E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	87
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	40K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 17x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f302vct6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

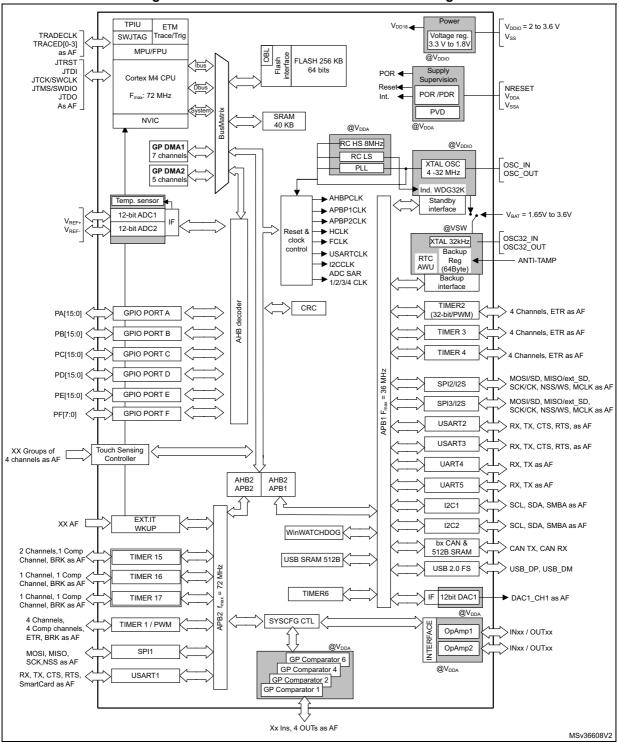


Figure 1. STM32F302xB/STM32F302xC block diagram

1. AF: alternate function on I/O pins.

3 Functional overview

3.1 ARM[®] Cortex[®]-M4 core with FPU with embedded Flash and SRAM

The ARM Cortex-M4 processor with FPU is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.

The ARM Cortex-M4 32-bit RISC processor with FPU features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.

The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution.

Its single precision FPU speeds up software development by using metalanguage development tools, while avoiding saturation.

With its embedded ARM core, the STM32F302xB/STM32F302xC family is compatible with all ARM tools and software.

Figure 1 shows the general block diagram of the STM32F302xB/STM32F302xC family devices.

3.2 Memory protection unit (MPU)

The memory protection unit (MPU) is used to separate the processing of tasks from the data protection. The MPU can manage up to 8 protection areas that can all be further divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.

The memory protection unit is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

3.3 Embedded Flash memory

All STM32F302xB/STM32F302xC devices feature up to 256 Kbytes of embedded Flash memory available for storing programs and data. The Flash memory access time is adjusted to the CPU clock frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states above).

DocID025186 Rev 7

3.7.4 Low-power modes

The STM32F302xB/STM32F302xC supports three low-power modes to achieve the best compromise between low-power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

• Stop mode

Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode.

The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output, the USB wakeup, the RTC alarm, COMPx, I2Cx or U(S)ARTx.

Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry.

The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin or an RTC alarm occurs.

Note: The RTC, the IWDG and the corresponding clock sources are not stopped by entering Stop or Standby mode.

3.8 Interconnect matrix

Several peripherals have direct connections between them. This allows autonomous communication between peripherals, saving CPU resources thus power supply consumption. In addition, these hardware connections allow fast and predictable latency.

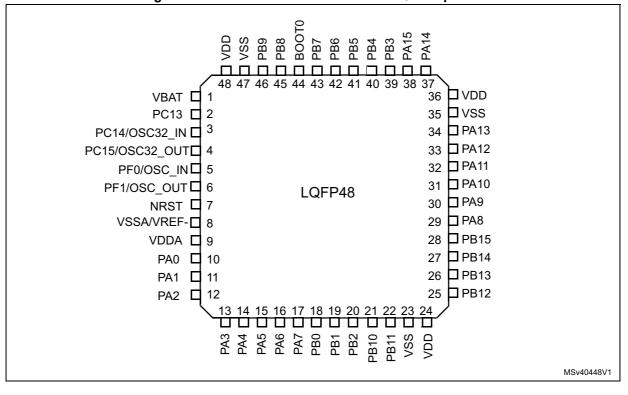
Interconnect source	Interconnect destination	Interconnect action		
	TIMx	Timers synchronization or chaining		
TIMx	ADCx DAC1	Conversion triggers		
	DMA	Memory to memory transfer trigger		
	Compx	Comparator output blanking		
COMPx	TIMx	Timer input: OCREF_CLR input, input capture		
ADCx	TIMx	Timer triggered by analog watchdog		

