STMicroelectronics - <u>STM32F302VCT6TR Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	87
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	40K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 17x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f302vct6tr

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1	Intro	luction							
2	Desc	ription							
3	Func	Functional overview							
	3.1	$\text{ARM}^{\textcircled{\text{B}}}$ Cortex $\textcircled{\text{B}}$ -M4 core with FPU with embedded Flash and SRAM \ldots 13							
	3.2	Memory protection unit (MPU) 13							
	3.3	Embedded Flash memory							
	3.4	Embedded SRAM							
	3.5	Boot modes							
	3.6	Cyclic redundancy check (CRC) 14							
	3.7	Power management							
		3.7.1 Power supply schemes							
		3.7.2 Power supply supervision							
		3.7.3 Voltage regulator							
		3.7.4 Low-power modes							
	3.8	Interconnect matrix							
	3.9	Clocks and startup							
	3.10	General-purpose input/outputs (GPIOs) 19							
	3.11	Direct memory access (DMA) 19							
	3.12	Interrupts and events							
		3.12.1 Nested vectored interrupt controller (NVIC)							
	3.13	Fast analog-to-digital converter (ADC) 20							
		3.13.1 Temperature sensor							
		3.13.2 Internal voltage reference (V _{REFINT})							
		3.13.3 V _{BAT} battery voltage monitoring							
		3.13.4 OPAMP reference voltage (VREFOPAMP)							
	3.14	Digital-to-analog converter (DAC) 21							
	3.15	Operational amplifier (OPAMP) 21							
	3.16	Fast comparators (COMP) 21							
	3.17	Timers and watchdogs 22							
		3.17.1 Advanced timer (TIM1)							

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32F302xB/STM32F302xC microcontrollers.

This STM32F302xB/STM32F302xC datasheet should be read in conjunction with the STM32F302xx reference manual (RM0365). The reference manual is available from the STMicroelectronics website *www.st.com*.

For information on the Cortex[®]-M4 core with FPU, please refer to:

- **Cortex[®]-M4 with FPU Technical Reference Manual**, available from ARM website www.arm.com.
- STM32F3xxx and STM32F4xxx Cortex[®]-M4 programming manual (PM0214) available from our website *www.st.com*.

Figure 1. STM32F302xB/STM32F302xC block diagram

1. AF: alternate function on I/O pins.

3 Functional overview

3.1 ARM[®] Cortex[®]-M4 core with FPU with embedded Flash and SRAM

The ARM Cortex-M4 processor with FPU is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.

The ARM Cortex-M4 32-bit RISC processor with FPU features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.

The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution.

Its single precision FPU speeds up software development by using metalanguage development tools, while avoiding saturation.

With its embedded ARM core, the STM32F302xB/STM32F302xC family is compatible with all ARM tools and software.

Figure 1 shows the general block diagram of the STM32F302xB/STM32F302xC family devices.

3.2 Memory protection unit (MPU)

The memory protection unit (MPU) is used to separate the processing of tasks from the data protection. The MPU can manage up to 8 protection areas that can all be further divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.

The memory protection unit is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

3.3 Embedded Flash memory

All STM32F302xB/STM32F302xC devices feature up to 256 Kbytes of embedded Flash memory available for storing programs and data. The Flash memory access time is adjusted to the CPU clock frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states above).

DocID025186 Rev 7

3.7.4 Low-power modes

The STM32F302xB/STM32F302xC supports three low-power modes to achieve the best compromise between low-power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

• Stop mode

Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode.

The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output, the USB wakeup, the RTC alarm, COMPx, I2Cx or U(S)ARTx.

Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry.

The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin or an RTC alarm occurs.

Note: The RTC, the IWDG and the corresponding clock sources are not stopped by entering Stop or Standby mode.

3.8 Interconnect matrix

Several peripherals have direct connections between them. This allows autonomous communication between peripherals, saving CPU resources thus power supply consumption. In addition, these hardware connections allow fast and predictable latency.

