

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	37
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	40K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 9x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f302cct7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	6.3.5 6.3.6 6.3.7	Supply current characteristics 6 Wakeup time from low-power mode 7 External clock source characteristics 7
	6.3.6 6.3.7	Wakeup time from low-power mode 7 External clock source characteristics 7
	6.3.7	External clock source characteristics
	638	
	0.5.0	Internal clock source characteristics7
	6.3.9	PLL characteristics
	6.3.10	Memory characteristics
	6.3.11	EMC characteristics
	6.3.12	Electrical sensitivity characteristics
	6.3.13	I/O current injection characteristics
	6.3.14	I/O port characteristics
	6.3.15	NRST pin characteristics
	6.3.16	Timer characteristics
	6.3.17	Communications interfaces
	6.3.18	ADC characteristics
	6.3.19	DAC electrical specifications 11
	6.3.20	Comparator characteristics
	6.3.21	Operational amplifier characteristics
	6.3.22	Temperature sensor characteristics
	6.3.23	V _{BAT} monitoring characteristics
Pack	age info	ormation
7.1	LQFP1	00 – 14 x 14 mm, low-profile quad flat package
	informa	ation
7.2	LQFP6	4 – 10 x 10 mm, low-profile quad flat package
	informa	ition
7.3	LQFP4	8 – 7 x 7 mm, low-profile quad flat package
7.4	WLCSF	P100 - 0.4 mm pitch wafer level chip scale package information 13
7.5	Therma	al characteristics
	751	Reference document 13
	752	Selecting the product temperature range
	1.0.2	

8

9

7

	package outline.	. 133
Figure 49.	WLCSP100 – 100L, 4.166 x 4.628 mm 0.4 mm pitch wafer level chip scale	
U U	package recommended footprint	. 135
Figure 50.	WLCSP100, 0.4 mm pitch wafer level chip scale package	
U	top view example	. 136

DocID025186 Rev 7

57

Interconnect source	Interconnect destination	Interconnect action
GPIO RTCCLK HSE/32 MC0	TIM16	Clock source used as input channel for HSI and LSI calibration
CSS CPU (hard fault) COMPx PVD GPIO	TIM1, TIM15, 16, 17	Timer break
	TIMx	External trigger, timer break
GPIO	ADCx DAC1	Conversion external trigger
DAC1	COMPx	Comparator inverting input

Table 4. STM32F302xB/STM32F302xC peripheral interconnect matrix (continued)

Note: For more details about the interconnect actions, please refer to the corresponding sections in the reference manual (RM0365.

3.9 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example with failure of an indirectly used external oscillator).

Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the high speed APB domains is 72 MHz, while the maximum allowed frequency of the low speed APB domain is 36 MHz.

3.10 General-purpose input/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current capable except for analog inputs.

The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

Fast I/O handling allows I/O toggling up to 36 MHz.

3.11 Direct memory access (DMA)

The flexible general-purpose DMA is able to manage memory-to-memory, peripheral-tomemory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer.

Each of the 12 DMA channels is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals: SPI, I²C, USART, general-purpose timers, DAC and ADC.

3.12 Interrupts and events

3.12.1 Nested vectored interrupt controller (NVIC)

The STM32F302xB/STM32F302xC devices embed a nested vectored interrupt controller (NVIC) able to handle up to 66 maskable interrupt channels and 16 priority levels.

The NVIC benefits are the following:

- Closely coupled NVIC gives low latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of late arriving higher priority interrupts
- Support for tail chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

The NVIC hardware block provides flexible interrupt management features with minimal interrupt latency.

