

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	77
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	40K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 17x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-UFBGA, WLCSP
Supplier Device Package	100-WLCSP (4.2x4.7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f302vcy6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32F302xB/STM32F302xC microcontrollers.

This STM32F302xB/STM32F302xC datasheet should be read in conjunction with the STM32F302xx reference manual (RM0365). The reference manual is available from the STMicroelectronics website *www.st.com*.

For information on the Cortex[®]-M4 core with FPU, please refer to:

- **Cortex[®]-M4 with FPU Technical Reference Manual**, available from ARM website www.arm.com.
- STM32F3xxx and STM32F4xxx Cortex[®]-M4 programming manual (PM0214) available from our website *www.st.com*.

2 Description

The STM32F302xB/STM32F302xC family is based on the high-performance ARM[®] Cortex[®]-M4 32-bit RISC core with FPU operating at a frequency of up to 72 MHz, and embedding a floating point unit (FPU), a memory protection unit (MPU) and an embedded trace macrocell (ETM). The family incorporates high-speed embedded memories (up to 256 Kbytes of Flash memory, up to 40 Kbytes of SRAM) and an extensive range of enhanced I/Os and peripherals connected to two APB buses.

The devices offer up to two fast 12-bit ADCs (5 Msps), four comparators, two operational amplifiers, up to one DAC channel, a low-power RTC, up to five general-purpose 16-bit timers, one general-purpose 32-bit timer, and one timer dedicated to motor control. They also feature standard and advanced communication interfaces: up to two I²Cs, up to three SPIs (two SPIs are with multiplexed full-duplex I2Ss), three USARTs, up to two UARTs, CAN and USB. To achieve audio class accuracy, the I2S peripherals can be clocked via an external PLL.

The STM32F302xB/STM32F302xC family operates in the -40 to +85 °C and -40 to +105 °C temperature ranges from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power applications.

The STM32F302xB/STM32F302xC family offers devices in four packages ranging from 48 pins to 100 pins.

The set of included peripherals changes with the device chosen.

3.7.4 Low-power modes

The STM32F302xB/STM32F302xC supports three low-power modes to achieve the best compromise between low-power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

• Stop mode

Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode.

The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output, the USB wakeup, the RTC alarm, COMPx, I2Cx or U(S)ARTx.

Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry.

The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin or an RTC alarm occurs.

Note: The RTC, the IWDG and the corresponding clock sources are not stopped by entering Stop or Standby mode.

3.8 Interconnect matrix

Several peripherals have direct connections between them. This allows autonomous communication between peripherals, saving CPU resources thus power supply consumption. In addition, these hardware connections allow fast and predictable latency.

Interconnect source	Interconnect destination	Interconnect action
	TIMx	Timers synchronization or chaining
TIMx	ADCx DAC1	Conversion triggers
	DMA	Memory to memory transfer trigger
	Compx	Comparator output blanking
COMPx	TIMx	Timer input: OCREF_CLR input, input capture
ADCx	TIMx	Timer triggered by analog watchdog

Table 4. STM32F302xB/STM32F302xC peripheral interconnect matrix

3.25 Infrared Transmitter

The STM32F302xB/STM32F302xC devices provide an infrared transmitter solution. The solution is based on internal connections between TIM16 and TIM17 as shown in the figure below.

TIM17 is used to provide the carrier frequency and TIM16 provides the main signal to be sent. The infrared output signal is available on PB9 or PA13.

To generate the infrared remote control signals, TIM16 channel 1 and TIM17 channel 1 must be properly configured to generate correct waveforms. All standard IR pulse modulation modes can be obtained by programming the two timers output compare channels.

Figure 3. Infrared transmitter

3.26 Touch sensing controller (TSC)

The STM32F302xB/STM32F302xC devices provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 24 capacitive sensing channels distributed over 8 analog I/O groups.

Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (glass, plastic, ...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage this acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate.

The touch sensing controller is fully supported by the STMTouch touch sensing firmware library which is free to use and allows touch sensing functionality to be implemented reliably in the end application.

