

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	52
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	40K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f302rct6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Description

The STM32F302xB/STM32F302xC family is based on the high-performance ARM[®] Cortex[®]-M4 32-bit RISC core with FPU operating at a frequency of up to 72 MHz, and embedding a floating point unit (FPU), a memory protection unit (MPU) and an embedded trace macrocell (ETM). The family incorporates high-speed embedded memories (up to 256 Kbytes of Flash memory, up to 40 Kbytes of SRAM) and an extensive range of enhanced I/Os and peripherals connected to two APB buses.

The devices offer up to two fast 12-bit ADCs (5 Msps), four comparators, two operational amplifiers, up to one DAC channel, a low-power RTC, up to five general-purpose 16-bit timers, one general-purpose 32-bit timer, and one timer dedicated to motor control. They also feature standard and advanced communication interfaces: up to two I²Cs, up to three SPIs (two SPIs are with multiplexed full-duplex I2Ss), three USARTs, up to two UARTs, CAN and USB. To achieve audio class accuracy, the I2S peripherals can be clocked via an external PLL.

The STM32F302xB/STM32F302xC family operates in the -40 to +85 °C and -40 to +105 °C temperature ranges from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power applications.

The STM32F302xB/STM32F302xC family offers devices in four packages ranging from 48 pins to 100 pins.

The set of included peripherals changes with the device chosen.

3.4 Embedded SRAM

STM32F302xB/STM32F302xC devices feature up to 40 Kbytes of embedded SRAM with hardware parity check on first 16 Kbytes of SRAM. The memory can be accessed in read/write at CPU clock speed with 0 wait states.

3.5 Boot modes

At startup, Boot0 pin and Boot1 option bit are used to select one of three boot options:

- Boot from user Flash
- Boot from system memory
- Boot from embedded SRAM

The boot loader is located in the system memory. It is used to reprogram the Flash memory by using USART1 (PA9/PA10), USART2 (PD5/PD6) or USB (PA11/PA12) through DFU (device firmware upgrade).

3.6 Cyclic redundancy check (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location.

Interconnect source	Interconnect destination	Interconnect action
GPIO RTCCLK HSE/32 MC0	TIM16	Clock source used as input channel for HSI and LSI calibration
CSS CPU (hard fault) COMPx PVD GPIO	TIM1, TIM15, 16, 17	Timer break
	TIMx	External trigger, timer break
GPIO	ADCx DAC1	Conversion external trigger
DAC1	COMPx	Comparator inverting input

Table 4. STM32F302xB/STM32F302xC peripheral interconnect matrix (continued)

Note: For more details about the interconnect actions, please refer to the corresponding sections in the reference manual (RM0365.

3.9 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example with failure of an indirectly used external oscillator).

Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the high speed APB domains is 72 MHz, while the maximum allowed frequency of the low speed APB domain is 36 MHz.

44/144

	Table 14. Alternate functions for port A (continued)														
Port & Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF14	AF15
PA12	-	TIM16_ CH1	-	-	-	-	TIM1_CH2N	USART1_ RTS_DE	COMP2 _OUT	CAN_TX	TIM4_ CH2	TIM1_ETR	-	USB_ DP	EVENT OUT
PA13	SWDIO -JTMS	TIM16_ CH1N	-	TSC_ G4_IO3	-	IR_ OUT	-	USART3_ CTS	-	-	TIM4_ CH3	-	-	-	EVENT OUT
PA14	SWCLK -JTCK	-	-	TSC_ G4_IO4	I2C1_ SDA		TIM1_BKIN	USART2_ TX	-	-	-	-	-	-	EVENT OUT
PA15	JTDI	TIM2_ CH1_ ETR		-	I2C1_ SCL	SPI1_ NSS	SPI3_NSS, I2S3_WS	USART2_ RX	-	TIM1_ BKIN	-	-	-	-	EVENT OUT