Group	Capacitive sensing signal name	Pin name	Group	Capacitive sensing signal name	Pin name
	TSC_G1_IO1	PA0		TSC_G5_IO1	PB3
1	TSC_G1_IO2	PA1	5	TSC_G5_IO2	PB4
1	TSC_G1_IO3	PA2	5	TSC_G5_IO3	PB6
	TSC_G1_IO4	PA3		TSC_G5_IO4	PB7
	TSC_G2_IO1	PA4		TSC_G6_IO1	PB11
2	TSC_G2_IO2	PA5	6	TSC_G6_IO2	PB12
	TSC_G2_IO3	PA6	0	TSC_G6_IO3	PB13
	TSC_G2_IO4	PA7		TSC_G6_IO4	PB14
2	TSC_G3_IO1	PC5		TSC_G7_IO1	PE2
	TSC_G3_IO2	PB0	7	TSC_G7_IO2	PE3
5	TSC_G3_IO3	PB1	'	TSC_G7_IO3	PE4
	TSC_G3_IO4	PB2		TSC_G7_IO4	PE5
	TSC_G4_IO1	PA9		TSC_G8_IO1	PD12
4	TSC_G4_IO2	PA10	8	TSC_G8_IO2	PD13
	TSC_G4_IO3	PA13	0	TSC_G8_IO3	PD14
	TSC_G4_IO4	PA14		TSC_G8_IO4	PD15

Table 10. Capacitive sensing GPIOs available on STM32F302xB/STM32F302xC devices

Table 11. No. of capacitive sensing channels available on STM32F302xB/STM32F302xC devices

Apolog VO group	Number of capacitive sensing channels					
	STM32F302Vx	STM32F302Rx	STM32F302Cx			
G1	3	3	3			
G2	3	3	3			
G3	3	3	2			
G4	3	3	3			
G5	3	3	3			
G6	3	3	3			
G7	3	0	0			
G8	3	0	0			
Number of capacitive sensing channels	24	18	17			

Na	me	Abbreviation Definition					
Pin r	name	Unless otherwis during and after	Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name				
		S	Supply pin				
Pin	type	I	Input only pin				
		I/O	Input / output pin				
		FT	5 V tolerant I/O				
		FTf 5 V tolerant I/O, FM+ capable					
I/O ctr	ucturo	TTa 3.3 V tolerant I/O directly connected to Al					
i/O su	uciure	TC Standard 3.3V I/O					
		В	Dedicated BOOT0 pin				
		RST	Bidirectional reset pin with embedded weak pull-up resistor				
No	ites	Unless otherwise specified by a note, all I/Os are set as floating inputs and after reset					
Alternate functions		Functions selected through GPIOx_AFR registers					
functions	Additional functions	Functions	Functions directly selected/enabled through peripheral registers				

Table 12 Legend/abbreviations us	sed in the pinout table
Table 12. Legend/abbieviations us	seu in the phiout table

Table 13. STM32F302xB/STM32F302xC pin definitions

	Pin nu	umber						Pin functions		
WLCSP100	LQFP100	LQFP64	LQFP48	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions	
D6	1	-	-	PE2	I/O	FT	(1)	TRACECK, TIM3_CH1, TSC_G7_IO1, EVENTOUT	-	
D7	2	-	-	PE3	I/O	FT	(1)	TRACED0, TIM3_CH2, TSC_G7_IO2, EVENTOUT	-	
C8	3	-	-	PE4	I/O	FT	(1)	TRACED1, TIM3_CH3, TSC_G7_IO3, EVENTOUT	-	
В9	4	-	-	PE5	I/O	FT	(1)	TRACED2, TIM3_CH4, TSC_G7_IO4, EVENTOUT	-	
E7	5	-	-	PE6	I/O	FT	(1)	TRACED3, EVENTOUT	WKUP3, RTC_TAMP3	
D8	6	1	1	V _{BAT}	S	-	-	Backup power supply		

DocID025186 Rev 7

6.3 Operating conditions

6.3.1 General operating conditions

Table 24	. General	operating	conditions
----------	-----------	-----------	------------

