

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Not For New Designs                                              |
|----------------------------|------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M3                                                  |
| Core Size                  | 32-Bit Single-Core                                               |
| Speed                      | 50MHz                                                            |
| Connectivity               | I <sup>2</sup> C, IrDA, SmartCard, SPI, UART/USART               |
| Peripherals                | Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT                  |
| Number of I/O              | 51                                                               |
| Program Memory Size        | 32KB (32K x 8)                                                   |
| Program Memory Type        | FLASH                                                            |
| EEPROM Size                |                                                                  |
| RAM Size                   | 8K x 8                                                           |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 3.8V                                                      |
| Data Converters            | A/D 23x10/12b; D/A 1x10b                                         |
| Oscillator Type            | Internal                                                         |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                |
| Mounting Type              | Surface Mount                                                    |
| Package / Case             | 64-TQFP                                                          |
| Supplier Device Package    | 64-TQFP (10x10)                                                  |
| Purchase URL               | https://www.e-xfl.com/product-detail/silicon-labs/sim3l136-c-gqr |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

### Table 3.2. Power Consumption (Continued)

| Parameter                                                                                                       | Symbol           | Test Condition                                                                        | Min | Тур  | Max  | Unit |
|-----------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------|-----|------|------|------|
| Power Mode 1 <sup>1,2,3,4</sup> —Full speed<br>with code executing from RAM,                                    | I <sub>BAT</sub> | F <sub>AHB</sub> = 49 MHz,<br>F <sub>APB</sub> = 24.5 MHz                             | —   | 13.4 | 16.6 | mA   |
| peripheral clocks ON                                                                                            |                  | F <sub>AHB</sub> = 20 MHz,<br>F <sub>APB</sub> = 10 MHz                               | _   | 4.7  |      | mA   |
|                                                                                                                 |                  | F <sub>AHB</sub> = 2.5 MHz,<br>F <sub>APB</sub> = 1.25 MHz                            | _   | 810  | —    | μA   |
| Power Mode 1 <sup>1,2,3,4</sup> —Full speed<br>with code executing from RAM,                                    | I <sub>BAT</sub> | F <sub>AHB</sub> = 49 MHz,<br>F <sub>APB</sub> = 24.5 MHz                             | _   | 9.4  | 12.5 | mA   |
| peripheral clocks OFF                                                                                           |                  | F <sub>AHB</sub> = 20 MHz,<br>F <sub>APB</sub> = 10 MHz                               |     | 3.3  | —    | mA   |
|                                                                                                                 |                  | F <sub>AHB</sub> = 2.5 MHz,<br>F <sub>APB</sub> = 1.25 MHz                            | —   | 630  | —    | μA   |
| Power Mode 1 <sup>1,2,3,4</sup> —Full speed<br>with code executing from RAM,<br>LDOs powered by dc-dc at 1.9 V, | I <sub>BAT</sub> | F <sub>AHB</sub> = 49 MHz,<br>F <sub>APB</sub> = 24.5 MHz<br>V <sub>BAT</sub> = 3.3 V | _   | 7.05 | _    | mA   |
|                                                                                                                 |                  | F <sub>AHB</sub> = 49 MHz,<br>F <sub>APB</sub> = 24.5 MHz<br>V <sub>BAT</sub> = 3.8 V | _   | 6.3  |      | mA   |
|                                                                                                                 |                  | F <sub>AHB</sub> = 20 MHz,<br>F <sub>APB</sub> = 10 MHz<br>V <sub>BAT</sub> = 3.3 V   | _   | 2.75 |      | mA   |
|                                                                                                                 |                  | F <sub>AHB</sub> = 20 MHz,<br>F <sub>APB</sub> = 10 MHz<br>V <sub>BAT</sub> = 3.8 V   | _   | 2.6  | _    | mA   |
| Power Mode 2 <sup>1,2,3,4,5</sup> —Core halted with peripheral clocks ON                                        | I <sub>BAT</sub> | F <sub>AHB</sub> = 49 MHz,<br>F <sub>APB</sub> = 24.5 MHz                             | —   | 7.6  | 11.3 | mA   |
|                                                                                                                 |                  | F <sub>AHB</sub> = 20 MHz,<br>F <sub>APB</sub> = 10 MHz                               | _   | 2.75 |      | mA   |
|                                                                                                                 |                  | F <sub>AHB</sub> = 2.5 MHz,<br>F <sub>APB</sub> = 1.25 MHz                            | _   | 575  |      | μA   |

