E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	87
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 17x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f302vbt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.7 **Power management**

3.7.1 **Power supply schemes**

- V_{SS} , V_{DD} = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator. It is provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} = 2.0 to 3.6 V: external analog power supply for ADC, DAC, comparators operational amplifiers, reset blocks, RCs and PLL. The minimum voltage to be applied to V_{DDA} differs from one analog peripheral to another. *Table 3* provides the summary of the V_{DDA} ranges for analog peripherals. The V_{DDA} voltage level must be always greater or equal to the V_{DD} voltage level and must be provided first.
- V_{BAT} = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

Analog peripheral	Minimum V _{DDA} supply	Maximum V _{DDA} supply
ADC / COMP	2.0 V	3.6 V
DAC / OPAMP	2.4 V	3.6V

 Table 3. External analog supply values for analog peripherals

3.7.2 Power supply supervision

The device has an integrated power-on reset (POR) and power-down reset (PDR) circuits. They are always active, and ensure proper operation above a threshold of 2 V. The device remains in reset mode when the monitored supply voltage is below a specified threshold, VPOR/PDR, without the need for an external reset circuit.

- The POR monitors only the V_{DD} supply voltage. During the startup phase it is required that V_{DDA} should arrive first and be greater than or equal to V_{DD}.
- The PDR monitors both the V_{DD} and V_{DDA} supply voltages, however the V_{DDA} power supply supervisor can be disabled (by programming a dedicated Option bit) to reduce the power consumption if the application design ensures that V_{DDA} is higher than or equal to V_{DD}.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD} power supply and compares it to the VPVD threshold. An interrupt can be generated when V_{DD} drops below the V_{PVD} threshold and/or when V_{DD} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.7.3 Voltage regulator

The regulator has three operation modes: main (MR), low-power (LPR), and power-down.

- The MR mode is used in the nominal regulation mode (Run)
- The LPR mode is used in Stop mode.
- The power-down mode is used in Standby mode: the regulator output is in high impedance, and the kernel circuitry is powered down thus inducing zero consumption.

The voltage regulator is always enabled after reset. It is disabled in Standby mode.

Δ7/

3.13.3 V_{BAT} battery voltage monitoring

This embedded hardware feature allows the application to measure the V_{BAT} battery voltage using the internal ADC channel ADC1_IN17. As the V_{BAT} voltage may be higher than V_{DDA}, and thus outside the ADC input range, the V_{BAT} pin is internally connected to a bridge divider by 2. As a consequence, the converted digital value is half the V_{BAT} voltage.

3.13.4 OPAMP reference voltage (VREFOPAMP)

Every OPAMP reference voltage can be measured using a corresponding ADC internal channel: VREFOPAMP1 connected to ADC1 channel 15, VREFOPAMP2 connected to ADC2 channel 17.

3.14 Digital-to-analog converter (DAC)

A single 12-bit buffered DAC channel can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration.

This digital interface supports the following features:

- One DAC output channel
- 8-bit or 10-bit monotonic output
- Left or right data alignment in 12-bit mode
- Noise-wave generation
- Triangular-wave generation
- DMA capability
- External triggers for conversion

3.15 **Operational amplifier (OPAMP)**

The STM32F302xB/STM32F302xC embeds two operational amplifiers with external or internal follower routing and PGA capability (or even amplifier and filter capability with external components). When an operational amplifier is selected, an external ADC channel is used to enable output measurement.

The operational amplifier features:

- 8.2 MHz bandwidth
- 0.5 mA output capability
- Rail-to-rail input/output
- In PGA mode, the gain can be programmed to be 2, 4, 8 or 16.

3.16 Fast comparators (COMP)

The STM32F302xB/STM32F302xC devices embed four fast rail-to-rail comparators with programmable reference voltage (internal or external), hysteresis and speed (low speed for low-power) and with selectable output polarity.