Symbol	Parameter	Conditions	Min	Max	Unit	
f _{HCLK}	Internal AHB clock frequency	-	0	72		
f _{PCLK1}	Internal APB1 clock frequency	-	0	36	MHz	
f _{PCLK2}	Internal APB2 clock frequency	-	0	72		
V _{DD}	Standard operating voltage	-	2	3.6	V	
N/	Analog operating voltage (OPAMP and DAC not used)	Must have a potential	2	3.6	v	
V DDA	Analog operating voltage (OPAMP and DAC used)	V _{DD}	2.4	3.6		
V _{BAT}	Backup operating voltage	-	1.65	3.6	V	
		TC I/O	-0.3	V _{DD} +0.3		
M	I/O input voltage	TTa I/O	-0.3	V _{DDA} +0.3	V	
v _{IN}		FT and FTf I/O ⁽¹⁾	-0.3	5.5		
		BOOT0	0	5.5		
		WLCSP100	-	500		
Р	Power dissipation at $T_A =$ 85 °C for suffix 6 or $T_A =$ 105 °C for suffix 7 ⁽²⁾	LQFP100	-	488		
PD		LQFP64	-	444	mvv	
		LQFP48	-	364		
	Ambient temperature for 6	Maximum power dissipation	-40	85	°C	
Та	suffix version	Low-power dissipation ⁽³⁾	-40	105	-	
	Ambient temperature for 7	Maximum power dissipation	-40	105	°C	
		Low-power dissipation ⁽³⁾	-40	125		
т.	lunction tomperature reason	6 suffix version	-40	105		
TJ	Junction temperature range	7 suffix version	-40	125	Ĵ	

1. To sustain a voltage higher than V_{DD} +0.3 V, the internal pull-up/pull-down resistors must be disabled.

If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} (see Section 7.5: Thermal characteristics).

 In low-power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} (see Section 7.5: Thermal characteristics).

On-chip peripheral current consumption

The MCU is placed under the following conditions:

- all I/O pins are in analog input configuration
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
- ambient operating temperature at 25°C and $V_{DD} = V_{DDA} = 3.3$ V.

Table 38. Peripheral current consumption

Poriphoral	Typical consumption ⁽¹⁾	Unit
renpilerai	I _{DD}	
BusMatrix ⁽²⁾	12.6	
DMA1	7.6	1
DMA2	6.1	
CRC	2.1	1
GPIOA	10.0	1
GPIOB	10.3	1
GPIOC	2.2	1
GPIOD	8.8	1
GPIOE	3.3	1
GPIOF	3.0	
TSC	5.5	1
ADC1&2	17.3	1
APB2-Bridge ⁽³⁾	3.6	
SYSCFG	7.3	
TIM1	40.0	
SPI1	8.8	
USART1	23.3	
TIM15	17.1	
TIM16	10.1	
TIM17	11.0	
APB1-Bridge ⁽³⁾	6.1	
TIM2	49.1]
TIM3	38.8]
TIM4	38.3]

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table	52	Electrical	sensitivities
Table	υz.	LICCUICAI	30113111411103

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +105 \text{ °C conforming to JESD78A}$	II level A

6.3.13 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of -5μ A/+0 μ A range), or other functional failure (for example reset occurrence or oscillator frequency deviation).

The test results are given in Table 53.

6.3.17 Communications interfaces

I²C interface characteristics

The I²C interface meets the timings requirements of the I²C-bus specification and user manual rev.03 for:

- Standard-mode (Sm) : with a bit rate up to 100 Kbits/s
- Fast-mode (Fm) : with a bit rate up to 400 Kbits/s
- Fast-mode Plus (Fm+) : with a bit rate up to 1Mbits/s

The I²C timings requirements are guaranteed by design when the I²C peripheral is properly configured (refer to Reference manual).

The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDDIOx is disabled, but is still present. Only FTf I/O pins support Fm+ low level output current maximum requirement. Refer to *Section 6.3.14: I/O port characteristics*.

All I²C I/Os embed an analog filter. refer to the *Table 62: I2C analog filter characteristics*.