Group	Capacitive sensing signal name	Pin name	Group	Capacitive sensing signal name	Pin name
	TSC_G1_IO1	Pin name Group Capacitive sensing signal name PA0	PB3		
1	TSC_G1_IO2	PA1	5	TSC_G5_IO2	PB4
1	TSC_G1_IO3	PA2	5	TSC_G5_IO3	PB6
	TSC_G1_IO4	PA3		TSC_G5_IO4	PB7
	TSC_G2_IO1	PA4		TSC_G6_IO1	PB11
2	TSC_G2_IO2	PA5	6	TSC_G6_IO2	PB12
2	TSC_G2_IO3	PA6	0	TSC_G6_IO3	PB13
	TSC_G2_IO4	PA7		TSC_G6_IO4	PB14
	TSC_G3_IO1	PC5		TSC_G7_IO1	PE2
3	TSC_G3_IO2	PB0	7	TSC_G7_IO2	PE3
5	TSC_G3_IO3	PB1	'	TSC_G7_IO3	PE4
	TSC_G3_IO4	PB2		TSC_G7_IO4	PE5
	TSC_G4_IO1	PA9		TSC_G8_IO1	PD12
1	TSC_G4_IO2	PA10	8	TSC_G8_IO2	PD13
1 2 3 4	TSC_G4_IO3	PA13	0	TSC_G8_IO3	PD14
	TSC_G4_IO4	PA14		TSC_G8_IO4	PD15

Table 10. Capacitive sensing GPIOs available on STM32F302xB/STM32F302xC devices

Table 11. No. of capacitive sensing channels available on STM32F302xB/STM32F302xC devices

Apolog VO group	Number	[•] of capacitive sensing c	hannels
	STM32F302Vx	STM32F302Rx	STM32F302Cx
G1	3	3	3
G2	3	3	3
G3	3	3	2
G4	3	3	3
G5	3	3	3
G6	3	3	3
G7	3	0	0
G8	3	0	0
Number of capacitive sensing channels	24	18	17

50/144

	Table 19. Alternate functions for port F						
Port & Pin Name	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PF0	-	-	-	I2C2_SDA	-	TIM1_CH3N	-
PF1	-	-	-	I2C2_SCL	-	-	-
PF2	EVENTOUT	-	-	-	-	-	-
PF4	EVENTOUT	COMP1_OUT	-	-	-	-	-
PF6	EVENTOUT	TIM4_CH4	-	I2C2_SCL	-	-	USART3_RTS_DE
PF9	EVENTOUT	-	TIM15_CH1	-	SPI2_SCK	-	-
PF10	EVENTOUT	-	TIM15_CH2	-	SPI2_SCK	-	-

Bus	Boundary address	Size (bytes)	Peripheral
	0x5000 0400 - 0x5000 07FF	1 K	Reserved
AHB3	0x5000 0000 - 0x5000 03FF	1 K	ADC1 - ADC2
	0x4800 1800 - 0x4FFF FFFF	~132 M	Reserved
	0x4800 1400 - 0x4800 17FF	1 K	GPIOF
	0x4800 1000 - 0x4800 13FF	1 K	GPIOE
	0x4800 0C00 - 0x4800 0FFF	1 K	GPIOD
AIIDZ	0x4800 0800 - 0x4800 0BFF	1 K	GPIOC
	0x4800 0400 - 0x4800 07FF	1 K	GPIOB
	0x4800 0000 - 0x4800 03FF	1 K	GPIOA
	0x4002 4400 - 0x47FF FFFF	~128 M	Reserved
	0x4002 4000 - 0x4002 43FF	1 K	TSC
	0x4002 3400 - 0x4002 3FFF	3 K	Reserved
	0x4002 3000 - 0x4002 33FF	1 K	CRC
	0x4002 2400 - 0x4002 2FFF	3 K	Reserved
	0x4002 2000 - 0x4002 23FF	1 K	Flash interface
AHBT	0x4002 1400 - 0x4002 1FFF	3 K	Reserved
	0x4002 1000 - 0x4002 13FF	1 K	RCC
	0x4002 0800 - 0x4002 0FFF	2 K	Reserved
	0x4002 0400 - 0x4002 07FF	1 K	DMA2
	0x4002 0000 - 0x4002 03FF	1 K	DMA1
	0x4001 8000 - 0x4001 FFFF	32 K	Reserved
	0x4001 4C00 - 0x4001 7FFF	13 K	Reserved
	0x4001 4800 - 0x4001 4BFF	1 K	TIM17
	0x4001 4400 - 0x4001 47FF	1 K	TIM16
	0x4001 4000 - 0x4001 43FF	1 K	TIM15
	0x4001 3C00 - 0x4001 3FFF	1 K	Reserved
	0x4001 3800 - 0x4001 3BFF	1 K	USART1
APB2	0x4001 3400 - 0x4001 37FF	1 K	Reserved
	0x4001 3000 - 0x4001 33FF	1 K	SPI1
	0x4001 2C00 - 0x4001 2FFF	1 K	TIM1
	0x4001 0800 - 0x4001 2BFF	9 K	Reserved
	0x4001 0400 - 0x4001 07FF	1 K	EXTI
	0x4001 0000 - 0x4001 03FF	1 K	SYSCFG + COMP + OPAMP