STM32F302xB STM32F302xC

AF10

-

-

-

AF12

-

-

-

_

-

_

-

-

TIM1

BKIN

-

-

-

-

-

_

-

AF15

EVENT

EVENT

EVENT

EVENT

EVENT

EVENT

EVENT

EVENT

OUT

OUT

OUT

OUT

OUT

OUT

OUT

OUT EVENT

OUT

OUT

OUT

OUT

OUT

EVENT

EVENT

EVENT

EVENT

Pinouts and pin description

36	-	CH1N	CH1	G5_IO3
37	-	TIM17_ CH1N	TIM4_ CH2	TSC_ G5_IO4
38	-	TIM16_ CH1	TIM4_ CH3	TSC_ SYNC
39	-	TIM17_ CH1	TIM4_ CH4	
810	-	TIM2_ CH3	-	TSC_ SYNC
811	-	TIM2_ CH4	-	TSC_ G6_IO1
812	_	-	-	TSC_ G6_IO2

DocID025186 Rev 7

45/144

Port & AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 Pin Name TSC_ TIM3 PB0 TIM1 CH2N _ --_ --G3 102 CH3 TIM3 TSC COMP4 TIM1_CH3N PB1 ---_ _ G3 103 OUT CH4 TSC_ PB2 ---------G3 104 JTDO-SPI1_ SPI3 SCK, USART2 TIM2 TIM4_ TSC_ TIM3 TRACES PB3 _ -CH2 G5 101 ETR SCK 12S3 CK ETR ТΧ WO TIM16 TIM3 TSC SPI1_ SPI3 MISO, USART2_ TIM17 NJTRST PB4 -_ G5 102 MISO I2S3ext SD CH1 CH1 RX BKIN I2C1_ SPI1_ SPI3 MOSI, TIM16 TIM3 USART2 TIM17_ PB5 ---SMBA MOSI I2S3_SD CH2 CK CH1 BKIN TIM16 USART1 TIM4 TSC PB6 I2C1 SCL _ -ТΧ I2C1_ USART1 TIM3 PB --_ SDA CH4 RX COMP1_ CAN_RX I2C1 SCL PB --OUT I2C1_ COMP2_ IR OUT CAN TX PB -SDA OUT USART3_ PB _ --_ -ТΧ USART3_ PΒ ----_ RX 12C2 SPI2 NSS, TIM1 USART3 PB _ -

12S2 WS

BKIN

CK

SMBA

Table 15. Alternate functions for port B

6.1.6 Power supply scheme

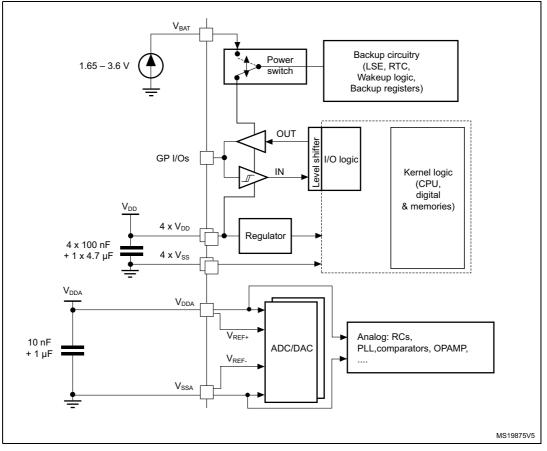


Figure 11. Power supply scheme

1. Dotted lines represent the internal connections on low pin count packages, joining the dedicated supply pins.

Caution: Each power supply pair (V_{DD}/V_{SS}, V_{DDA}/V_{SSA} etc..) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below the appropriate pins on the underside of the PCB to ensure the good functionality of the device.

Symbol	Para	(4)					Max @V _{BAT} = 3.6 V ⁽²⁾			Unit				
Symbol	meter	(1)	1.65V	1.8V	2V	2.4V	2.7V	3V	3.3V	3.6V	T _A = 25°C	T _A = 85°C	T _A = 105°C	Unit
	Backup domain	LSE & RTC ON; "Xtal mode" lower driving capability; LSEDRV[1: 0] = '00'	0.48	0.50	0.52	0.58	0.65	0.72	0.80	0.90	1.1	1.5	2.0	
IDD_VBAT	supply current	LSE & RTC ON; "Xtal mode" higher driving capability; LSEDRV[1: 0] = '11'	0.83	0.86	0.90	0.98	1.03	1.10	1.20	1.30	1.5	2.2	2.9	μA

Table 34. Typical and maximum current consumption from V_{BAT} supply

1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values.