Table 4. STM32F302xB/STM32F302xC peripheral interconnect matrix

Interconnect source	Interconnect destination	Interconnect action
GPIO RTCCLK HSE/32 MC0	TIM16	Clock source used as input channel for HSI and LSI calibration
CSS CPU (hard fault) COMPx PVD GPIO	TIM1, TIM15, 16, 17	Timer break
	TIMx	External trigger, timer break
GPIO	ADCx DAC1	Conversion external trigger
DAC1	COMPx	Comparator inverting input

Table 4. STM32F302xB/STM32F302xC peripheral interconnect matrix (continued)

Note: For more details about the interconnect actions, please refer to the corresponding sections in the reference manual (RM0365.


3.9 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example with failure of an indirectly used external oscillator).

Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the high speed APB domains is 72 MHz, while the maximum allowed frequency of the low speed APB domain is 36 MHz.

4 Pinouts and pin description

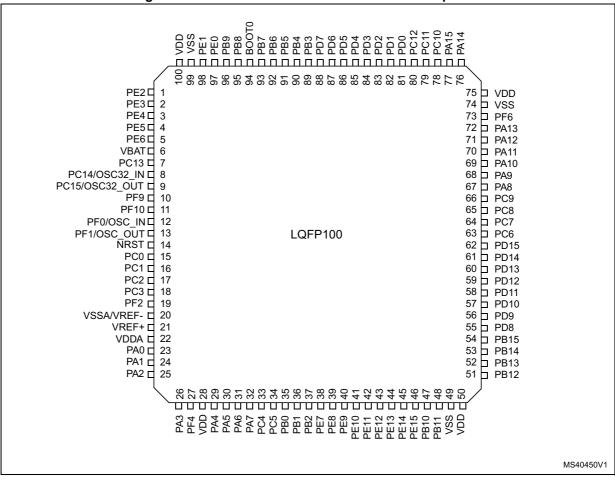


Figure 6. STM32F302xB/STM32F302xC LQFP100 pinout

	Pin nı	umber						Pin functions		
WLCSP100	LQFP100	LQFP64	LQFP48	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions	
C9	7	2	2	PC13 ⁽²⁾	I/O	тс	-	TIM1_CH1N	WKUP2, RTC_TAMP1, RTC_TS, RTC_OUT	
C10	8	3	3	PC14 ⁽²⁾ OSC32_IN (PC14)	I/O	тс	-	-	OSC32_IN	
D9	9	4	4	PC15 ⁽²⁾ OSC32_ OUT (PC15)	I/O	тс	-	-	OSC32_OUT	
D10	10	-	-	PF9	I/O	FT	(1)	TIM15_CH1, SPI2_SCK, EVENTOUT	-	
E10	11	-	-	PF10	I/O	FT	(1)	TIM15_CH2, SPI2_SCK, EVENTOUT	-	
F10	12	5	5	PF0- OSC_IN (PF0)	I/O	FTf	-	TIM1_CH3N, I2C2_SDA,	OSC_IN	
F9	13	6	6	PF1- OSC_OUT (PF1)	I/O	FTf	-	I2C2_SCL	OSC_OUT	
E9	14	7	7	NRST	I/O	RS T		Device reset input / intern	al reset output (active low)	
G10	15	8	-	PC0	I/O	TTa	(1)	EVENTOUT	ADC12_IN6	
G9	16	9	-	PC1	I/O	TTa	(1)	EVENTOUT	ADC12_IN7	
G8	17	10	-	PC2	I/O	TTa	(1)	EVENTOUT	ADC12_IN8	
H10	18	11	-	PC3	I/O	TTa			ADC12_IN9	
E8	19	-	-	PF2	I/O	TTa	(1)	EVENTOUT	ADC12_IN10	
H8	20	12	8	VSSA/ VREF-	S	-	-	Analog ground/Nega	tive reference voltage	
J8	21	-	-	VREF+ ⁽³⁾	S	-	-	Positive refe	rence voltage	
J10	22	-	-	VDDA	S	-	-	Analog po	wer supply	
-	-	13	9	VDDA/ VREF+	S	-	-	Analog power supply/Positive reference voltage		
H9	23	14	10	PA0	I/O	TTa	(4)	USART2_CTS, TIM2_CH1_ETR, TSC_G1_IO1, COMP1_OUT, EVENTOUT	ADC1_IN1, COMP1_INM, RTC_ TAMP2, WKUP1	