Cumhal	Devenuetor	Standard mode		Fast mode		Fast Mode Plus		Unit
Зутрої	Parameter	Min	Max	Min	Max	Min	Max	Unit
f _{SCL}	SCL clock frequency	0	100	0	400	0	1000	KHz
t _{LOW}	Low period of the SCL clock	4.7	-	1.3	-	0.5	-	μs
t _{HIGH}	High Period of the SCL clock	4		0.6		0.26	-	μs
t _r	Rise time of both SDA and SCL signals		1000	-	300	-	120	ns
t _f	Fall time of both SDA and SCL signals		300	-	300	-	120	ns
t _{HD;DAT}	Data hold time	0	-	0	-	0	-	μs
t _{VD;DAT}	Data valid time	-	3.45 ⁽²⁾	-	0.9 ⁽²⁾	-	0.45 ⁽²⁾	μs
t _{VD;ACK}	K Data valid acknowledge time		3.45 ⁽²⁾	-	0.9 ⁽²⁾	-	0.45 ⁽²⁾	μs
t _{SU;DAT}	r Data setup time		-	100	-	50	-	ns
t _{hd:sta}	Hold time (repeated) START condition		-	0.6	-	0.26	-	μs
t _{su:sta}	Set-up time for a repeated START condition		-	0.6	-	0.26		μs
t _{su:sтo}	Set-up time for STOP condition	4.0	-	0.6	-	0.26	-	μs
t _{BUF}	Bus free time between a STOP and START condition		-	1.3	-	0.5	-	μs
Cb	Capacitive load for each bus line	-	400	-	400	-	550	pF
t _{SP}	Pulse width of spikes that are suppressed by the analog filter for Standard and Fast mode	0	50 ⁽³⁾	0	50 ⁽³⁾	-	-	ns

Table 61, I2C	timinas si	pecification	(see I2C s	specification.	rev.03. June	2007) ⁽¹⁾
	unnings sp	peomoution		peomoution,	10 1 .00, 0unc	2001)

Figure 28. SPI timing diagram - master mode⁽¹⁾

1. Measurement points are done at 0.5V_{DD} and with external C_L = 30 pF.

104/144

Table 68. ADC characteristics (continued) Symbol Parameter Мах Conditions Min Тур Unit 0.021 f_{ADC} = 72 MHz 8.35 μs $t_{s}^{(1)}$ Sampling time 1.5 601.5 1/f_{ADC} --T_{ADCVREG_STUP}⁽¹⁾ ADC Voltage Regulator Start-up time -10 -μs f_{ADC} = 72 MHz Resolution = 12 bits 0.19 8.52 μs Total conversion time (including $t_{CONV}^{(1)}$ sampling time) 14 to 614 (t_S for sampling + 12.5 for successive Resolution = 12 bits 1/f_{ADC} approximation) (V_{SSA}+V_{REF+})/2 -10% (V_{SSA}+V_{REF+})/2 + 10% CMIR⁽¹⁾ ADC differential mode V Common Mode Input signal Range $(V_{SSA}+V_{REF+})/2$

1. Data guaranteed by design.

2. V_{REF+} can be internally connected to V_{DDA} and V_{REF-} can be internally connected to V_{SSA}, depending on the package. Refer to Section 4: Pinouts and pin description for further details.

Figure 32. ADC typical current consumption on VDDA pin

Figure 33. ADC typical current consumption on VREF+ pin

Figure 34. ADC accuracy characteristics

1. Refer to *Table 68* for the values of R_{AIN}.

 C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 11*. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip.

STM32F302xB STM32F302xC

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
t _{WAKEUP} ⁽³⁾	Wakeup time from off state (Setting the ENx bit in the DAC Control register)	C _{LOAD} ⊴50 pF, R _{LOAD} ≥ 5 kΩ	-	6.5	10	μs
PSRR+ ⁽¹⁾	Power supply rejection ratio (to V _{DDA}) (static DC measurement	C _{LOAD} = 50 pF, No R _{LOAD} ≥ 5 kΩ,	-	-67	-40	dB

Table 75. DAC characteristics (continued)

1. Guaranteed by design.

2. Quiescent mode refers to the state of the DAC a keeping steady value on the output, so no dynamic consumption is involved.

3. Guaranteed by characterization results.

Figure 36. 12-bit buffered /non-buffered DAC

1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Figure 41. LQFP100 – 14 x 14 mm, low-profile quad flat package top view example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

7.5.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Section 8: Ordering information*.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

As applications do not commonly use the STM32F302xB/STM32F302xC at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application.

The following examples show how to calculate the temperature range needed for a given application.