2. Guaranteed by characterization results.

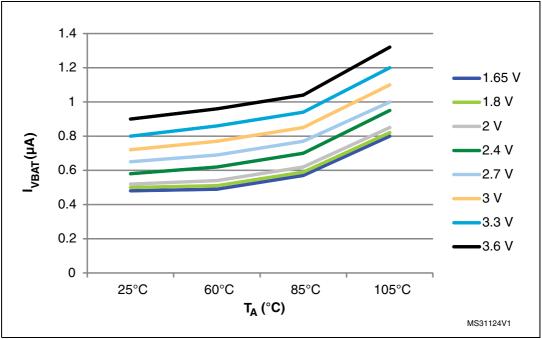


Figure 13. Typical V_{BAT} current consumption (LSE and RTC ON/LSEDRV[1:0] = '00')

Typical current consumption

The MCU is placed under the following conditions:

- V_{DD} = V_{DDA} = 3.3 V
- All I/O pins available on each package are in analog input configuration
- The Flash access time is adjusted to f_{HCLK} frequency (0 wait states from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states from 48 MHz to 72 MHz), and Flash prefetch is ON
- When the peripherals are enabled, $f_{APB1} = f_{AHB/2}$, $f_{APB2} = f_{AHB}$
- PLL is used for frequencies greater than 8 MHz
- AHB prescaler of 2, 4, 8,16 and 64 is used for the frequencies 4 MHz, 2 MHz, 1 MHz, 500 kHz and 125 kHz respectively.

Table 35. Typical current consumption in Run mode, code with data processing running from Flash

				Т	ур				
Symbol	Parameter	Conditions f _{HCL}		Peripherals enabled	Peripherals disabled	Unit			
			72 MHz	61.3	28.0				
			64 MHz	54.8	25.4				
			48 MHz	41.9	19.3				
			32 MHz	28.5	13.3				
			24 MHz	21.8	10.4				
	Supply current in Run mode from		16 MHz	14.9	7.2	mA			
I _{DD}	V _{DD} supply		8 MHz	7.7	3.9	- IIIA			
			4 MHz	4.5	2.5				
		Running from HSE	2 MHz	2.8	1.7				
						1 MHz	1 MHz	1.9	1.3
			500 kHz	1.4	1.1				
		crystal clock 8 MHz,	125 kHz	1.1	0.9				
		code executing from	72 MHz	240.3	239.5				
		Flash	64 MHz	210.9	210.3				
			48 MHz	155.8	155.6				
			32 MHz	105.7	105.6				
			24 MHz	MHz 82.1	82.0				
I _{DDA} ^{(1) (2)}	Supply current in Run mode from		16 MHz	58.8	58.8	μA			
'DDA`´``	V _{DDA} supply		8 MHz	2.4	2.4	μΑ			
	DDA		4 MHz	2.4	2.4	1			
			2 MHz	2.4	2.4	1			
			1 MHz	2.4	2.4	-			
			500 kHz	2.4	2.4	1			
			125 kHz	2.4	2.4]			

1. V_{DDA} monitoring is ON.

2. When peripherals are enabled, the power consumption of the analog part of peripherals such as ADC, DAC, Comparators, OpAmp etc. is not included. Refer to the tables of characteristics in the subsequent sections.

On-chip peripheral current consumption

The MCU is placed under the following conditions:

- all I/O pins are in analog input configuration
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
- ambient operating temperature at 25°C and $V_{DD} = V_{DDA} = 3.3$ V.