Table 13. STM32F302xB/STM32F302xC pin definitions (continued)

	Pin nu	umber		Pin functions			nctions			
WLCSP100	LQFP100	LQFP64	LQFP48	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions	
J9	24	15	11	PA1	I/O	ТТа	(4)	USART2_RTS_DE, TIM2_CH2, TSC_G1_IO2, TIM15_CH1N, RTC_REFIN, EVENTOUT	ADC1_IN2, COMP1_INP, OPAMP1_VINP	
F7	25	16	12	PA2	I/O	ТТа	(4) (5)	USART2_TX, TIM2_CH3, TIM15_CH1, TSC_G1_IO3, COMP2_OUT, EVENTOUT	ADC1_IN3, COMP2_INM, OPAMP1_VOUT	
G7	26	17	13	PA3	I/O	ТТа	(4)	USART2_RX, TIM2_CH4, TIM15_CH2, TSC_G1_IO4, EVENTOUT	ADC1_IN4, OPAMP1_VINP, COMP2_INP, OPAMP1_VINM	
-	27	18	-	PF4	I/O	ТТа	(1) (4)	COMP1_OUT, EVENTOUT	ADC1_IN5	
K9, K10	-	-	-	VSS	s	-	-	Digital	ground	
K8	28	19	-	VDD	S	-	-	Digital power supply		
J7	29	20	14	PA4	I/O	ТТа	(4) (5)	SPI1_NSS, SPI3_NSS,I2S3_WS, USART2_CK, TSC_G2_IO1, TIM3_CH2, EVENTOUT	ADC2_IN1, DAC1_OUT1, COMP1_INM, COMP2_INM, COMP4_INM, COMP6_INM	
H7	30	21	15	PA5	I/O	ТТа	(4) (5)	SPI1_SCK, TIM2_CH1_ETR, TSC_G2_IO2, EVENTOUT	ADC2_IN2 OPAMP1_VINP, OPAMP2_VINM COMP1_INM, COMP2_INM, COMP4_INM, COMP6_INM	
H6	31	22	16	PA6	I/O	ТТа	(4) (5)		ADC2_IN3, OPAMP2_VOUT	
К7	32	23	17	PA7	I/O	ТТа	(4)	SPI1_MOSI, TIM3_CH2, TIM17_CH1, TIM1_CH1N, , TSC_G2_IO4, COMP2_OUT, EVENTOUT	ADC2_IN4, COMP2_INP, OPAMP2_VINP, OPAMP1_VINP	
G6	33	24	-	PC4	I/O	тта	(1) (4)	USART1_TX, EVENTOUT	ADC2_IN5	
F6	34	25	-	PC5	I/O	ТТа	(1)	USART1_RX, TSC_G3_IO1, EVENTOUT	ADC2_IN11, OPAMP2_VINM, OPAMP1_VINM	
J6	35	26	18	PB0	I/O	ТТа	-	TIM3_CH3, TIM1_CH2N, TSC_G3_IO2, EVENTOUT	COMP4_INP, OPAMP2_VINP	

Table 13. STM32F302xB/STM32F302xC pin definitions (continued)

6.3.2 Operating conditions at power-up / power-down

The parameters given in *Table 25* are derived from tests performed under the ambient temperature condition summarized in *Table 24*.

