		
V _{PVD6}	PVD threshold 6	Falling edge	2.56	2.68	2.8		
M	PVD threshold 7	Rising edge	2.76	2.88	3		
V _{PVD7}		Falling edge	2.66	2.78	2.9		
V _{PVDhyst} ⁽²⁾	PVD hysteresis	-	-	100	-	mV	
IDD(PVD)	PVD current consumption	-	-	0.15	0.26	μA	

 Table 27. Programmable voltage detector characteristics

1. Guaranteed by characterization results.

2. Guaranteed by design.

Symbol	Para meter	Conditions (1)	Typ @V _{BAT}								Max @V _{BAT} = 3.6 V ⁽²⁾			Unit
Symbol			1.65V	1.8V	2V	2.4V	2.7V	3V	3.3V	3.6V	T _A = 25°C	T _A = 85°C	T _A = 105°C	
	Backup domain	LSE & RTC ON; "Xtal mode" lower driving capability; LSEDRV[1: 0] = '00'	0.48	0.50	0.52	0.58	0.65	0.72	0.80	0.90	1.1	1.5	2.0	
IDD_VBAT	supply current	LSE & RTC ON; "Xtal mode" higher driving capability; LSEDRV[1: 0] = '11'	0.83	0.86	0.90	0.98	1.03	1.10	1.20	1.30	1.5	2.2	2.9	μΑ

Table 34. Typical and maximum current consumption from V_{BAT} supply

1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values.

2. Guaranteed by characterization results.

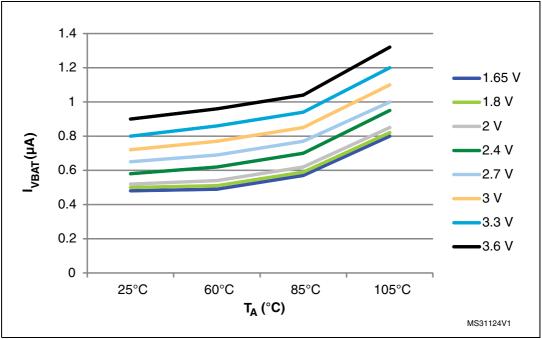


Figure 13. Typical V_{BAT} current consumption (LSE and RTC ON/LSEDRV[1:0] = '00')

On-chip peripheral current consumption

The MCU is placed under the following conditions:

- all I/O pins are in analog input configuration
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
- ambient operating temperature at 25°C and $V_{DD} = V_{DDA} = 3.3$ V.

Table 38. Peripheral current consumption

Derinherol	Typical consumption ⁽¹⁾	Unit
Peripheral	I _{DD}	Onit
BusMatrix ⁽²⁾	12.6	
DMA1	7.6	
DMA2	6.1	
CRC	2.1	
GPIOA	10.0	
GPIOB	10.3	
GPIOC	2.2	
GPIOD	8.8	
GPIOE	3.3	
GPIOF	3.0	
TSC	5.5	
ADC1&2	17.3	
APB2-Bridge ⁽³⁾	3.6	
SYSCFG	7.3	μA/MHz
TIM1	40.0	
SPI1	8.8	
USART1	23.3	
TIM15	17.1	
TIM16	10.1	
TIM17	11.0	
APB1-Bridge ⁽³⁾	6.1	
TIM2	49.1	
TIM3	38.8	
TIM4	38.3	

6.3.6 Wakeup time from low-power mode

The wakeup times given in *Table 39* are measured starting from the wakeup event trigger up to the first instruction executed by the CPU:

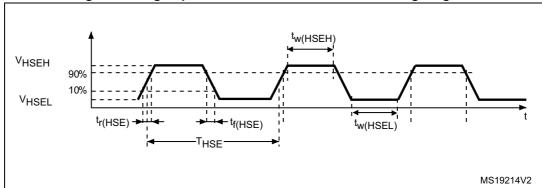
- For Stop or Sleep mode: the wakeup event is WFE.
- WKUP1 (PA0) pin is used to wakeup from Standby, Stop and Sleep modes.

All timings are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 24*.