DocID025186 Rev 7

Figure 5. STM32F302xB/STM32F302xC LQFP64 pinout

	Pin n	umber	,					Pin functions		
WLCSP100	LQFP100	LQFP64	LQFP48	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions	
C3	82	-	-	PD1	I/O	FT	(1)	CAN_TX, EVENTOUT	-	
A4	83	54	-	PD2	I/O	FT	(1)	UART5_RX, TIM3_ETR, EVENTOUT	-	
B4	84	-	-	PD3	I/O	FT	(1)	USART2_CTS, TIM2_CH1_ETR, EVENTOUT	-	
C4	85	-	-	PD4	I/O	FT	(1)	USART2_RTS_DE, TIM2_CH2, EVENTOUT	-	
-	86	-	-	PD5	I/O	FT	(1)	USART2_TX, EVENTOUT	-	
-	87	-	-	PD6	I/O	FT	(1)	USART2_RX, TIM2_CH4, EVENTOUT	-	
D4	88	-	-	PD7	I/O	FT	(1)	USART2_CK, TIM2_CH3, EVENTOUT	-	
A5	89	55	39	PB3	I/O	FT	-	SPI3_SCK, I2S3_CK, SPI1_SCK, USART2_TX, TIM2_CH2, TIM3_ETR, TIM4_ETR, TSC_G5_IO1, JTDO-TRACESWO, EVENTOUT	-	
B5	90	56	40	PB4	I/O	FT	-	SPI3_MISO, I2S3ext_SD, SPI1_MISO, USART2_RX, TIM3_CH1, TIM16_CH1, TIM17_BKIN, TSC_G5_IO2, NJTRST, EVENTOUT	-	
A6	91	57	41	PB5	I/O	FT	-	SPI3_MOSI, SPI1_MOSI, I2S3_SD, I2C1_SMBA, USART2_CK, TIM16_BKIN, TIM3_CH2, TIM17_CH1, EVENTOUT	-	
B6	92	58	42	PB6	I/O	FTf	-	I2C1_SCL, USART1_TX, TIM16_CH1N, TIM4_CH1, TSC_G5_IO3EVENTOUT	-	
C5	93	59	43	PB7	I/O	FTf	-	I2C1_SDA, USART1_RX, TIM3_CH4, TIM4_CH2, TIM17_CH1N, TSC_G5_IO4, EVENTOUT	-	
A7	94	60	44	BOOT0	Ι	В	-	Boot memory selection		

Table 13. STM32F302xB/STM32F302xC pin definitions (continued)

1

Port & Pin Name	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PC0	EVENTOUT	-	-	-	-	-	-
PC1	EVENTOUT	-	-	-	-	-	-
PC2	EVENTOUT	-	COMP7_OUT	MP7_OUT		-	
PC3	EVENTOUT	-	-	-	- TIM1_BKIN2		-
PC4	EVENTOUT	-	-			USART1_TX	
PC5	EVENTOUT	-	TSC_G3_IO1	-	-	-	USART1_RX
PC6	EVENTOUT	TIM3_CH1	-		-	I2S2_MCK	COMP6_OUT
PC7	EVENTOUT	TIM3_CH2	-		-	I2S3_MCK	
PC8	EVENTOUT	TIM3_CH3	-		-	-	
PC9	EVENTOUT	TIM3_CH4	-		I2S_CKIN		-
PC10	EVENTOUT	-	-		UART4_TX	SPI3_SCK, I2S3_CK	USART3_TX
PC11	EVENTOUT	-	-		UART4_RX	SPI3_MISO, I2S3ext_SD	USART3_RX
PC12	EVENTOUT	-	-		UART5_TX	SPI3_MOSI, I2S3_SD	USART3_CK
PC13	-	-	-	TIM1_CH1N	-	-	-
PC14	-	-	-	-	-	-	-
PC15	-	-	-	-	-	-	-

DocID025186 Rev 7

47/144

STM32F302xB STM32F302xC

Pinouts and pin description

- 2. V_{REF+} must be always lower or equal than V_{DDA} ($V_{REF+} \leq V_{DDA}$). If unused then it must be connected to V_{DDA} .
- 3. V_{IN} maximum must always be respected. Refer to *Table 22: Current characteristics* for the maximum allowed injected current values.
- 4. Include VREF- pin.

Symbol	Ratings	Max.	Unit
ΣI_{VDD}	Total current into sum of all V _{DD} power lines (source)	160	
ΣI_{VSS}	Total current out of sum of all V _{SS} ground lines (sink)	-160	
I _{VDD}	Maximum current into each V _{DD} power line (source) ⁽¹⁾	100	
I _{VSS}	Maximum current out of each V _{SS} ground line (sink) ⁽¹⁾	-100	
	Output current sunk by any I/O and control pin	25	
IO(PIN)	Output current source by any I/O and control pin	-25	
ΣL	Total output current sunk by sum of all IOs and control pins ⁽²⁾	80	- MA
∠IO(PIN)	Total output current sourced by sum of all IOs and control pins ⁽²⁾	-80	
	Injected current on FT, FTf and B pins ⁽³⁾	-5/+0	
I _{INJ(PIN)}	Injected current on TC and RST pin ⁽⁴⁾	± 5	
	Injected current on TTa pins ⁽⁵⁾	± 5	
ΣΙ _{INJ(PIN)}	Total injected current (sum of all I/O and control pins) ⁽⁶⁾	± 25	

Table 22. Current characteristics

1. All main power (V_{DD}, V_{DDA}) and ground (V_{SS} and V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.

3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.