Interconnect source Interconnect destination Interconnect action		Interconnect action
	TIMx	Timers synchronization or chaining
TIMx	ADCx DAC1	Conversion triggers
	DMA	Memory to memory transfer trigger
	Compx	Comparator output blanking
COMPx	TIMx	Timer input: OCREF_CLR input, input capture
ADCx	TIMx Timer triggered by analog watchdog	

Table 4. STM32F302xB/STM32F302xC peripheral interconnect matrix

Interconnect source	Interconnect destination	Interconnect action
GPIO RTCCLK HSE/32 MC0	TIM16	Clock source used as input channel for HSI and LSI calibration
CSS CPU (hard fault) COMPx PVD GPIO	TIM1, TIM15, 16, 17	Timer break
	TIMx	External trigger, timer break
GPIO	ADCx DAC1	Conversion external trigger
DAC1	COMPx	Comparator inverting input

Table 4. STM32F302xB/STM32F302xC peripheral interconnect matrix (continued)

Note: For more details about the interconnect actions, please refer to the corresponding sections in the reference manual (RM0365.

3.9 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example with failure of an indirectly used external oscillator).

Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the high speed APB domains is 72 MHz, while the maximum allowed frequency of the low speed APB domain is 36 MHz.

3.13 Fast analog-to-digital converter (ADC)

Two fast analog-to-digital converters 5 MSPS, with selectable resolution between 12 and 6 bit, are embedded in the STM32F302xB/STM32F302xC family devices. The ADCs have up to 17 external channels (5 channels multiplexed between ADC1 and ADC2). Channels can be configured to be either single-ended input or differential input. The ADCs can perform conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADCs have also internal channels: Temperature sensor connected to ADC1 channel 16, $V_{BAT/2}$ connected to ADC1 channel 17, Voltage reference V_{REFINT} connected to the 2 ADCs channel 18, VREFOPAMP1 connected to ADC1 channel 15 and VREFOPAMP2 connected to ADC2 channel 17.

Additional logic functions embedded in the ADC interface allow:

- Simultaneous sample and hold
- Interleaved sample and hold
- Single-shunt phase current reading techniques.

The ADC can be served by the DMA controller. 3 analog watchdogs per ADC are available.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the general-purpose timers and the advanced-control timer (TIM1) can be internally connected to the ADC start trigger and injection trigger, respectively, to allow the application to synchronize A/D conversion and timers.

3.13.1 Temperature sensor

The temperature sensor (TS) generates a voltage $V_{\mbox{SENSE}}$ that varies linearly with temperature.

The temperature sensor is internally connected to the ADC1_IN16 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.

3.13.2 Internal voltage reference (V_{REFINT})

The internal voltage reference (V_{REFINT}) provides a stable (bandgap) voltage output for the ADC and Comparators. V_{REFINT} is internally connected to the ADCx_IN18, x=1...2 input channel. The precise voltage of V_{REFINT} is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode.

3.25 Infrared Transmitter

The STM32F302xB/STM32F302xC devices provide an infrared transmitter solution. The solution is based on internal connections between TIM16 and TIM17 as shown in the figure below.

TIM17 is used to provide the carrier frequency and TIM16 provides the main signal to be sent. The infrared output signal is available on PB9 or PA13.

To generate the infrared remote control signals, TIM16 channel 1 and TIM17 channel 1 must be properly configured to generate correct waveforms. All standard IR pulse modulation modes can be obtained by programming the two timers output compare channels.

Figure 3. Infrared transmitter

3.26 Touch sensing controller (TSC)

The STM32F302xB/STM32F302xC devices provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 24 capacitive sensing channels distributed over 8 analog I/O groups.

Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (glass, plastic, ...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage this acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate.

The touch sensing controller is fully supported by the STMTouch touch sensing firmware library which is free to use and allows touch sensing functionality to be implemented reliably in the end application.