Notes:

- 1. Currents are additive. For example, where I<sub>BAT</sub> is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.
- 2. Includes all peripherals that cannot have clocks gated in the Clock Control module.
- 3. Includes LDO and PLL0OSC (>20 MHz) or LPOSC0 (<20 MHz) supply current.
- 4. Internal Digital and Memory LDOs scaled to optimal output voltage.
- 5. Flash AHB clock turned off.
- 6. Running from internal LFO, Includes LFO supply current.
- 7. LCD0 current does not include switching currents for external load.
- **8.** IDAC output current not included.
- 9. Does not include LC tank circuit.
- Does not include digital drive current or pullup current for active port I/O. Unloaded I<sub>VIO</sub> is included in all I<sub>BAT</sub> PM8 production test measurements.



## Table 3.5. On-Chip Regulators (Continued)

| Parameter                                                         | Symbol              | Test Condition             | Min | Тур | Max | Unit |
|-------------------------------------------------------------------|---------------------|----------------------------|-----|-----|-----|------|
| Memory LDO Output Setting <sup>5</sup>                            | V <sub>LDOMEM</sub> | During Programming         | 1.8 | —   | 1.9 | V    |
|                                                                   |                     | During Normal<br>Operation | 1.5 | _   | 1.9 | V    |
| Digital LDO Output Setting                                        | V <sub>LDODIG</sub> | F <sub>AHB</sub> ≤ 20 MHz  | 1.0 | —   | 1.9 | V    |
|                                                                   |                     | F <sub>AHB</sub> > 20 MHz  | 1.2 | —   | 1.9 | V    |
| Analog LDO Output Setting During<br>Normal Operation <sup>6</sup> | V <sub>LDOANA</sub> |                            |     | 1.8 |     | V    |

Notes:

- 1. See reference manual for recommended inductors.
- 2. Recommended: X7R or X5R ceramic capacitors with low ESR. Example: Murata GRM21BR71C225K with ESR < 10  $m\Omega$  (@ frequency > 1 MHz).

 Input voltage specification accounts for the internal LDO dropout voltage under the maximum load condition to ensure that the LDO output voltage will remain at a valid level as long as V<sub>LDOIN</sub> is at or above the specified minimum.

4. The memory LDO output should always be set equal to or lower than the output of the analog LDO. When lowering both LDOs (for example to go into PM8 under low supply conditions), first adjust the memory LDO and then the analog LDO. When raising the output of both LDOs, adjust the analog LDO before adjusting the memory LDO.

5. Output range represents the programmable output range, and does not reflect the minimum voltage under all conditions. Dropout when the input supply is close to the output setting is normal, and accounted for.