Table 20. STM32F302xB/STM32F302xC memory map, peripheral register boundary addresses

DocID025186 Rev 7

6.3.4 Embedded reference voltage

The parameters given in *Table 28* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 24*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V	Internal reference voltage	–40 °C < T _A < +105 °C	1.2	1.23	1.25	V
VREFINT	Internal relefence voltage	_40 °C < T _A < +85 °C	1.2	1.23	1.24 ⁽¹⁾	V
T _{S_vrefint}	ADC sampling time when reading the internal reference voltage	-	2.2	-	-	μs
V _{RERINT}	Internal reference voltage spread over the temperature range	V _{DD} = 3 V ±10 mV	-	-	10 ⁽²⁾	mV
T _{Coeff}	Temperature coefficient	-	-	-	100 ⁽²⁾	ppm/°C

Tuble Lo. Linbedded internal reference voitage	Table 28.	Embedded	internal	reference	voltage
--	-----------	----------	----------	-----------	---------

1. Guaranteed by characterization results.

2. Guaranteed by design.

Calibration value name	Description	Memory address
V _{REFINT_CAL}	Raw data acquired at temperature of 30 °C V _{DDA} = 3.3 V	0x1FFF F7BA - 0x1FFF F7BB

Table 29. Internal reference voltage calibration values

6.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 12: Current consumption measurement scheme*.

All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- All peripherals are disabled except when explicitly mentioned
- The Flash memory access time is adjusted to the f_{HCLK} frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states from 48 to 72 MHz)
- Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling)
- When the peripherals are enabled $f_{PCLK2} = f_{HCLK}$ and $f_{PCLK1} = f_{HCLK/2}$
- When f_{HCLK} > 8 MHz, the PLL is ON and the PLL input is equal to HSI/2 (4 MHz) or HSE (8 MHz) in bypass mode.

STM32F302xB STM32F302xC

Symbol	Parameter	Conditions ⁽¹⁾	l/O toggling frequency (f _{SW})	Тур	Unit
			2 MHz	0.90	
			4 MHz	0.93	
		$V_{DD} = 3.3 V$ $C_{ext} = 0 pF$ $C = C_{INT} + C_{EXT} + C_{S}$	8 MHz	1.16	
			18 MHz	1.60	
I _{SW} I/O cur consum			36 MHz	2.51	
			48 MHz	2.97	
			2 MHz	0.93	
			4 MHz	1.06	
		$V_{DD} = 3.3 V$	8 MHz	1.47	
		$C_{ext} = 10 \text{ pr}$ $C = C_{INT} + C_{EXT} + C_S$	18 MHz	2.26	
	I/O current consumption		36 MHz	3.39	mA
			48 MHz	5.99	
		$V_{DD} = 3.3 V$ $C_{ext} = 22 pF$ $C = C_{INT} + C_{EXT} + C_{S}$	2 MHz	1.03	
			4 MHz	1.30	
			8 MHz	1.79	
			18 MHz	3.01	
			36 MHz	5.99	
		V _{DD} = 3.3 V C _{ext} = 33 pF	2 MHz	1.10	
			4 MHz	1.31	
			8 MHz	2.06	
		$C = C_{INT} + C_{EXT} + C_{S}$	18 MHz	3.47	
			36 MHz	8.35	
			2 MHz	1.20	
		Vpp = 3.3 V	4 MHz	1.54	
		$C_{ext} = 47 \text{ pF}$	8 MHz	2.46	
		$C = C_{INT} + C_{EXT} + C_S$	18 MHz	4.51	1
			36 MHz	9.98	1

Table 37. Switching output I/O current consumption

1. CS = 5 pF (estimated value).

6.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 49*. They are based on the EMS levels and classes defined in the application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, LQFP100, T _A = +25°C, f _{HCLK} = 72 MHz conforms to IEC 61000-4-2	3B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V_{DD} = 3.3 V, LQFP100, T _A = +25°C, f _{HCLK} = 72 MHz conforms to IEC 61000-4-4	4A

Table 49. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in *Figure 19* and *Figure 20* for standard I/Os.