A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 21: Voltage characteristics* for the maximum allowed input voltage values.

 A positive injection is induced by V_{IN} > V_{DDA} while a negative injection is induced by V_{IN} < V_{SS}. I_{INJ}(PIN) must never be exceeded. Refer also to *Table 21: Voltage characteristics* for the maximum allowed input voltage values. Negative injection disturbs the analog performance of the device. See note ⁽²⁾ below *Table 70*.

 When several inputs are submitted to a current injection, the maximum ΣI_{INJ(PIN)} is the absolute sum of the positive and negative injected currents (instantaneous values).

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	–65 to +150	°C
TJ	Maximum junction temperature	150	°C

Table 23. Thermal characteristics

		Conditions		ту		
Symbol	Parameter		^f hclk	Peripherals enabled	Peripherals disabled	Unit
			72 MHz	44.1	7.0	
			64 MHz	39.7	6.3	
			48 MHz	30.3	4.9	
			32 MHz	20.5	3.5	
			24 MHz	15.4	2.8	
1	Supply current in		16 MHz	10.6	2.0	m۵
IDD	V _{DD} supply		8 MHz	5.4	1.1	
			4 MHz	3.2	1.0	-
			2 MHz	2.1	0.9	
			1 MHz	1.5	0.8	
		Running from HSE crystal clock 8 MHz, code executing from	500 kHz	1.2	0.8	
			125 kHz	1.0	0.8	
			72 MHz	239.7	238.5	μA
		Flash of RAM	64 MHz	210.5	209.6	
			48 MHz	155.0	155.6	
			32 MHz	105.3	105.2	
			24 MHz	81.9	81.8	
ı (1)(2)	Supply current in		16 MHz	58.7	58.6	
'DDA`	V _{DDA} supply		8 MHz	2.4	2.4	
			4 MHz	2.4	2.4	
			2 MHz	2.4	2.4	
			1 MHz	2.4	2.4	
			500 kHz	2.4	2.4	
			125 kHz	2.4	2.4	

Table 36. Typical current consumption in Sleep mode, code running from Flash (or RA	۱M
--	-------	----

1. V_{DDA} monitoring is ON.

2. When peripherals are enabled, the power consumption of the analog part of peripherals such as ADC, DAC, Comparators, OpAmp etc. is not included. Refer to the tables of characteristics in the subsequent sections.

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 54: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption (see *Table 38: Peripheral current consumption*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DD} \times f_{SW} \times C$$

where

 I_{SW} is the current sunk by a switching I/O to charge/discharge the capacitive load

V_{DD} is the MCU supply voltage

 f_{SW} is the I/O switching frequency

C is the total capacitance seen by the I/O pin: C = C_{INT} + C_{EXT} + C_S

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

On-chip peripheral current consumption

The MCU is placed under the following conditions:

- all I/O pins are in analog input configuration
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
- ambient operating temperature at 25°C and $V_{DD} = V_{DDA} = 3.3$ V.

Table 38. Peripheral current consumption

Poriphoral	Typical consumption ⁽¹⁾	Unit
renpilerai	I _{DD}	
BusMatrix ⁽²⁾	12.6	
DMA1	7.6	1
DMA2	6.1	
CRC	2.1	1
GPIOA	10.0	1
GPIOB	10.3	1
GPIOC	2.2	1
GPIOD	8.8	1
GPIOE	3.3	1
GPIOF	3.0	
TSC	5.5	1
ADC1&2	17.3	1
APB2-Bridge ⁽³⁾	3.6	
SYSCFG	7.3	
TIM1	40.0	
SPI1	8.8	
USART1	23.3	
TIM15	17.1	
TIM16	10.1	
TIM17	11.0	
APB1-Bridge ⁽³⁾	6.1	
TIM2	49.1]
TIM3	38.8]
TIM4	38.3]