Table 38. Peripheral current consumption

Derinherol	Typical consumption ⁽¹⁾	Unit
Peripheral	I _{DD}	Onit
BusMatrix ⁽²⁾	12.6	
DMA1	7.6	
DMA2	6.1	
CRC	2.1	
GPIOA	10.0	
GPIOB	10.3	
GPIOC	2.2	
GPIOD	8.8	
GPIOE	3.3	
GPIOF	3.0	
TSC	5.5	
ADC1&2	17.3	
APB2-Bridge ⁽³⁾	3.6	
SYSCFG	7.3	μA/MHz
TIM1	40.0	
SPI1	8.8	
USART1	23.3	
TIM15	17.1	
TIM16	10.1	
TIM17	11.0	
APB1-Bridge ⁽³⁾	6.1	
TIM2	49.1	
TIM3	38.8	
TIM4	38.3	

6.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 49*. They are based on the EMS levels and classes defined in the application note AN1709.

	Symbol	Parameter	Conditions	Level/ Class
ſ	V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, LQFP100, T _A = +25°C, f _{HCLK} = 72 MHz conforms to IEC 61000-4-2	3B
	V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V_{DD} = 3.3 V, LQFP100, T _A = +25°C, f _{HCLK} = 72 MHz conforms to IEC 61000-4-4	4A

Table 49. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	Conditions	Monitored	Max vs. [f _{HSE} /f _{HCLK}]	Unit
Symbol	Farameter	contaitions	frequency band 8/72 MHz		Unit
			0.1 to 30 MHz	7	
6	Peak level	$V_{DD} = 3.6 V, T_A = 25 °C,$ LQFP100 package	30 to 130 MHz	20	dBµV
S _{EMI}	Peak level		130 MHz to 1GHz	27	
		01307-2	SAE EMI Level	4	-

Table 50. EMI characteristics

6.3.12 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114, ANSI/ESD STM5.3.1 standard.

Symbol	Ratings	Conditions		Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25 \ ^{\circ}C$, conforming to JESD22-A114		2	2000	
	Electrostatic		WLCSP100 package	3	250	V
V _{ESD(CDM)}	discharge voltage (charge device model)	T _A = +25 °C, conforming to ANSI/ESD STM5.3.1	Packages except WLCSP100	4	500	

Table 51. ESD absolute maximum ratings

1. Guaranteed by characterization results.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +105$ °C conforming to JESD78A	II level A

6.3.13 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of -5μ A/+0 μ A range), or other functional failure (for example reset occurrence or oscillator frequency deviation).

The test results are given in Table 53.

		Functional s	usceptibility	
Symbol	Description	Negative injection	Positive injection	Unit
	Injected current on BOOT0	- 0	NA	
	Injected current on PC0, PC1, PC2, PC3, PF2, PA0, PA1, PA2, PA3, PF4, PA4, PA5, PA6, PA7, PC4, PC5, PB2 with induced leakage current on other pins from this group less than -50 μ A	- 5	-	
I _{INJ}	Injected current on PB0, PB1, PE7, PE8, PE9, PE10, PE11, PE12, PE13, PE14, PE15, PB12, PB13, PB14, PB15, PD8, PD9, PD10, PD11, PD12, PD13, PD14 with induced leakage current on other pins from this group less than -50 µA	- 5	-	mA
	jected current on PC0, PC1, PC2, PC3, PF2, PA0, A1, PA2, PA3, PF4, PA4, PA5, PA6, PA7, PC4, PC5, B2, PB0, PB1, PE7, PE8, PE9, PE10, PE11, PE12, E13, PE14, PE15, PB12, PB13, PB14, PB15, PD8, - ++ D9, PD10, PD11, PD12, PD13, PD14 with induced akage current on other pins from this group less than D0 μA		+5	
	Injected current on any other FT and FTf pins	- 5	NA	
	Injected current on any other pins	- 5	+5	

Note: It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or source up to +/- 20 mA (with a relaxed V_{OL}/V_{OH}).

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 6.2*:

- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see *Table 22*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating ΣI_{VSS} (see *Table 22*).