Example 1: High-performance application

Assuming the following application conditions:

Maximum ambient temperature T_{Amax} = 82 °C (measured according to JESD51-2), I_{DDmax} = 50 mA, V_{DD} = 3.5 V, maximum 3 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL}= 0.4 V and maximum 2 I/Os used at the same time in output at low level with I_{OL} = 20 mA, V_{OL}= 1.3 V

P_{INTmax} = 50 mA × 3.5 V= 175 mW

P_{IOmax} = 3 × 8 mA × 0.4 V + 2 × 20 mA × 1.3 V = 61.6 mW

This gives: P_{INTmax} = 175 mW and P_{IOmax} = 61.6 mW:

 $P_{Dmax} = 175 + 61.6 = 236.6 \text{ mW}$

Thus: $P_{Dmax} = 236.6 \text{ mW}$

Using the values obtained in *Table 86* T_{Jmax} is calculated as follows:

– For LQFP64, 45°C/W

T_{Jmax} = 82 °C + (45°C/W × 236.6 mW) = 82 °C + 10.65 °C = 92.65 °C

This is within the range of the suffix 6 version parts ($-40 < T_J < 105$ °C).

In this case, parts must be ordered at least with the temperature range suffix 6 (see *Section 8: Ordering information*).

8 Ordering information

Example:	STM32	F	302	R	В	Т	6	xxx
Device family								
STM32 = ARM-based 32-bit microcontroller								
Product type								
F = general-purpose								
Device subfamily								
302 = STM32F302xx								
Pin count								
C = 48 pins								
R = 64 pins								
V = 100 pins								
Flash memory size								
B = 128 Kbytes of Flash memory								
C = 256 Kbytes of Flash memory								
Package								
T = LQFP								
Y = WLCSP								
Temperature range								
6 = Industrial temperature range, –40 to 85 $^{\circ}\overline{C}$								
7 = Industrial temperature range, -40 to 105 °C								
Options								

Table 87. Ordering information scheme

xxx = programmed parts TR = tape and reel

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

9 Revision history

Date	Revision	Changes
21-Nov-2013	1	Initial release
16-Apr-2014	2	Updated Table 38: Peripheral current consumption. Updated SRAM size in Table 2: STM32F302xx family device features and peripheral counts, Cover page and description. Updated Section 6.3.17: Communications interfaces I ² C interface. Updated Table 50: EMI characteristics conditions :3.3v replaced by 3.6V. Updated Table 77: Operational amplifier characteristics adding TS_OPAMP_VOUT row. Updated Section 3.13: Fast analog-to-digital converter (ADC). updated ARM and Cortex trademark. Updated Table 32: Typical and maximum VDD consumption in Stop and Standby modes with Max value at 85°C and 105°C. Updated Table 70: ADC accuracy - limited test conditions, 100-pin packages and Table 71: ADC accuracy, 100-pin packages for 100-pin packages. Added Table 72: ADC accuracy - limited test conditions, 64-pin packages. Added Table 72: ADC accuracy at 1MSPS for 1MSPS sampling frequency. Updated Table 63: SPI characteristics. Updated Table 75: DAC characteristics. Updated Table 75: DAC characteristics.
09-Dec-2014	3	Updated core description in cover page. Updated HSI characteristics <i>Table 44: HSI oscillator characteristics</i> and <i>Figure 18: HSI oscillator accuracy characterization results for soldered</i> <i>parts.</i> Updated <i>Table 58: TIMx characteristics.</i> Updated <i>Table 16: STM32F302xB/STM32F302xC pin definitions</i> adding note for I/Os featuring an analog output function (DAC_OUT,OPAMP_OUT). Updated <i>Table 68: ADC characteristics</i> adding IDDA & IREF consumptions. Added <i>Figure 32: ADC typical current consumption on VDDA pin</i> and <i>Figure 33: ADC typical current consumption on VREF+ pin.</i> Added section 3.8: Interconnect matrix. Added note after <i>Table 32: Typical and maximum VDD consumption in</i> <i>Stop and Standby modes.</i> Updated <i>Section 7: Package information</i> with new LQFP100, LQFP64, LQFP48 package marking. Updated <i>Table 16: STM32F302xB/STM32F302xC pin definitions</i> and alternate functions tables replacing usart_rts by usart_rts_de.

Table 88	. Document	revision	history
----------	------------	----------	---------