Symbol	Parameter	Conditions	Typ @Vdd, V _{DD} = V _{DDA}							Unit
Symbol		Conditions	2.0 V	2.4 V	2.7 V	3 V	3.3 V	3.6 V	Мах	onit
	Wakoup from	Regulator in run mode	4.1	3.9	3.8	3.7	3.6	3.5	4.5	
^t wustop	Wakeup from Stop mode	Regulator in low-power mode	7.9	6.7	6.1	5.7	5.4	5.2	9	μs
$t_{WUSTANDBY}^{(1)}$	Wakeup from Standby mode	LSI and IWDG OFF	69.2	60.3	56.4	53.7	51.7	50	100	
t _{WUSLEEP}	Wakeup from Sleep mode	-		6					-	CPU clock cycles

Table 39. Low-power mode wakeup timings

1. Guaranteed by characterization results.


6.3.7 External clock source characteristics

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in *Section 6.3.14*. However, the recommended clock input waveform is shown in *Figure 14*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency ⁽¹⁾		1	8	32	MHz
V _{HSEH}	OSC_IN input pin high level voltage		$0.7V_{DD}$	-	V _{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage	-	V_{SS}	-	$0.3V_{DD}$	
t _{w(HSEH)} t _{w(HSEL)}	OSC_IN high or low time ⁽¹⁾		15	-	-	20
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time ⁽¹⁾		-	-	20	ns

1. Guaranteed by design.

Figure 14. High-speed external clock source AC timing diagram

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	Conditions	Monitored	Max vs. [f _{HSE} /f _{HCLK}]	Unit
Symbol 1	Farameter	contaitions	frequency band	8/72 MHz	Onic
		V_{DD} = 3.6 V, T_A = 25 °C, LQFP100 package compliant with IEC 61967-2	0.1 to 30 MHz	7	
6	Peak level		30 to 130 MHz	20	dBµV
S _{EMI}	reak level		130 MHz to 1GHz	27	
		01307-2	SAE EMI Level	4	-

Table 50. EMI characteristics

6.3.12 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114, ANSI/ESD STM5.3.1 standard.

Symbol	Ratings	Conditions		Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25 \ ^{\circ}C$, conforming to JESD22-A114		2	2000	
	Electrostatic		WLCSP100 package	3	250	V
V _{ESD(CDM)}	discharge voltage (charge device model)	T _A = +25 °C, conforming to ANSI/ESD STM5.3.1	Packages except WLCSP100	4	500	

Table 51. ESD absolute maximum ratings

1. Guaranteed by characterization results.

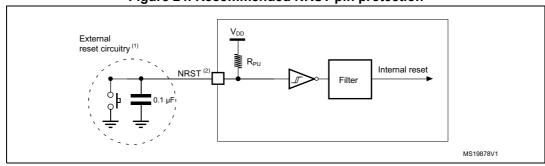


Figure 24. Recommended NRST pin protection

1. The reset network protects the device against parasitic resets.

 The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 57. Otherwise the reset will not be taken into account by the device.

6.3.16 Timer characteristics

The parameters given in *Table 58* are guaranteed by design.

Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions	Min	Max	Unit	
		-	1	-	t _{TIMxCLK}	
t _{res(TIM)}	Timer resolution time	f _{TIMxCLK} = 72 MHz	13.9	-	ns	
163(1110)		f _{TIM1CLK} = 144 MHz	6.95	-	ns	
f _{EXT}	Timer external clock	-	0	f _{TIMxCLK} /2	MHz	
'EXT	frequency on CH1 to CH4	f _{TIMxCLK} = 72 MHz	0 ITIMxCLK/2 0 36 - 16 - 32		MHz	
Pos	Timer resolution	TIMx (except TIM2)	-	16	bit	
Res _{TIM}		TIM2	-	32	Dit	
		-	1	65536	t _{TIMxCLK}	
t _{COUNTER}	16-bit counter clock period	f _{TIMxCLK} = 72 MHz	0.0139	910	μs	
COUNTER		f _{TIM1CLK} = 144 MHz	0.0069	455	μs	
		-	-	65536 × 65536	t _{TIMxCLK}	
t _{MAX_COUNT}	Maximum possible count	f _{TIMxCLK} = 72 MHz	-	59.65	s	
	with 32-bit counter	f _{TIM1CLK} = 144 MHz	-	29.825	s	

Table 58. TIMx⁽¹⁾⁽²⁾ characteristics

1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3, TIM4, TIM15, TIM16 and TIM17 timers.