Symbol	Parameter	Conditions	Min	Мах	Unit
+	V _{DD} rise time rate		0	8	
t _{VDD}	V _{DD} fall time rate	-	20	8	μs/V
+	V _{DDA} rise time rate		0	8	μ5/ν
t _{VDDA}	V _{DDA} fall time rate	-	20	8	

Table 25. Operating conditions at power-up / power-down

6.3.3 Embedded reset and power control block characteristics

The parameters given in *Table 26* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 24*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{POR/PDR} ⁽¹⁾	Power on/power down	Falling edge	1.8 ⁽²⁾	1.88	1.96	V
V POR/PDR	reset threshold	Rising edge	1.84	1.92	2.0	V
V _{PDRhyst} ⁽¹⁾	PDR hysteresis	-	-	40	-	mV
t _{RSTTEMPO} ⁽³⁾	POR reset temporization	-	1.5	2.5	4.5	ms

 Table 26. Embedded reset and power control block characteristics

1. The PDR detector monitors V_{DD} and also V_{DDA} (if kept enabled in the option bytes). The POR detector monitors only V_{DD} .

2. The product behavior is guaranteed by design down to the minimum $V_{\text{POR/PDR}}$ value.

3. Guaranteed by design.

6.3.4 Embedded reference voltage

The parameters given in *Table 28* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 24*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V	Internal reference voltage	–40 °C < T _A < +105 °C	1.2	1.23	1.25	V
V _{REFINT}		–40 °C < T _A < +85 °C	1.2	1.23	1.24 ⁽¹⁾	V
T _{S_vrefint}	ADC sampling time when reading the internal reference voltage	-	2.2	-	-	μs
V _{RERINT}	Internal reference voltage spread over the temperature range	V _{DD} = 3 V ±10 mV	-	-	10 ⁽²⁾	mV
T _{Coeff}	Temperature coefficient	-	-	-	100 ⁽²⁾	ppm/°C

Table 28. Embedded inter	rnal reference voltage
--------------------------	------------------------

1. Guaranteed by characterization results.

2. Guaranteed by design.

Table 201 Internal forefores voltage cansitation values							
Calibration value name	Description	Memory address					
V _{REFINT_CAL}	Raw data acquired at temperature of 30 °C V _{DDA} = 3.3 V	0x1FFF F7BA - 0x1FFF F7BB					

Table 29. Internal reference voltage calibration values

6.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 12: Current consumption measurement scheme*.

All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- All peripherals are disabled except when explicitly mentioned
- The Flash memory access time is adjusted to the f_{HCLK} frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states from 48 to 72 MHz)
- Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling)
- When the peripherals are enabled $f_{PCLK2} = f_{HCLK}$ and $f_{PCLK1} = f_{HCLK/2}$
- When f_{HCLK} > 8 MHz, the PLL is ON and the PLL input is equal to HSI/2 (4 MHz) or HSE (8 MHz) in bypass mode.

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 54: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption (see *Table 38: Peripheral current consumption*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DD} \times f_{SW} \times C$$

where

 I_{SW} is the current sunk by a switching I/O to charge/discharge the capacitive load

V_{DD} is the MCU supply voltage

 f_{SW} is the I/O switching frequency

C is the total capacitance seen by the I/O pin: C = C_{INT} + C_{EXT} + C_S

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

High-speed external clock generated from a crystal/ceramic resonator

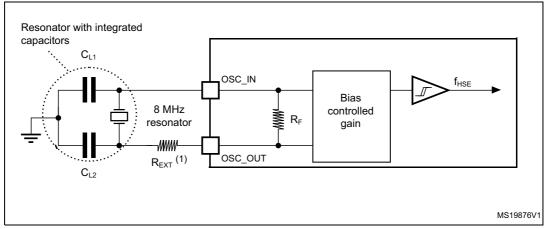
The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 42*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit
f _{OSC_IN}	Oscillator frequency	-	4	8	32	MHz
R _F	Feedback resistor	-	-	200		kΩ
		During startup ⁽³⁾	-	-	8.5	
		V _{DD} =3.3 V, Rm= 30Ω CL=10 pF@8 MHz	-	0.4	-	
	HSE current consumption	V _{DD} =3.3 V, Rm= 45Ω CL=10 pF@8 MHz	-	0.5	-	
I _{DD}		V _{DD} =3.3 V, Rm= 30Ω CL=5 pF@32 MHz	-	0.8	-	mA
		V _{DD} =3.3 V, Rm= 30Ω CL=10 pF@32 MHz	-	1	-	
		V _{DD} =3.3 V, Rm= 30Ω CL=20 pF@32 MHz	-	1.5	-	
9 _m	Oscillator transconductance	Startup	10	-	-	mA/V
t _{SU(HSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	2	-	ms