Output voltage levels

Unless otherwise specified, the parameters given in *Table 55* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 24*. All I/Os (FT, TTa and TC unless otherwise specified) are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	CMOS port ⁽²⁾	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	I _{IO} = +8 mA 2.7 V < V _{DD} < 3.6 V	V _{DD} -0.4	-	
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	TTL port ⁽²⁾	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	I _{IO} = +8 mA 2.7 V < V _{DD} < 3.6 V	2.4	-	
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin	I _{IO} = +20 mA	-	1.3	V
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	2.7 V < V _{DD} < 3.6 V	V _{DD} -1.3	-	
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin	I _{IO} = +6 mA	-	0.4	
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	2 V < V _{DD} < 2.7 V	V _{DD} -0.4	-	
V _{OLFM+} ⁽¹⁾⁽⁴⁾	Output low level voltage for an FTf I/O pin in FM+ mode	I _{IO} = +20 mA 2.7 V < V _{DD} < 3.6 V	-	0.4	

Table 55.	Output voltage	characteristics
	o alpat follago	

1. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 22* and the sum of I_{IO} (I/O ports and control pins) must not exceed $\Sigma I_{IO(PIN)}$.

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in *Table 22* and the sum of I_{IO} (I/O ports and control pins) must not exceed $\Sigma I_{IO(PIN)}$.

4. Data based on design simulation.

Table 59. IWDG min/max timeout period at 40 kHz (LSI) (*)							
Prescaler divider	PR[2:0] bits	Min timeout (ms) RL[11:0]= 0x000	Max timeout (ms) RL[11:0]= 0xFFF				
/4	0	0.1	409.6				
/8	1	0.2	819.2				
/16	2	0.4	1638.4				
/32	3	0.8	3276.8				
/64	4	1.6	6553.6				
/128	5	3.2	13107.2				
/256	7	6.4	26214.4				

Table 59. IWDG min/max timeout period at 40 kHz (LSI) ⁽¹⁾

1. These timings are given for a 40 kHz clock but the microcontroller's internal RC frequency can vary from 30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.

Table 60. WWDG min-max timeout value	e @72 MHz (PCLK) ⁽¹⁾
--------------------------------------	---------------------------------

Prescaler	WDGTB	Min timeout value	Max timeout value
1	0	0.05687	3.6409
2	1	0.1137	7.2817
4	2	0.2275	14.564
8	3	0.4551	29.127

1. Guaranteed by design.

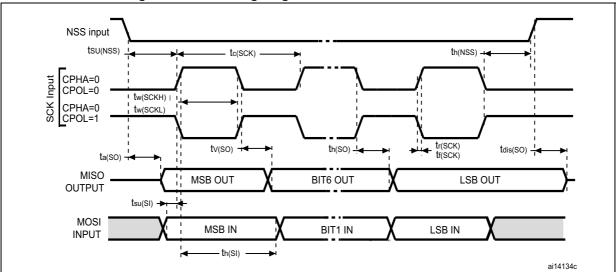
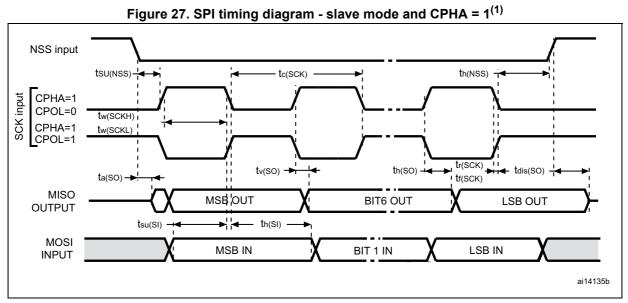



Figure 26. SPI timing diagram - slave mode and CPHA = 0

1. Measurement points are done at $0.5V_{DD}$ and with external C_L = 30 pF.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
Driver characteristics								
t _r	Rise time ⁽²⁾	C _L = 50 pF	4	-	20	ns		
t _f	Fall time ⁽²⁾	C _L = 50 pF	4	-	20	ns		
t _{rfm}	Rise/ fall time matching	t _r /t _f	90	-	110	%		
V _{CRS}	Output signal crossover voltage	-	1.3	-	2.0	V		
Output driver Impedance ⁽³⁾	Z _{DRV}	driving high and low	28	40	44	Ω		

Table 67. USB: Full-speed electrical characteristics⁽¹⁾

1. Guaranteed by design.

 Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0).