6. Analog peripheral specifications assume a 1.8 V output on the analog LDO.



# Table 3.9. SAR ADC

| Parameter                    | Symbol              | Test Condition                                                  | Min | Тур   | Max                   | Unit |
|------------------------------|---------------------|-----------------------------------------------------------------|-----|-------|-----------------------|------|
| Resolution                   | N <sub>bits</sub>   | 12 Bit Mode                                                     |     | 12    |                       | Bits |
|                              |                     | 10 Bit Mode                                                     |     | 10    |                       | Bits |
| Supply Voltage Requirements  | V <sub>ADC</sub>    | High Speed Mode                                                 | 2.2 |       | 3.8                   | V    |
| (VBAT)                       |                     | Low Power Mode                                                  | 1.8 |       | 3.8                   | V    |
| Throughput Rate              | f <sub>S</sub>      | 12 Bit Mode                                                     |     |       | 250                   | ksps |
| (High Speed Mode)            |                     | 10 Bit Mode                                                     |     |       | 1                     | Msps |
| Throughput Rate              | f <sub>S</sub>      | 12 Bit Mode                                                     |     |       | 62.5                  | ksps |
| (Low Power Mode)             |                     | 10 Bit Mode                                                     |     | _     | 250                   | ksps |
| Tracking Time                | t <sub>TRK</sub>    | High Speed Mode                                                 | 230 | _     |                       | ns   |
|                              |                     | Low Power Mode                                                  | 450 | _     |                       | ns   |
| SAR Clock Frequency          | f <sub>SAR</sub>    | High Speed Mode                                                 |     | _     | 16.24                 | MHz  |
|                              |                     | Low Power Mode                                                  |     | _     | 4                     | MHz  |
| Conversion Time              | t <sub>CNV</sub>    | 10-Bit Conversion,<br>SAR Clock = 16 MHz,<br>APB Clock = 40 MHz |     | 762.5 |                       | ns   |
| Sample/Hold Capacitor        | C <sub>SAR</sub>    | Gain = 1                                                        |     | 5     | _                     | pF   |
|                              |                     | Gain = 0.5                                                      |     | 2.5   |                       | pF   |
| Input Pin Capacitance        | C <sub>IN</sub>     | High Quality Inputs                                             |     | 18    | _                     | pF   |
|                              |                     | Normal Inputs                                                   |     | 20    | _                     | pF   |
| Input Mux Impedance          | R <sub>MUX</sub>    | High Quality Inputs                                             |     | 300   | _                     | Ω    |
|                              |                     | Normal Inputs                                                   |     | 550   | _                     | Ω    |
| Voltage Reference Range      | V <sub>REF</sub>    |                                                                 | 1   |       | V <sub>BAT</sub>      | V    |
| Input Voltage Range*         | V <sub>IN</sub>     | Gain = 1                                                        | 0   |       | V <sub>REF</sub>      | V    |
|                              |                     | Gain = 0.5                                                      | 0   |       | $2 \mathrm{xV}_{REF}$ | V    |
| Power Supply Rejection Ratio | PSRR <sub>ADC</sub> |                                                                 |     | 70    | _                     | dB   |
| DC Performance               |                     |                                                                 |     |       | Lı                    |      |
| Integral Nonlinearity        | INL                 | 12 Bit Mode                                                     |     | ±1    | ±1.9                  | LSB  |
|                              |                     | 10 Bit Mode                                                     |     | ±0.2  | ±0.5                  | LSB  |
| Differential Nonlinearity    | DNL                 | 12 Bit Mode                                                     | -1  | ±0.7  | 1.8                   | LSB  |
| (Guaranteed Monotonic)       |                     | 10 Bit Mode                                                     |     | ±0.2  | ±0.5                  | LSB  |
| Offset Error (using VREFGND) | E <sub>OFF</sub>    | 12 Bit Mode, VREF = 2.4 V                                       | -2  | 0     | 2                     | LSB  |
|                              |                     | 10 Bit Mode, VREF = 2.4 V                                       | -1  | 0     | 1                     | LSB  |



# Table 3.14. Comparator

| Parameter                 | Symbol             | Test Condition       | Min | Тур   | Max | Unit |
|---------------------------|--------------------|----------------------|-----|-------|-----|------|
| Response Time, CMPMD = 00 | t <sub>RESP0</sub> | +100 mV Differential | —   | 100   | —   | ns   |
| (Highest Speed)           |                    | -100 mV Differential | —   | 150   | —   | ns   |
| Response Time, CMPMD = 11 | t <sub>RESP3</sub> | +100 mV Differential |     | 1.4   |     | μs   |
| (Lowest Power)            |                    | -100 mV Differential |     | 3.5   |     | μs   |
| Positive Hysteresis       | HYS <sub>CP+</sub> | CMPHYP = 00          |     | 0.37  |     | mV   |
| Mode 0 (CPMD = 00)        |                    | CMPHYP = 01          |     | 7.9   |     | mV   |
|                           |                    | CMPHYP = 10          |     | 16.7  |     | mV   |
|                           |                    | CMPHYP = 11          | —   | 32.8  |     | mV   |
| Negative Hysteresis       | HYS <sub>CP-</sub> | CMPHYN = 00          |     | 0.37  |     | mV   |
| Mode 0 (CPMD = 00)        |                    | CMPHYN = 01          | —   | -7.9  |     | mV   |
|                           |                    | CMPHYN = 10          | —   | -16.1 | —   | mV   |
|                           |                    | CMPHYN = 11          |     | -32.7 |     | mV   |
| Positive Hysteresis       | HYS <sub>CP+</sub> | CMPHYP = 00          |     | 0.47  |     | mV   |
| Mode 1 (CPMD = 01)        |                    | CMPHYP = 01          | —   | 5.85  | —   | mV   |
|                           |                    | CMPHYP = 10          |     | 12    |     | mV   |
|                           |                    | CMPHYP = 11          | —   | 24.4  |     | mV   |
| Negative Hysteresis       | HYS <sub>CP-</sub> | CMPHYN = 00          | —   | 0.47  |     | mV   |
| Mode 1 (CPMD = 01)        |                    | CMPHYN = 01          | —   | -6.0  | —   | mV   |
|                           |                    | CMPHYN = 10          |     | -12.1 |     | mV   |
|                           |                    | CMPHYN = 11          | —   | -24.6 |     | mV   |
| Positive Hysteresis       | HYS <sub>CP+</sub> | CMPHYP = 00          | —   | 0.66  | —   | mV   |
| Mode 2 (CPMD = 10)        |                    | CMPHYP = 01          | —   | 4.55  |     | mV   |
|                           |                    | CMPHYP = 10          | —   | 9.3   | —   | mV   |
|                           |                    | CMPHYP = 11          |     | 19    |     | mV   |
| Negative Hysteresis       | HYS <sub>CP-</sub> | CMPHYN = 00          |     | 0.6   |     | mV   |
| Mode 2 (CPMD = 10)        |                    | CMPHYN = 01          |     | -4.5  |     | mV   |
|                           |                    | CMPHYN = 10          |     | -9.5  |     | mV   |
|                           |                    | CMPHYN = 11          |     | -19   |     | mV   |