	Pin nu	umber						Pin functions		
WLCSP100	LQFP100	LQFP64	LQFP48	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions	
K6	36	27	19	PB1	I/O	TTa	(4) (5)	TIM3_CH4, TIM1_CH3N, COMP4_OUT, TSC_G3_IO3, EVENTOUT	-	
K5	37	28	20	PB2	I/O	ТТа	-	TSC_G3_IO4, EVENTOUT	ADC2_IN12, COMP4_INM	
F8	38	-	-	PE7	I/O	тта	(1)	TIM1_ETR, EVENTOUT	COMP4_INP	
E6	39	-	-	PE8	I/O	TTa	(1)	TIM1_CH1N, EVENTOUT	COMP4_INM	
-	40	-	-	PE9	I/O	ТТа	(4) (1)	TIM1_CH1, EVENTOUT		
-	41	-	-	PE10	I/O	TTa	(1)	TIM1_CH2N, EVENTOUT		
H5	42	-	-	PE11	I/O	TTa	(1)	TIM1_CH2, EVENTOUT		
G5	43	-	-	PE12	I/O	TTa	(1)	TIM1_CH3N, EVENTOUT		
-	44	-	-	PE13	I/O	ТТа	(1)	TIM1_CH3, EVENTOUT		
-	45	-	-	PE14	I/O	тта	(4) (1)	TIM1_CH4, TIM1_BKIN2, EVENTOUT		
-	46	-	-	PE15	I/O	ТТа	(4) (1)	USART3_RX, TIM1_BKIN, EVENTOUT		
K4	47	29	21	PB10	I/O	ТТа	-	USART3_TX, TIM2_CH3, TSC_SYNC, EVENTOUT		
К3	48	30	22	PB11	I/O	ТТа	-	USART3_RX, TIM2_CH4, TSC_G6_IO1, EVENTOUT	COMP6_INP	
K1, J1, K2	49	31	23	VSS	s	-	-	Digital ground		
J5	50	32	24	VDD	S	-	-	Digital power supply		
J4	51	33	25	PB12	I/O	ТТа	(4) (5)	SPI2_NSS, I2S2_WS,I2C2_SMBA, USART3_CK, TIM1_BKIN, TSC_G6_IO2, EVENTOUT		
J3	52	34	26	PB13	I/O	ТТа	(4)	SPI2_SCK,I2S2_CK,USART3 _CTS, TIM1_CH1N, TSC_G6_IO3, EVENTOUT		
J2	53	35	27	PB14	I/O	ТТа	(4)	SPI2_MISO,I2S2ext_SD, USART3_RTS_DE, TIM1_CH2N, TIM15_CH1, TSC_G6_IO4, EVENTOUT	OPAMP2_VINP	

Table 13. STM32F302xB/STM32F302xC pin definitions (continued)

6.3 Operating conditions

6.3.1 General operating conditions

Table 24	. General	operating	conditions
----------	-----------	-----------	------------

Symbol	Parameter Conditions		Min	Max	Unit	
f _{HCLK}	Internal AHB clock frequency	-	0	72		
f _{PCLK1}	Internal APB1 clock frequency	-	0	36	MHz	
f _{PCLK2}	Internal APB2 clock frequency	-	0	72		
V _{DD}	Standard operating voltage -		2	3.6	V	
N/	Analog operating voltage (OPAMP and DAC not used)	Must have a potential	2	3.6	V	
V _{DDA}	Analog operating voltage (OPAMP and DAC used)	V _{DD}	2.4	3.6	v	
V _{BAT}	Backup operating voltage	-	1.65	3.6	V	
V _{IN}		TC I/O	-0.3	V _{DD} +0.3	V	
	I/O input voltage	TTa I/O	-0.3	V _{DDA} +0.3		
		FT and FTf I/O ⁽¹⁾	-0.3	5.5		
		BOOT0	0	5.5		
		WLCSP100	-	500	mW	
Р	Power dissipation at $T_A =$ 85 °C for suffix 6 or $T_A =$ 105 °C for suffix 7 ⁽²⁾	LQFP100	-	488		
PD		LQFP64	-	444		
		LQFP48	-	364		
	Ambient temperature for 6	Maximum power dissipation	-40	85	°C	
Та	suffix version	Low-power dissipation ⁽³⁾	-40	105		
	Ambient temperature for 7	Maximum power dissipation	-40	105	°C	
		Low-power dissipation ⁽³⁾	-40	125	-	
т.	lunction tomperature reason	6 suffix version	-40	105	°C	
TJ	Junction temperature range	7 suffix version	-40	125	°C	