Table 42	. HSE	oscillator	characteristics
----------	-------	------------	-----------------

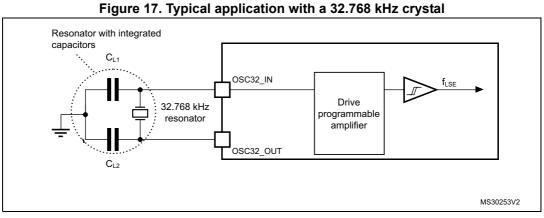
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

2. Guaranteed by design.


3. This consumption level occurs during the first 2/3 of the $t_{\mbox{SU(HSE)}}$ startup time.

 t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

For C_{L1} and C_{L2}, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 16*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2}. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2}.


Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

1. R_{EXT} value depends on the crystal characteristics.

Note:

An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

6.3.8 Internal clock source characteristics

The parameters given in *Table 44* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 24*.

High-speed internal (HSI) RC oscillator

	Table 44. HSI Oscillator Characteristics 7					
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{HSI}	Frequency	-	-	8	-	MHz
TRIM	HSI user trimming step	-	-	-	1 ⁽²⁾	%
DuCy _(HSI)	Duty cycle	-	45 ⁽²⁾	-	55 ⁽²⁾	%
		T _A = -40 to 105°C	-2.8 ⁽³⁾	-	3.8 ⁽³⁾	
ACC _{HSI}		$T_{A} = -10 \text{ to } 85^{\circ}\text{C}$	-1.9 ⁽³⁾	-	2.3 ⁽³⁾	
	Accuracy of the HSI oscillator	T _A = 0 to 85°C	-1.9 ⁽³⁾	-	2 ⁽³⁾	%
		$T_A = 0$ to $70^{\circ}C$	-1.3 ⁽³⁾	-	2 ⁽³⁾	
		$T_A = 0$ to 55°C	-1 ⁽³⁾	-	2 ⁽³⁾	
		$T_A = 25^{\circ}C^{(4)}$	-1	-	1	
t _{su(HSI)}	HSI oscillator startup time	-	1 ⁽²⁾	-	2 ⁽²⁾	μs
I _{DDA(HSI)}	HSI oscillator power consumption	-	-	80	100 ⁽²⁾	μA

Table 44. HSI oscillator characteristics⁽¹⁾

1. V_{DDA} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design.

3. Guaranteed by characterization results.

4. Factory calibrated, parts not soldered.

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	Conditions	Monitored	Max vs. [f _{HSE} /f _{HCLK}]	Unit
Symbol	Falameter	conditions	frequency band	8/72 MHz	Unit
		V 26V T 25°C	0.1 to 30 MHz	7	
6	Peak level	V _{DD} = 3.6 V, T _A = 25 °C, LQFP100 package	ckage 30 to 130 MHz 20	20	dBµV
S _{EMI}	Feak level	compliant with IEC 61967-2	130 MHz to 1GHz	27	
		01307-2	SAE EMI Level	4	-

Table 50. EMI characteristics

6.3.12 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114, ANSI/ESD STM5.3.1 standard.

Symbol	Ratings	Conditions		Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25 \ ^{\circ}C$, conforming to JESD22-A114		2	2000	
	Electrostatic		WLCSP100 package	3	250	V
V _{ESD(CDM)}	discharge voltage (charge device model)	T _A = +25 °C, conforming to ANSI/ESD STM5.3.1	Packages except WLCSP100	4	500	

Table 51. ESD absolute maximum ratings

1. Guaranteed by characterization results.

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or source up to +/- 20 mA (with a relaxed V_{OL}/V_{OH}).

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 6.2*:

- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see *Table 22*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating ΣI_{VSS} (see *Table 22*).