6.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 49*. They are based on the EMS levels and classes defined in the application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, LQFP100, T _A = +25°C, f _{HCLK} = 72 MHz conforms to IEC 61000-4-2	3B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V_{DD} = 3.3 V, LQFP100, T _A = +25°C, f _{HCLK} = 72 MHz conforms to IEC 61000-4-4	4A

Table 49. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

6.3.14 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 54* are derived from tests performed under the conditions summarized in *Table 24*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
		TC and TTa I/O	-	-	0.3 V _{DD} +0.07 ⁽¹⁾		
V	Low level input	FT and FTf I/O	-	-	0.475 V_{DD}-0.2 $^{(1)}$		
۷IL	voltage	BOOT0	-	-	$0.3 V_{DD}$ – 0.3 ⁽¹⁾		
		All I/Os except BOOT0	-	-	0.3 V _{DD} ⁽²⁾	V	
		TC and TTa I/O	0.445 V _{DD} +0.398 ⁽¹⁾	-	-	V	
V	High level input	FT and FTf I/O	0.5 V _{DD} +0.2 ⁽¹⁾	-	-		
VIН	voltage	BOOT0	0.2 V _{DD} +0.95 ⁽¹⁾	-	-		
		All I/Os except BOOT0	0.7 V _{DD} ⁽²⁾	-	-		
V _{hys}		TC and TTa I/O	-	200 (1)	-	mV	
	Schmitt trigger hysteresis	FT and FTf I/O	-	100 (1)	-		
		BOOT0	-	300 (1)	-		
		TC, FT and FTf I/O	_	_	+0.1		
	Input leakage	V _{SS} ≤V _{IN} ≤V _{DD}	-	-	10.1		
		TTa I/O in digital mode	-	-	1		
l _{lkg}		V _{DD} ≤V _{IN} ≤V _{DDA}				μA	
		TTa I/O in analog mode	-	-	±0.2		
		VSS ≤VIN ≤VDDA					
		FT and FTf I/O ⁽⁴⁾	-	-	10		
		VDD ZVIN ZO V					
R _{PU}	Weak pull-up equivalent resistor ⁽⁵⁾	$V_{IN} = V_{SS}$	25	40	55	kΩ	
R _{PD}	Weak pull-down equivalent resistor ⁽⁵⁾	$V_{IN} = V_{DD}$	25	40	55	kΩ	
C _{IO}	I/O pin capacitance	-	-	5	-	pF	

1. Data based on design simulation.

2. Tested in production.

3. Leakage could be higher than the maximum value. if negative current is injected on adjacent pins. Refer to Table 53: I/O current injection susceptibility.

- 4. To sustain a voltage higher than V_{DD} +0.3 V, the internal pull-up/pull-down resistors must be disabled.
- 5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimum (~10% order).

Iab	Table 33. WDG minimax timeout period at 40 kHz (LSI)						
Prescaler divider	PR[2:0] bits	Min timeout (ms) RL[11:0]= 0x000	Max timeout (ms) RL[11:0]= 0xFFF				
/4	0	0.1	409.6				
/8	1	0.2	819.2				
/16	2	0.4	1638.4				
/32	3	0.8	3276.8				
/64	4	1.6	6553.6				
/128	5	3.2	13107.2				
/256	7	6.4	26214.4				

Table 59. IWDG min/max timeout period at 40 kHz (LSI) ⁽¹⁾

1. These timings are given for a 40 kHz clock but the microcontroller's internal RC frequency can vary from 30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.

Table 60. WWDO	S min-max timeout	value @72 MHz	(PCLK) ⁽¹⁾
----------------	-------------------	---------------	-----------------------

Prescaler	WDGTB	Min timeout value	Max timeout value
1	0	0.05687	3.6409
2	1	0.1137	7.2817
4	2	0.2275	14.564
8	3	0.4551	29.127

1. Guaranteed by design.

SPI/I²S characteristics

Unless otherwise specified, the parameters given in *Table 63* for SPI or in *Table 64* for I²S are derived from tests performed under ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 24*.