1. To sustain a voltage higher than V_{DD} +0.3 V, the internal pull-up/pull-down resistors must be disabled.

If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} (see Section 7.5: Thermal characteristics).

 In low-power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} (see Section 7.5: Thermal characteristics).

6.3.9 PLL characteristics

The parameters given in *Table 46* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 24*.

Symbol	Parameter		Unit		
Symbol	Faidineter	Min	Тур	Max	Unit
f	PLL input clock ⁽¹⁾	1 ⁽²⁾	-	24 ⁽²⁾	MHz
^I PLL_IN	PLL input clock duty cycle	40 ⁽²⁾	-	60 ⁽²⁾	%
f _{PLL_OUT}	PLL multiplier output clock	16 ⁽²⁾	-	72	MHz
t _{LOCK}	PLL lock time	-	-	200 ⁽²⁾	μs
Jitter	Cycle-to-cycle jitter	-	-	300 ⁽²⁾	ps

|--|

 Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by f_{PLL_OUT}.

2. Guaranteed by design.

6.3.10 Memory characteristics

Flash memory

The characteristics are given at $T_A = -40$ to 105 °C unless otherwise specified.

		-				
Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
t _{prog}	16-bit programming time	T _A = -40 to +105 °C	40	53.5	60	μs
t _{ERASE}	Page (2 KB) erase time	$T_A = -40$ to +105 °C	20	-	40	ms
t _{ME}	Mass erase time	$T_A = -40$ to +105 °C	20	-	40	ms
	Supply current	Write mode	-	-	10	mA
IDD	Supply current	Erase mode	-	-	12	mA

Table 47. Flash memory characteristics

1. Guaranteed by design.

Table 48. Fl	lash memory	endurance an	id data	retention
--------------	-------------	--------------	---------	-----------

Symbol	Deremeter	Conditions	Value	Unit	
Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit	
N _{END}	Endurance	$T_A = -40$ to +85 °C (6 suffix versions) $T_A = -40$ to +105 °C (7 suffix versions)	10	kcycles	
		1 kcycle ⁽²⁾ at T _A = 85 °C	30		
t _{RET}	Data retention	1 kcycle ⁽²⁾ at T _A = 105 °C	10	Years	
		10 kcycles ⁽²⁾ at T _A = 55 °C	20		

1. Guaranteed by characterization results.

2. Cycling performed over the whole temperature range.

USB characteristics

Symbol	Parameter	Мах	Unit
t _{STARTUP} ⁽¹⁾	USB transceiver startup time	1	μs

1. Guaranteed by design.

Fable	66.	USB	DC	electrical	characteristics
abic	00.	000		Ciccuicai	characteristics

Symbol	Parameter	Conditions	Min. ⁽¹⁾	Max. ⁽¹⁾	Unit			
Input leve	els							
V _{DD}	USB operating voltage ⁽²⁾	-	3.0 ⁽³⁾	3.6	V			
V _{DI} ⁽⁴⁾	Differential input sensitivity	I(USB_DP, USB_DM)	0.2	-				
V _{CM} ⁽⁴⁾	Differential common mode range	Includes V _{DI} range	0.8	2.5	V			
V _{SE} ⁽⁴⁾	Single ended receiver threshold	-	1.3	2.0				
Output le	Output levels							
V _{OL}	Static output level low	${\sf R}_{\sf L}$ of 1.5 k Ω to 3.6 ${\sf V}^{(5)}$	-	0.3	V			
V _{OH}	Static output level high	${\sf R}_{\sf L}$ of 15 k Ω to ${\sf V}_{\sf SS}{}^{(5)}$	2.8	3.6				