Output voltage levels

Unless otherwise specified, the parameters given in *Table 55* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 24*. All I/Os (FT, TTa and TC unless otherwise specified) are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	CMOS port ⁽²⁾	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	I _{IO} = +8 mA 2.7 V < V _{DD} < 3.6 V	V _{DD} -0.4	-	
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	TTL port ⁽²⁾	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	I _{IO} = +8 mA 2.7 V < V _{DD} < 3.6 V	2.4	-	
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin	I _{IO} = +20 mA	-	1.3	V
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	2.7 V < V _{DD} < 3.6 V	V _{DD} -1.3	-	
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin	I _{IO} = +6 mA	-	0.4	
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	2 V < V _{DD} < 2.7 V	V _{DD} -0.4	-	
V _{OLFM+} ⁽¹⁾⁽⁴⁾	Output low level voltage for an FTf I/O pin in FM+ mode	I _{IO} = +20 mA 2.7 V < V _{DD} < 3.6 V	-	0.4	

Table 55.	Output voltage	characteristics
	o alpat follago	

1. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 22* and the sum of I_{IO} (I/O ports and control pins) must not exceed $\Sigma I_{IO(PIN)}$.

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in *Table 22* and the sum of I_{IO} (I/O ports and control pins) must not exceed $\Sigma I_{IO(PIN)}$.

4. Data based on design simulation.

6.3.21 Operational amplifier characteristics

	Table 77. Operational amplifier characteristics ⁽¹⁾							
Symbol	Param	neter	Condition	Min	Тур	Мах	Unit	
V _{DDA}	Analog supply volt	age	-	2.4	-	3.6	V	
CMIR	Common mode inp	out range	-	0	-	V_{DDA}	V	
	Maximum calibration		25°C, No Load on output.	-	-	4		
VI _{OFFSET}	Input offset	range	All voltage/Temp.	-	-	6	- mV	
VOFFSET	voltage	After offset	25°C, No Load on output.	-	-	1.6	IIIV	
		calibration	All voltage/Temp.	-	-	3		
ΔVI_{OFFSET}	Input offset voltage	e drift	-	-	5	-	µV/°C	
ILOAD	Drive current		-	-	-	500	μA	
IDDOPAMP	Consumption		No load, quiescent mode	-	690	1450	μΑ	
TS_OPAMP_VOUT	ADC sampling time when reading the OPAMP output.		-	400	-	-	ns	
CMRR	Common mode rejection ratio		-	-	90	-	dB	
PSRR	Power supply rejection ratio		DC	73	117	-	dB	
GBW	Bandwidth	Bandwidth		-	8.2	-	MHz	
SR	Slew rate	Slew rate		-	4.7	-	V/µs	
R _{LOAD}	Resistive load		-	4	-	-	kΩ	
C _{LOAD}	Capacitive load		-	-	-	50	pF	
VOH _{SAT}	High saturation vo	Itage ⁽²⁾	R _{load} = min, Input at V _{DDA} .	V _{DDA} -100	-	-		
VONSAT		lage	R _{load} = 20K, Input at V _{DDA} .	V _{DDA} -20	-	-	- mV	
VOL _{SAT}	High saturation vo		Rload = min, input at 0V	-	-	100	IIIV	
VOLSAT	Thigh Saturation vo	laye	Rload = 20K, input at 0V.	-	-	20		
φm	Phase margin		-	-	62	-	0	
tofftrim	Offset trim time: during calibration, minimum time needed between two steps to have 1 mV accuracy		-	-	-	2	ms	
^t wakeup	Wake up time from	n OFF state.	$C_{LOAD} \le 50 \text{ pf},$ $R_{LOAD} \ge 4 \text{ k}\Omega,$ Follower configuration	-	2.8	5	μs	

Table 77. Operational amplifier characteristics⁽¹⁾

7.3 LQFP48 – 7 x 7 mm, low-profile quad flat package information

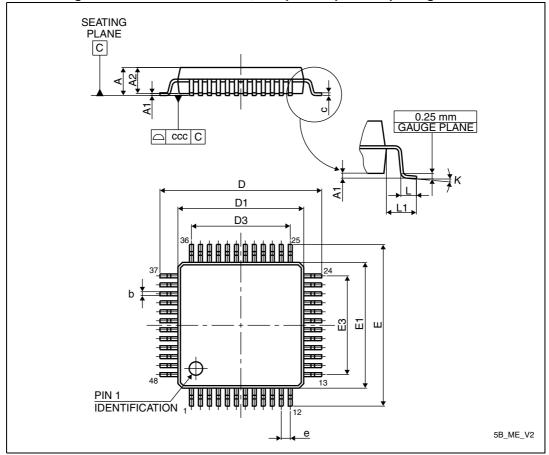
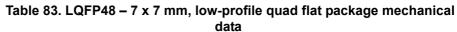