2. Guaranteed by design.

6.3.17 Communications interfaces

I²C interface characteristics

The I²C interface meets the timings requirements of the I²C-bus specification and user manual rev.03 for:

- Standard-mode (Sm) : with a bit rate up to 100 Kbits/s
- Fast-mode (Fm) : with a bit rate up to 400 Kbits/s
- Fast-mode Plus (Fm+) : with a bit rate up to 1Mbits/s

The I²C timings requirements are guaranteed by design when the I²C peripheral is properly configured (refer to Reference manual).

The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDDIOx is disabled, but is still present. Only FTf I/O pins support Fm+ low level output current maximum requirement. Refer to *Section 6.3.14: I/O port characteristics*.

All I²C I/Os embed an analog filter. refer to the *Table 62: I2C analog filter characteristics*.

Symbol	Parameter	Standa	rd mode	Fast m	ode	Fast Mo	de Plus	Unit
Symbol	Parameter	Min	Мах	Min	Мах	Min	Max 1000 - 120 120 0.45 ⁽²⁾ 0.45 ⁽²⁾ - 1 - - - - -	Unit
f _{SCL}	SCL clock frequency	0	100	0	400	0	1000	KHz
t _{LOW}	Low period of the SCL clock	4.7	-	1.3	-	0.5	-	μs
t _{HIGH}	High Period of the SCL clock	4		0.6		0.26	-	μs
t _r	Rise time of both SDA and SCL signals	-	1000	-	300	-	120	ns
t _f	Fall time of both SDA and SCL signals	-	300	-	300	-	120	ns
t _{HD;DAT}	Data hold time	0	-	0	-	0	-	μs
t _{VD;DAT}	Data valid time	-	3.45 ⁽²⁾	-	0.9 ⁽²⁾	-	0.45 ⁽²⁾	μs
t _{VD;ACK}	Data valid acknowledge time	-	3.45 ⁽²⁾	-	0.9 ⁽²⁾	-	0.45 ⁽²⁾	μs
t _{SU;DAT}	Data setup time	250	-	100	-	50	-	ns
t _{hd:sta}	Hold time (repeated) START condition	4.0	-	0.6	-	0.26	-	μs
t _{su:sta}	Set-up time for a repeated START condition	4.7	-	0.6	-	0.26		μs
t _{su:sтo}	Set-up time for STOP condition	4.0	-	0.6	-	0.26	-	μs
t _{BUF}	Bus free time between a STOP and START condition	4.7	-	1.3	-	0.5	-	μs
Cb	Capacitive load for each bus line	-	400	-	400	-	550	pF
t _{SP}	Pulse width of spikes that are suppressed by the analog filter for Standard and Fast mode	0	50 ⁽³⁾	0	50 ⁽³⁾	-	-	ns

Table 61. I2C timing	as specification	(see I2C	specification.	rev.03.	June 2007) ⁽¹⁾
	jo opoomoanon	1000120	opoolinoution,	101.00,	

Symbol	Parameter	C	Conditions			Max (4)	Unit
			Single ended	Fast channel 5.1 Ms	-	±6.5	
ET	Total		Single ended	Slow channel 4.8 Ms	-	±6.5	
	unadjusted error		Differential	Fast channel 5.1 Ms	-	±4	
			Differential	Slow channel 4.8 Ms	-	±4.5	
			Single and d	Fast channel 5.1 Ms	-	±3	
ГО	Offect error		Single ended	Slow channel 4.8 Ms	-	±3	
EO	EO Offset error		Differential	Fast channel 5.1 Ms	_	±2.5	
		Dillerential	Slow channel 4.8 Ms	-	±2.5		
				Fast channel 5.1 Ms	-	±6	
50	EG Gain error	Single ended	Slow channel 4.8 Ms	_	±6		
EG Gain error		Differential	Fast channel 5.1 Ms	_	±3.5	LSB	
		Differential	Slow channel 4.8 Ms	-	±4		
		earity $2.0 \text{ V} \le \text{V}_{\text{DDA}} \le 3.6 \text{ V}$	Single ended - Differential -	Fast channel 5.1 Ms	-	±1.5	-
50	Differential			Slow channel 4.8 Ms	-	±1.5	
ED	error			Fast channel 5.1 Ms	_	±1.5	
		64-pin package		Slow channel 4.8 Ms	-	±1.5	
			Cinalo ondod	Fast channel 5.1 Ms	-	±3	
-	Integral		Single ended	Slow channel 4.8 Ms	_	±3.5	
EL	linearity error		Differential	Fast channel 5.1 Ms	-	±2	
			Differential	Slow channel 4.8 Ms	-	±2.5	
			Cinalo ondod	Fast channel 5.1 Ms	10.4	-	
ENOB	Effective		Single ended	Slow channel 4.8 Ms	10.4	-	h:to
(5)	number of bits		Differential	Fast channel 5.1 Ms	10.8	-	bits
			Differential	Slow channel 4.8 Ms	10.8	-	1
			Single and d	Fast channel 5.1 Ms	64	-	
SINAD	Signal-to- noise and		Single ended	Slow channel 4.8 Ms	63	-	dB
(5)	distortion ratio		Differential	Fast channel 5.1 Ms	67	-	
	Tallo		Differential	Slow channel 4.8 Ms	67	-	