3. No external termination series resistors are required on USB_DP (D+) and USB_DM (D-), the matching impedance is already included in the embedded driver.

CAN (controller area network) interface

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX).

Symbol	Parameter	С	Min ⁽⁴⁾	Max ⁽⁴⁾	Unit		
	Oissa al ta		Single	Fast channel 5.1 Ms	64	-	
SINAD	Signal-to- noise and	•	Ended	Slow channel 4.8 Ms	63	-	
(5)	distortion ratio		Differential	Fast channel 5.1 Ms	67	-	
	Tallo		Dillerential	Slow channel 4.8 Ms	67	-	
SNR ⁽⁵⁾	Signal-to- noise ratio	ADC clock freq. \leq 72 MHz,	Single Ended	Fast channel 5.1 Ms	64	-	
		Signal-to- noise ratioSampling freq. \leq 5 Msps, 2 V \leq V _{DDA} , V _{REF+} \leq 3.6 V		Slow channel 4.8 Ms	64	-	dB
SINKY			Differential	Fast channel 5.1 Ms	67	-	uБ
		100-pin package	Dillerential	Slow channel 4.8 Ms	67	-	
		Total	Single	Fast channel 5.1 Ms	-	-74	
THD ⁽⁵⁾			Ended	Slow channel 4.8 Ms	-	-74	
	harmonic distortion		Differential	Fast channel 5.1 Ms	-	-78	
			Differential	Slow channel 4.8 Ms	-	-76	

Table 71. ADC accuracy, 100-pin packages⁽¹⁾⁽²⁾⁽³⁾ (continued)

1. ADC DC accuracy values are measured after internal calibration.

 ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.14 does not affect the ADC accuracy.

3. Better performance may be achieved in restricted V_{DDA} , frequency and temperature ranges.

4. Guaranteed by characterization results.

5. Value measured with a -0.5 dB full scale 50 kHz sine wave input signal.

7.5 Thermal characteristics

The maximum chip junction temperature (T_Jmax) must never exceed the values given in *Table 24: General operating conditions on page 58*.

The maximum chip-junction temperature, $T_{\rm J}$ max, in degrees Celsius, may be calculated using the following equation:

$$T_J max = T_A max + (P_D max x \Theta_{JA})$$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{IA} is the package junction-to-ambient thermal resistance, in ° C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

 $P_{I/O}$ max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
	Thermal resistance junction-ambient LQFP64 - 10 × 10 mm / 0.5 mm pitch	45	
0	Thermal resistance junction-ambient LQFP48 - 7 × 7 mm	55	°C/W
Θ _{JA}	Thermal resistance junction-ambient LQFP100 - 14 × 14 mm / 0.5 mm pitch	41	C/W
	Thermal resistance junction-ambient WLCSP100 - 0.4 mm pitch	40	

Table 86. Package thermal characteristics

7.5.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org

8 Ordering information

Example:	STM32	F	302	R	В	Т	6	xxx
Device family								
STM32 = ARM-based 32-bit microcontroller								
Product type								
F = general-purpose								
Device subfamily								
302 = STM32F302xx								
Pin count								
C = 48 pins								
R = 64 pins								
V = 100 pins								
Flash memory size								
B = 128 Kbytes of Flash memory								
C = 256 Kbytes of Flash memory								
Package								
T = LQFP								
Y = WLCSP								
Temperature range								
6 = Industrial temperature range, -40 to 85 °C								
7 = Industrial temperature range, -40 to 105 °C								
Options								

Table 87. Ordering information scheme

xxx = programmed parts TR = tape and reel

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