Figure 45. LQFP48 – 7 x 7 mm, low-profile quad flat package outline

1. Drawing is not to scale.

0	millimeters					
Symbol	Min Typ Max Min		Min Typ Max Min Typ		Тур	Мах
А	-	-	1.60	-	-	0.0630
A1	0.05	-	0.15	0.0020	-	0.0059
A2	1.35	1.40	1.45	0.0531	0.0551	0.0571
b	0.17	0.22	0.27	0.0067	0.0087	0.0106
С	0.09	-	0.20	0.0035	-	0.0079
D	8.80	9.00	9.20	0.3465	0.3543	0.3622
D1	6.80	7.00	7.20	0.2677	0.2756	0.2835
D3	-	5.50	-	-	0.2165	-
Е	8.80	9.00	9.20	0.3465	0.3543	0.3622

8 Ordering information

Example:	STM32	F	302	R	В	Т	6	xxx
Device family								
STM32 = ARM-based 32-bit microcontroller								
Product type								
F = general-purpose								
Device subfamily								
302 = STM32F302xx								
Pin count								
C = 48 pins								
R = 64 pins								
V = 100 pins								
Flash memory size								
B = 128 Kbytes of Flash memory								
C = 256 Kbytes of Flash memory								
Package								
T = LQFP								
Y = WLCSP								
Temperature range								
6 = Industrial temperature range, -40 to 85 °C								
7 = Industrial temperature range, -40 to 105 °C								
Options								

Table 87. Ordering information scheme

xxx = programmed parts TR = tape and reel

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

	Table 88. Document revision history (continued)				
Date	Revision	Changes			
29-Jan-2015	4	Updated cover page with ADC up to 17 channels. Updated Section 6.3.20: Comparator characteristics modifying ts_sc characteristics in Table 76 and adding Figure 37: Maximum VREFINT scaler startup time from power down. Updated I _{DD} data in Table 42: HSE oscillator characteristics.			
17-Apr-2015	5	Updated <i>Figure 1: STM32F302xB/STM32F302xC block diagram</i> changing 32 KB of SRAM by 40 KB of SRAM. Updated <i>Section 7: Package information</i> : with new package information structure adding 1 sub paragraph for each package. Updated <i>Figure 41: LQFP100 – 14 x 14 mm, low-profile quad flat</i> <i>package top view example</i> removing gate mark. Added note for all package device markings: "the following figure gives an example of topside marking orientation versus pin 1 identifier location". Updated <i>Table 82: LQFP64 – 10 x 10 mm, low-profile quad flat package</i> <i>mechanical data</i> . Updated <i>Table 7: STM32F302xB/STM32F302xC peripheral</i> <i>interconnect matrix</i> removing TIM8 reference and updating note below the table, replacing by a reference to RM0365.			
22-Feb-2016	6	 Added WLCSP100: Updated cover page. Updated <i>Table 2:</i> STM32F302xx family device features and peripheral counts. Added Figure 7: STM32F302xB/STM32F302xC WLCSP100 pinout. Updated <i>Table 13:</i> STM32F302xB/STM32F302xC pin definitions. Updated <i>Table 24:</i> General operating conditions. Added Section 7.4: WLCSP100 - 0.4 mm pitch wafer level chip scale package information. Updated <i>Table 86:</i> Package thermal characteristics. Updated <i>Table 87:</i> Ordering information scheme. Updated <i>Table 87:</i> Ordering information scheme. Updated <i>Table 86:</i> ADC characteristics adding V_{REF}- negative voltage reference. Updated <i>Table 68:</i> ADC characteristics adding table note 4. Updated <i>Table 43:</i> LSE oscillator characteristics (fLSE = 32.768 kHz) LSEDRV[1:0] bits. Updated <i>Table 28:</i> Embedded internal reference voltage V_{REFINT} internal reference voltage (min and typ values). Updated <i>Table 51:</i> ESD absolute maximum ratings ESD CDM at class 3 and 4 including WLCSP100 package information. 			

 Table 88. Document revision history (continued)