Figure 19. TC and TTa I/O input characteristics - CMOS port

Figure 20. TC and TTa I/O input characteristics - TTL port

SPI/I²S characteristics

Unless otherwise specified, the parameters given in *Table 63* for SPI or in *Table 64* for I²S are derived from tests performed under ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 24*.

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I²S).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		Master mode, SPI1 2.7 <v<sub>DD<3.6</v<sub>			24	
f _{SCK}		Slave mode, SPI1 2.7 <v<sub>DD<3.6</v<sub>	-		24	
1/t _{c(SCK)}	SPI clock frequency	Master mode, SPI1/2/3 2 <v<sub>DD<3.6</v<sub>	-	-	18	MHZ
		Slave mode, SPI1/2/3 2 <v<sub>DD<3.6</v<sub>	-		18	
DuCy(sck)	Duty cycle of SPI clock frequency	Slave mode	30	50	70	%
t _{su(NSS)}	NSS setup time	Slave mode, SPI presc = 2	4*Tpclk	-	-	
t _{h(NSS)}	NSS hold time	Slave mode, SPI presc = 2	2*Tpclk	-	-	
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode	Tpclk-2	Tpclk	Tpclk+2	
t _{su(MI)}	Dete innut estur time	Master mode	5.5	-	-	
t _{su(SI)}	ata input setup time	Slave mode	6.5	-	-	
t _{h(MI)}	Data input hold time	Master mode	5	-	-	
t _{h(SI)}	Data input noid time	Slave mode	5	-	-	ne
t _{a(SO)}	Data output access time	Slave mode	0	-	4*Tpclk	115
t _{dis(SO)}	Data output disable time	Slave mode	0	-	24	
		Slave mode	-	12	27	
t _{v(SO)}	Data output valid time	Slave mode, SPI1 2.7 <v<sub>DD<3.6V</v<sub>	-	12	18	
t _{v(MO)}		Master mode	-	1.5	3	
t _{h(SO)}	Data output hold time	Slave mode	11	-	-	
t _{h(MO)}		Master mode	0	-	-	

able 63	. SPI	characteristics ⁽¹)
---------	-------	-------------------------------	---

1. Guaranteed by characterization results.

Figure 26. SPI timing diagram - slave mode and CPHA = 0

1. Measurement points are done at $0.5V_{DD}$ and with external C_L = 30 pF.

USB characteristics

Symbol	Parameter	Мах	Unit
t _{STARTUP} ⁽¹⁾	USB transceiver startup time	1	μs

1. Guaranteed by design.

Fable	66.	USB	DC	electrical	characteristics
abic	00.	000		Ciccuicai	character istics

Symbol	Parameter	Conditions	Min. ⁽¹⁾	Max. ⁽¹⁾	Unit
Input leve	els				
V _{DD}	USB operating voltage ⁽²⁾	-	3.0 ⁽³⁾	3.6	V
V _{DI} ⁽⁴⁾	Differential input sensitivity	I(USB_DP, USB_DM)	0.2	-	
V _{CM} ⁽⁴⁾	Differential common mode range	Includes V _{DI} range	0.8	2.5	V
V _{SE} ⁽⁴⁾	Single ended receiver threshold	-	1.3	2.0	
Output le	vels				
V _{OL}	Static output level low	${\sf R}_{\sf L}$ of 1.5 k Ω to 3.6 ${\sf V}^{(5)}$	-	0.3	V
V _{OH}	Static output level high	${\sf R}_{\sf L}$ of 15 k Ω to ${\sf V}_{\sf SS}{}^{(5)}$	2.8	3.6	

1. All the voltages are measured from the local ground potential.

2. To be compliant with the USB 2.0 full-speed electrical specification, the USB_DP (D+) pin should be pulled up with a 1.5 k Ω resistor to a 3.0-to-3.6 V voltage range.