Table 73. ADC accuracy, 64-pin packages⁽¹⁾⁽²⁾⁽³⁾

STM32F302xB STM32F302xC

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
t _{WAKEUP} ⁽³⁾	DAC Control register)	C _{LOAD} ∕50 pF, R _{LOAD} ≥ 5 kΩ	-	6.5	10	μs
PSRR+ ⁽¹⁾	Power supply rejection ratio (to V _{DDA}) (static DC measurement	C _{LOAD} = 50 pF, No R _{LOAD} ≥ 5 kΩ,	-	-67	-40	dB

Table 75. DAC characteristics (continued)

1. Guaranteed by design.

2. Quiescent mode refers to the state of the DAC a keeping steady value on the output, so no dynamic consumption is involved.

3. Guaranteed by characterization results.

Figure 36. 12-bit buffered /non-buffered DAC

1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

Table 88. Document revision history (continued)		
Date	Revision	Changes
29-Jan-2015	4	Updated cover page with ADC up to 17 channels. Updated <i>Section 6.3.20: Comparator characteristics</i> modifying ts_sc characteristics in <i>Table 76</i> and adding <i>Figure 37: Maximum VREFINT</i> <i>scaler startup time from power down</i> . Updated I _{DD} data in <i>Table 42: HSE oscillator characteristics</i> .
17-Apr-2015	5	Updated <i>Figure 1: STM32F302xB/STM32F302xC block diagram</i> changing 32 KB of SRAM by 40 KB of SRAM. Updated <i>Section 7: Package information</i> : with new package information structure adding 1 sub paragraph for each package. Updated <i>Figure 41: LQFP100 – 14 x 14 mm, low-profile quad flat</i> <i>package top view example</i> removing gate mark. Added note for all package device markings: "the following figure gives an example of topside marking orientation versus pin 1 identifier location". Updated <i>Table 82: LQFP64 – 10 x 10 mm, low-profile quad flat package</i> <i>mechanical data</i> . Updated <i>Table 7: STM32F302xB/STM32F302xC peripheral</i> <i>interconnect matrix</i> removing TIM8 reference and updating note below the table, replacing by a reference to RM0365.
22-Feb-2016	6	 Added WLCSP100: Updated cover page. Updated Table 2: STM32F302xx family device features and peripheral counts. Added Figure 7: STM32F302xB/STM32F302xC WLCSP100 pinout. Updated Table 13: STM32F302xB/STM32F302xC pin definitions. Updated Table 24: General operating conditions. Added Section 7.4: WLCSP100 - 0.4 mm pitch wafer level chip scale package information. Updated Table 86: Package thermal characteristics. Updated Table 87: Ordering information scheme. Updated Table 87: Ordering information scheme. Updated Figure 4, Figure 5, Figure 6, Table 13 and Table 22 removing all VDD and VSS indexes. Updated Table 68: ADC characteristics adding V_{REF}- negative voltage reference. Updated Table 21: Voltage characteristics adding table note 4. Updated Table 23: LSE oscillator characteristics (fLSE = 32.768 kHz) LSEDRV[1:0] bits. Updated Table 28: Embedded internal reference voltage V_{REFINT} internal reference voltage (min and typ values). Updated Table 51: ESD absolute maximum ratings ESD CDM at class 3 and 4 including WLCSP100 package information.

 Table 88. Document revision history (continued)

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

DocID025186 Rev 7