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I²S).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		Master mode, SPI1 2.7 <v<sub>DD<3.6</v<sub>			24	MHz
faarr		Slave mode, SPI1 2.7 <v<sub>DD<3.6</v<sub>	-		24	
1/t _{c(SCK)}	SPI clock frequency	Master mode, SPI1/2/3 2 <v<sub>DD<3.6</v<sub>	-	-	18	
		Slave mode, SPI1/2/3 2 <v<sub>DD<3.6</v<sub>	-		18	
DuCy(sck)	Duty cycle of SPI clock frequency	Slave mode	30	50	70	%
t _{su(NSS)}	NSS setup time	Slave mode, SPI presc = 2	4*Tpclk	-	-	
t _{h(NSS)}	NSS hold time	Slave mode, SPI presc = 2	2*Tpclk	-	-	
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode	Tpclk-2	Tpclk	Tpclk+2	
t _{su(MI)}	Dete innut estur time	Master mode	5.5	-	-	
t _{su(SI)}	Data input setup time	Slave mode	6.5	-	-	
t _{h(MI)}	Data input hold time	Master mode	5	-	-	
t _{h(SI)}	Data input noid time	Slave mode	5	-	-	ne
t _{a(SO)}	Data output access time	Slave mode	0	-	4*Tpclk	115
t _{dis(SO)}	Data output disable time	Slave mode	0	-	24	
		Slave mode	-	12	27	-
t _{v(SO)}	Data output valid time	Slave mode, SPI1 2.7 <v<sub>DD<3.6V</v<sub>	-	12	18	
t _{v(MO)}		Master mode	-	1.5	3	
t _{h(SO)}	Data output hold time	Slave mode	11	-	-	
t _{h(MO)}		Master mode	0	-	-	

able 63	. SPI	characteristics ⁽¹)
---------	-------	-------------------------------	---

1. Guaranteed by characterization results.

USB characteristics

Symbol	Parameter	Мах	Unit
t _{STARTUP} ⁽¹⁾	USB transceiver startup time	1	μs

1. Guaranteed by design.

Fable	66.	USB	DC	electrical	characteristics
abic	00.	000		Ciccuicai	characteristics

Symbol	Parameter	Conditions	Min. ⁽¹⁾	Max. ⁽¹⁾	Unit
Input leve	els				
V _{DD}	USB operating voltage ⁽²⁾	-	3.0 ⁽³⁾	3.6	V
V _{DI} ⁽⁴⁾	Differential input sensitivity	I(USB_DP, USB_DM)	0.2	-	
V _{CM} ⁽⁴⁾	Differential common mode range	Includes V _{DI} range	0.8	2.5	V
V _{SE} ⁽⁴⁾	Single ended receiver threshold	-	1.3	2.0	
Output levels					
V _{OL}	Static output level low	${\sf R}_{\sf L}$ of 1.5 k Ω to 3.6 ${\sf V}^{(5)}$	-	0.3	V
V _{OH}	Static output level high	${\sf R}_{\sf L}$ of 15 k Ω to ${\sf V}_{\sf SS}{}^{(5)}$	2.8	3.6	

1. All the voltages are measured from the local ground potential.

2. To be compliant with the USB 2.0 full-speed electrical specification, the USB_DP (D+) pin should be pulled up with a 1.5 k Ω resistor to a 3.0-to-3.6 V voltage range.

3. The STM32F302xB/STM32F302xC USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics which are degraded in the 2.7-to-3.0 V V_{DD} voltage range.

- 4. Guaranteed by design.
- 5. R_L is the load connected on the USB drivers.

Figure 31. USB timings: definition of data signal rise and fall time

Figure 32. ADC typical current consumption on VDDA pin

Figure 33. ADC typical current consumption on VREF+ pin

Symbol	Parameter	Conditions				Max (4)	Unit
SNR ⁽⁵⁾		gnal-to- ise ratio ADC clock freq. ≤ 72 MHz, Sampling freq ≤ 5 Msps,	Single ended	Fast channel 5.1 Ms	64	-	
	Signal-to-		Single ended	Slow channel 4.8 Ms	64	-	
	noise ratio		Differential	Fast channel 5.1 Ms	67	-]
				Slow channel 4.8 Ms	67	-	dB
THD ⁽⁵⁾ Total harmonic distortion		$2 V \le V_{DDA} \le 3.6 V$ 64-pin package	Single and d	Fast channel 5.1 Ms	-	-75	UD
	Total		Single ended	Slow channel 4.8 Ms	-	-75]
	distortion		Differential	Fast channel 5.1 Ms	-	-79]
				Slow channel 4.8 Ms	-	-78	1

Table 73. ADC accuracy, 64-pin packages⁽¹⁾⁽²⁾⁽³⁾ (continued)

1. ADC DC accuracy values are measured after internal calibration.

 ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.14 does not affect the ADC accuracy.