1. All the voltages are measured from the local ground potential.

2. To be compliant with the USB 2.0 full-speed electrical specification, the USB_DP (D+) pin should be pulled up with a 1.5 k Ω resistor to a 3.0-to-3.6 V voltage range.

3. The STM32F302xB/STM32F302xC USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics which are degraded in the 2.7-to-3.0 V V_{DD} voltage range.

- 4. Guaranteed by design.
- 5. R_L is the load connected on the USB drivers.

Figure 31. USB timings: definition of data signal rise and fall time

STM32F302xB STM32F302xC

6.3.18 ADC characteristics

Unless otherwise specified, the parameters given in *Table 68* to *Table 70* are guaranteed by design, with conditions summarized in *Table 24*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{DDA}	Analog supply voltage for ADC	-	2	-	3.6	V
		Single-ended mode, 5 MSPS	-	907	1033.0	
		Single-ended mode, 1 MSPS	-	194	285.5	
	ADC current consumption on VDDA	Single-ended mode, 200 KSPS	-	51.5	70	
^I DDA	(see Figure 32)	Differential mode, 5 MSPS	-	887.5	1009	μΑ
		Differential mode, 1 MSPS	-	212	285	
	Differential mode, 200 KSPS	-	51	69.5		
V _{REF+}	Positive reference voltage	-	2	-	V _{DDA}	V
V _{REF-}	Negative reference voltage	-	-	0	-	v
		Single-ended mode, 5 MSPS	-	104	139	
		Single-ended mode, 1 MSPS	-	20.4	37	
	ADC current consumption on VREF+	Single-ended mode, 200 KSPS	-	3.3	11.3	
'REF	(see Figure 33)	Differential mode, 5 MSPS	-	174	235	_ μΑ
		Differential mode, 1 MSPS	-	34.6	52.6	
		Differential mode, 200 KSPS	-	6	13.6	

Table 68. ADC characteristics

102/144

DocID025186 Rev 7

104/144

Table 68. ADC characteristics (continued) Symbol Parameter Мах Conditions Min Тур Unit 0.021 f_{ADC} = 72 MHz 8.35 μs $t_{s}^{(1)}$ Sampling time 1.5 601.5 1/f_{ADC} --T_{ADCVREG_STUP}⁽¹⁾ ADC Voltage Regulator Start-up time -10 -μs f_{ADC} = 72 MHz Resolution = 12 bits 0.19 8.52 μs Total conversion time (including $t_{CONV}^{(1)}$ sampling time) 14 to 614 (t_S for sampling + 12.5 for successive Resolution = 12 bits 1/f_{ADC} approximation) (V_{SSA}+V_{REF+})/2 -10% (V_{SSA}+V_{REF+})/2 + 10% CMIR⁽¹⁾ ADC differential mode V Common Mode Input signal Range $(V_{SSA}+V_{REF+})/2$

1. Data guaranteed by design.

2. V_{REF+} can be internally connected to V_{DDA} and V_{REF-} can be internally connected to V_{SSA}, depending on the package. Refer to Section 4: Pinouts and pin description for further details.