3. The STM32F302xB/STM32F302xC USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics which are degraded in the 2.7-to-3.0 V V_{DD} voltage range.

- 4. Guaranteed by design.
- 5. R_L is the load connected on the USB drivers.

Figure 31. USB timings: definition of data signal rise and fall time

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
Driver charac	teristics					
t _r	Rise time ⁽²⁾	C _L = 50 pF	4	-	20	ns
t _f	Fall time ⁽²⁾	C _L = 50 pF	4	-	20	ns
t _{rfm}	Rise/ fall time matching	t _r /t _f	90	-	110	%
V _{CRS}	Output signal crossover voltage	-	1.3	-	2.0	V
Output driver Impedance ⁽³⁾	Z _{DRV}	driving high and low	28	40	44	Ω

Table 67. USB: Full-speed electrical characteristics⁽¹⁾

1. Guaranteed by design.

 Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0).

3. No external termination series resistors are required on USB_DP (D+) and USB_DM (D-), the matching impedance is already included in the embedded driver.

CAN (controller area network) interface

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX).

Figure 32. ADC typical current consumption on VDDA pin

Figure 33. ADC typical current consumption on VREF+ pin

Symbol	Parameter	Conditions				Max ⁽⁴⁾	Unit
			Single	Fast channel 5.1 Ms	-	±6.5	
ET	Total	otal	Ended	Slow channel 4.8 Ms	-	±6.5	-
	error		Differential	Fast channel 5.1 Ms	I	4	
			Dillerential	Slow channel 4.8 Ms	-	봑	
			Single	Fast channel 5.1 Ms	I	\$	
FO	Offset error		Ended	Slow channel 4.8 Ms	-	\$	
LO	Chiset en or		Differential	Fast channel 5.1 Ms	-	<u>+2</u>	
			Differential	Slow channel 4.8 Ms	-	+2	
			Single	Fast channel 5.1 Ms	-	1 9	
FG	EG Gain error	ADC clock freq. ≤ 72 MHz, Sampling freq. ≤ 5 Msps	Ended	Slow channel 4.8 Ms	-	₽	LSB
20			Differential	Fast channel 5.1 Ms	-	£1	
				Slow channel 4.8 Ms	-	1 3	
		$\begin{array}{c c} 2 \ V \leq V_{DDA} \ , \ V_{REF^+} \leq 3.6 \ V \\ \hline 100\ \text{-pin package} \\ \text{rearity} \\ \text{rror} \end{array}$	Single Ended	Fast channel 5.1 Ms	-	±1.5	
ED	Differential			Slow channel 4.8 Ms	-	±1.5	
	error		Differential	Fast channel 5.1 Ms	-	±1.5	
				Slow channel 4.8 Ms	-	±1.5	
			Single	Fast channel 5.1 Ms	I	+2	
FI	Integral	tegral	Ended	Slow channel 4.8 Ms	-	\$	
	error		Differential	Fast channel 5.1 Ms	I	+2	
		Differential	Slow channel 4.8 Ms	-	±2		
			Single	Fast channel 5.1 Ms	10.4	-	
ENOB	Effective		Ended	Slow channel 4.8 Ms	10.2	-	hite
(5)	bits		Differential	Fast channel 5.1 Ms	10.8	-	DITS
				Slow channel 4.8 Ms	10.8	-	

Table 71. ADC accuracy, 100-pin packages⁽¹⁾⁽²⁾⁽³⁾

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Мах
E1	6.80	7.00	7.20	0.2677	0.2756	0.2835
E3	-	5.50	-	-	0.2165	-
е	-	0.50	-	-	0.0197	-
L	0.45	0.60	0.75	0.0177	0.0236	0.0295
L1	-	1.00	-	-	0.0394	-
K	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.08	-	-	0.0031

Table 83. LQFP48 – 7 x 7 mm, low-profile quad flat package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are in millimeters.