- 3. Better performance may be achieved in restricted V_{DDA}, frequency and temperature ranges.
- 4. Guaranteed by characterization results.
- 5. Value measured with a -0.5 dB full scale 50 kHz sine wave input signal.

Symbol	Parameter	Test condition	IS	Тур	Max ⁽³⁾	Unit
ст	Total up a divista di a man		Fast channel	±2.5	±5	
	Total unaujusted enoi		Slow channel	±3.5	±5	
FO	Offerent environ		Fast channel	±1	±2.5	
EO	Oliset error	- ADC Freq \leq 72 MHz Sampling Freq \leq 1MSPS 2.4 V \leq V _{DDA} = V _{REF+} \leq 3.6 V	Slow channel	±1.5	±2.5	1
EG	Gain error		Fast channel	±2	±3	
			Slow channel	±3	±4	LOD
ED	Differential linearity error	Single-ended mode	Fast channel	±0.7	±2	
ED	Differential linearity error		Slow channel	±0.7	±2	
EL	Integral linearity array		Fast channel	±1	±3	
			Slow channel	±1.2	±3	

Table 74. ADC accuracy at 1MSPS⁽¹⁾⁽²⁾

1. ADC DC accuracy values are measured after internal calibration.

 ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and ∑IINJ(PIN) in Section 6.3.14: I/O port characteristics does not affect the ADC accuracy.

3. Guaranteed by characterization results.

6.3.23 V_{BAT} monitoring characteristics

Symbol	Parameter	Min	Тур	Мах	Unit
R	Resistor bridge for V _{BAT}	-	50	-	KΩ
Q	Ratio on V _{BAT} measurement	-	2	-	
Er ⁽¹⁾	Error on Q	-1	-	+1	%
T _{S_vbat} ⁽¹⁾⁽²⁾	ADC sampling time when reading the V _{BAT} 1mV accuracy	2.2	-	-	μs

Table 80. V_{BAT} monitoring characteristics

1. Guaranteed by design.

2. Shortest sampling time can be determined in the application by multiple iterations.

			•			. ,
Symbol	millimeters		inches ⁽¹⁾			
	Min	Тур	Мах	Min	Тур	Мах
A2	1.35	1.40	1.45	0.0531	0.0551	0.0571
b	0.17	0.22	0.27	0.0067	0.0087	0.0106
С	0.09	-	0.2	0.0035	-	0.0079
D	15.80	16.00	16.2	0.622	0.6299	0.6378
D1	13.80	14.00	14.2	0.5433	0.5512	0.5591
D3	-	12.00	-	-	0.4724	-
E	15.80	16.00	16.2	0.622	0.6299	0.6378
E1	13.80	14.00	14.2	0.5433	0.5512	0.5591
E3	-	12.00	-	-	0.4724	-
е	-	0.50	-	-	0.0197	-
L	0.45	0.60	0.75	0.0177	0.0236	0.0295
L1	-	1.00	-	-	0.0394	-
K	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.08	-	-	0.0031

Table 81. LQPF100 – 14 x 14 mm, low-profile guad flat package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are in millimeters.

Symbol	millimeters			inches ⁽¹⁾			
	Min	Тур	Мах	Тур	Min	Мах	
А	0.525	0.555	0.585	0.0207	0.0219	0.0230	
A1	-	0.17	-	-	0.0067	-	
A2	-	0.38	-	-	0.0150	-	
A3 ⁽²⁾	-	0.025	-	-	0.0010	-	
Ø b ⁽³⁾	0.22	0.25	0.28	-	0.0098	0.0110	
D	4.166	4.201	4.236	-	0.1654	0.1668	
E	4.628	4.663	4.698	-	0.1836	0.1850	
е	-	0.4	-	-	0.0157	-	
e1	-	3.6	-	-	0.1417	-	
e2	-	3.6	-	-	0.1417	-	
F	-	0.3005	-	-	0.0118	-	
G	-	0.5315	-	-	0.0209	-	
N	-	100	-	-	3.9370	-	
aaa	-	0.1	-	-	0.0039	-	
bbb	-	0.1	-	-	0.0039	-	
CCC	-	0.1	-	-	0.0039	-	
ddd	-	0.05	-	-	0.0020	-	
eee	-	0.05	-	-	0.0020	-	

Table 84. WLCSP100 – 100L, 4.166 x 4.628 mm 0.4 mm pitch wafer level chip scale package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Back side coating.

3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