Symbol	Parameter	c	Min (3)	Тур	Max (3)	Unit		
SNR ⁽⁴⁾ Signal-to- noise ratio		Single ended	Fast channel 5.1 Ms	66	67	-		
			Slow channel 4.8 Ms	66	67	-		
	noise ratio	ADC clock freq. \leq 72 MHz	Differential	Fast channel 5.1 Ms	69	70	-	
		Sampling freq \leq 5 Msps		Slow channel 4.8 Ms	69	70	-	dB
			Single ended	Fast channel 5.1 Ms	-	-76	-76	uВ
Total THD ⁽⁴⁾ harmo distor	Total	100-pin package		Slow channel 4.8 Ms	-	-76	-76	
	distortion		Differential	Fast channel 5.1 Ms	-	-80	-80	
				Slow channel 4.8 Ms	-	-80	-80	

Table 70. ADC accuracy - limited test conditions, 100-pin packages ⁽¹⁾⁽²⁾ (continued)

1. ADC DC accuracy values are measured after internal calibration.

 ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.14 does not affect the ADC accuracy.

3. Guaranteed by characterization results.

4. Value measured with a -0.5 dB full scale 50 kHz sine wave input signal.

Symbol	Parameter	C	Conditions		Min (3)	Тур	Max (3)	Unit
			Single ended	Fast channel 5.1 Ms	-	±4	±4.5	
ст	Total ET unadjusted error	usted	Single ended	Slow channel 4.8 Ms	-	±5.5	±6	
			Differential	Fast channel 5.1 Ms	-	±3.5	±4	
			Dillerential	Slow channel 4.8 Ms	-	±3.5	±4	
			Single ended	Fast channel 5.1 Ms	-	±2	±2	
FO	Offset error		Single ended	Slow channel 4.8 Ms	-	±1.5	±2	
LO	Olisetenoi		Differential	Fast channel 5.1 Ms	-	±1.5	±2	
			Dillerential	Slow channel 4.8 Ms	-	±1.5	±2	
			Single ended	Fast channel 5.1 Ms	-	±3	±4	
EC	Coin orror		Single ended	Slow channel 4.8 Ms	-	±5	±5.5	
EG	Gainento		Differential	Fast channel 5.1 Ms	-	±3	±3	- LSB - -
			Differentia	Slow channel 4.8 Ms	-	±3	±3.5	
		$\begin{array}{c c} \mbox{ADC clock freq.} \leq 72 \mbox{ MHz} \\ \mbox{Differential} \\ \mbox{linearity} \\ \mbox{error} \\ \mbox{error} \\ \mbox{25°C} \\ \mbox{64-pin package} \\ \end{array}$	Single ended	Fast channel 5.1 Ms	-	±1	±1	
ED	Differential			Slow channel 4.8 Ms	-	±1	±1	
ED	error		Differential	Fast channel 5.1 Ms	-	±1	±1	
				Slow channel 4.8 Ms	-	±1	±1	
			Single ended	Fast channel 5.1 Ms	-	±1.5	±2	
I	Integral			Slow channel 4.8 Ms	-	±2	±3	1
	error		Differential	Fast channel 5.1 Ms	-	±1.5	±1.5	
			Dillerential	Slow channel 4.8 Ms	-	±1.5	±2	
			Single ended	Fast channel 5.1 Ms	10.8	10.8	-	
ENOB	Effective		Single ended	Slow channel 4.8 Ms	10.8	10.8	-	hit
(4)	bits		Differential	Fast channel 5.1 Ms	11.2	11.3	-	DIL
		Dillerential	Slow channel 4.8 Ms	11.2	11.3	-		
	Circulto		Cingle ended	Fast channel 5.1 Ms	66	67	-	
SINAD	noise and		Single ended	Slow channel 4.8 Ms	66	67	-	
(4)	distortion		Differential	Fast channel 5.1 Ms	69	70	-	uБ
ratio			Dincrential	Slow channel 4.8 Ms	69	70	-	