9 Revision history

Date	Revision	Changes
21-Nov-2013	1	Initial release
16-Apr-2014	2	Updated Table 38: Peripheral current consumption. Updated SRAM size in Table 2: STM32F302xx family device features and peripheral counts, Cover page and description. Updated Section 6.3.17: Communications interfaces I ² C interface. Updated Table 50: EMI characteristics conditions :3.3v replaced by 3.6V. Updated Table 77: Operational amplifier characteristics adding TS_OPAMP_VOUT row. Updated Section 3.13: Fast analog-to-digital converter (ADC). updated ARM and Cortex trademark. Updated Table 32: Typical and maximum VDD consumption in Stop and Standby modes with Max value at 85°C and 105°C. Updated Table 70: ADC accuracy - limited test conditions, 100-pin packages and Table 71: ADC accuracy, 100-pin packages for 100-pin packages. Added Table 72: ADC accuracy - limited test conditions, 64-pin packages. Added Table 72: ADC accuracy at 1MSPS for 1MSPS sampling frequency. Updated Table 63: SPI characteristics. Updated Table 75: DAC characteristics. Updated Table 75: DAC characteristics.
09-Dec-2014	3	Updated core description in cover page. Updated HSI characteristics <i>Table 44: HSI oscillator characteristics</i> and <i>Figure 18: HSI oscillator accuracy characterization results for soldered</i> <i>parts.</i> Updated <i>Table 58: TIMx characteristics.</i> Updated <i>Table 16: STM32F302xB/STM32F302xC pin definitions</i> adding note for I/Os featuring an analog output function (DAC_OUT,OPAMP_OUT). Updated <i>Table 68: ADC characteristics</i> adding IDDA & IREF consumptions. Added <i>Figure 32: ADC typical current consumption on VDDA pin</i> and <i>Figure 33: ADC typical current consumption on VREF+ pin.</i> Added section 3.8: Interconnect matrix. Added note after <i>Table 32: Typical and maximum VDD consumption in</i> <i>Stop and Standby modes.</i> Updated <i>Section 7: Package information</i> with new LQFP100, LQFP64, LQFP48 package marking. Updated <i>Table 16: STM32F302xB/STM32F302xC pin definitions</i> and alternate functions tables replacing usart_rts by usart_rts_de.

Table 88	. Document	revision	history
----------	------------	----------	---------

Date	Revision	Changes
29-Jan-2015	4	Updated cover page with ADC up to 17 channels. Updated Section 6.3.20: Comparator characteristics modifying ts_sc characteristics in Table 76 and adding Figure 37: Maximum VREFINT scaler startup time from power down. Updated I _{DD} data in Table 42: HSE oscillator characteristics.
17-Apr-2015	5	Updated <i>Figure 1: STM32F302xB/STM32F302xC block diagram</i> changing 32 KB of SRAM by 40 KB of SRAM. Updated <i>Section 7: Package information</i> : with new package information structure adding 1 sub paragraph for each package. Updated <i>Figure 41: LQFP100 – 14 x 14 mm, low-profile quad flat</i> <i>package top view example</i> removing gate mark. Added note for all package device markings: "the following figure gives an example of topside marking orientation versus pin 1 identifier location". Updated <i>Table 82: LQFP64 – 10 x 10 mm, low-profile quad flat package</i> <i>mechanical data</i> . Updated <i>Table 7: STM32F302xB/STM32F302xC peripheral</i> <i>interconnect matrix</i> removing TIM8 reference and updating note below the table, replacing by a reference to RM0365.
22-Feb-2016	6	 Added WLCSP100: Updated cover page. Updated Table 2: STM32F302xx family device features and peripheral counts. Added Figure 7: STM32F302xB/STM32F302xC WLCSP100 pinout. Updated Table 13: STM32F302xB/STM32F302xC pin definitions. Updated Table 24: General operating conditions. Added Section 7.4: WLCSP100 - 0.4 mm pitch wafer level chip scale package information. Updated Table 86: Package thermal characteristics. Updated Table 87: Ordering information scheme. Updated Table 87: Ordering information scheme. Updated Table 88: ADC characteristics adding V_{REF}- negative voltage reference. Updated Table 68: ADC characteristics adding table note 4. Updated Table 21: Voltage characteristics (fLSE = 32.768 kHz) LSEDRV[1:0] bits. Updated Table 28: Embedded internal reference voltage V_{REFINT} internal reference voltage (min and typ values). Updated Table 51: ESD absolute maximum ratings ESD CDM at class 3 and 4 including WLCSP100 package information.

 Table 88. Document revision history (continued)