Table 72. ADC accuracy - limited test conditions, 64-pin packages⁽¹⁾⁽²⁾

Symbol	Parameter	C	Min (3)	Тур	Max (3)	Unit		
			Single ended	Fast channel 5.1 Ms	66	67	-	
SNID(4)	Signal-to-			Slow channel 4.8 Ms	66	67	-	
noise ratio	ADC clock freq. \leq 72 MHz	Differential	Fast channel 5.1 Ms	69	70	-		
		Sampling freq \leq 5 Msps	Differential	Slow channel 4.8 Ms	69	70	-	dB
			Single ended	Fast channel 5.1 Ms	-	-80	-80	uВ
THD ⁽⁴⁾ harmonic distortion	Total	64-pin package		Slow channel 4.8 Ms	-	-78	-77	
	distortion		Difforential	Fast channel 5.1 Ms	-	-83	-82	
		Dillerential	Slow channel 4.8 Ms	-	-81	-80		

Table 72. ADC accuracy - limited test conditions, 64-pin packages⁽¹⁾⁽²⁾ (continued)

1. ADC DC accuracy values are measured after internal calibration.

 ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.14 does not affect the ADC accuracy.

3. Guaranteed by characterization results.

4. Value measured with a -0.5 dB full scale 50 kHz sine wave input signal.

Symbol	Parameter	Conditio	Conditions			Max	Unit
		No hysteresis (COMPxHYST[1:0]=00)	-	-	0	-	
		Low hystorosis	High speed mode	3		13	
	Comparator hysteresis	(COMPxHYST[1:0]=01)	All other power modes	5	8	10	
V _{hys}			High speed mode	7		26	mV
		(COMPxHYST[1:0]=10)	All other power modes	9	15	19	
		High hystoresis	High speed mode	18		49	
		(COMPxHYST[1:0]=11)	All other power modes	19	31	40	

Table 76. Com	parator	characteristics ⁽¹⁾	(continued))
---------------	---------	--------------------------------	-------------	---

1. Data guaranteed by design.

2. For more details and conditions, see Figure 37 Maximum V_{REFINT} scaler startup time from power down.

Figure 37. Maximum V_{REFINT} scaler startup time from power down

7.3 LQFP48 – 7 x 7 mm, low-profile quad flat package information

Figure 45. LQFP48 – 7 x 7 mm, low-profile quad flat package outline

1. Drawing is not to scale.

Symbol	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Max	
A	-	-	1.60	-	-	0.0630	
A1	0.05	-	0.15	0.0020	-	0.0059	
A2	1.35	1.40	1.45	0.0531	0.0551	0.0571	
b	0.17	0.22	0.27	0.0067	0.0087	0.0106	
С	0.09	-	0.20	0.0035	-	0.0079	
D	8.80	9.00	9.20	0.3465	0.3543	0.3622	
D1	6.80	7.00	7.20	0.2677	0.2756	0.2835	
D3	-	5.50	-	-	0.2165	-	
E	8.80	9.00	9.20	0.3465	0.3543	0.3622	

Date	Revision	Changes
Date 06-May-2016	Revision 7	Changes Updated Figure 5: STM32F302xB/STM32F302xC LQFP64 pinout replacing VSS by PF4. Updated Table 13: STM32F302xB/STM32F302xC pin definitions: - Adding 'digital power supply' in the Pin function column at the line corresponding to K8/28/19 pins Adding VSS digital ground line with WLCSP100 K9 and K10 pins connected Replacing in VDD line for WLCSP100: 'A10, B10' by 'A9, A10, B10, B8'. Updated Figure 21: Figure walt tolerapt (FT and FTt) //O input
		Characteristics - CMOS port. Updated Table 77: Operational amplifier characteristics high saturation and low saturation voltages.
		Updated <i>Table 13: STM32F302xB/STM32F302xC pin definitions</i> adding note 'Fast ADC channel' for ADCx_IN15.
		Updated Table 75: DAC characteristics resistive load.
		Updated <i>Table 68: ADC characteristics</i> adding CMIR parameter and modifying tSTAB parameter characteristics.

Table 88. Document revision history (continued)