# 3.3. Absolute Maximum Ratings

Stresses above those listed under Table 3.18 may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

| Table 3.18. | Absolute | Maximum | Ratings |
|-------------|----------|---------|---------|
|-------------|----------|---------|---------|

| Parameter                                                | Symbol            | Test Condition                                 | Min                    | Max                    | Unit |
|----------------------------------------------------------|-------------------|------------------------------------------------|------------------------|------------------------|------|
| Ambient Temperature Under Bias                           | T <sub>BIAS</sub> |                                                | -55                    | 125                    | °C   |
| Storage Temperature                                      | T <sub>STG</sub>  |                                                | -65                    | 150                    | °C   |
| Voltage on VBAT/VBATDC                                   | V <sub>BAT</sub>  |                                                | V <sub>SS</sub> –0.3   | 4.2                    | V    |
| Voltage on VDC                                           | V <sub>DC</sub>   |                                                | V <sub>SSDC</sub> -0.3 | 4.2                    | V    |
| Voltage on VDRV                                          | V <sub>DRV</sub>  |                                                | V <sub>SS</sub> –0.3   | 4.2                    | V    |
| Voltage on VIO                                           | V <sub>IO</sub>   |                                                | V <sub>SS</sub> –0.3   | 4.2                    | V    |
| Voltage on VIORF                                         | V <sub>IORF</sub> |                                                | V <sub>SS</sub> –0.3   | 4.2                    | V    |
| Voltage on VLCD                                          | V <sub>LCD</sub>  |                                                | V <sub>SS</sub> –0.3   | 4.2                    | V    |
| Voltage on I/O (PB0, PB1, PB3, PB4) or                   | V <sub>IN</sub>   | V <sub>IO</sub> ≥ 3.3 V                        | V <sub>SS</sub> –0.3   | 5.8                    | V    |
| RESET'                                                   |                   | V <sub>IO</sub> < 3.3 V                        | V <sub>SS</sub> –0.3   | V <sub>IO</sub> +2.5   | V    |
| Voltage on PB2 I/O Pins <sup>1</sup>                     | V <sub>IN</sub>   | $V_{IORF} \ge 3.3 V$                           | V <sub>SS</sub> –0.3   | 5.8                    | V    |
|                                                          |                   | V <sub>IORF</sub> < 3.3 V                      | V <sub>SS</sub> 0.3    | V <sub>IORF</sub> +2.5 | V    |
| Total Current Sunk into Supply Pins                      | I <sub>SUPP</sub> | VBAT/VBATDC, VIO,<br>VIORF, VDRV, VDC,<br>VLCD | _                      | 400                    | mA   |
| Total Current Sourced out of<br>Ground Pins <sup>2</sup> | I <sub>VSS</sub>  | V <sub>SS,</sub> V <sub>SSDC</sub>             | 400                    | —                      | mA   |
| Current Sourced or Sunk by any I/O Pin                   | I <sub>PIO</sub>  | All I/O and RESET                              | -100                   | 100                    | mA   |
| Power Dissipation at T <sub>A</sub> = 85 °C              | PD                | TQFP-80 Packages                               |                        | 500                    | mW   |
|                                                          |                   | QFN-64 Packages                                | —                      | 800                    | mW   |
|                                                          |                   | TQFP-64 Packages                               | —                      | 650                    | mW   |
|                                                          |                   | QFN-40 Packages                                | —                      | 650                    | mW   |

Notes:

1. Exceeding the minimum  $V_{\text{IO}}$  voltage may cause current to flow through adjacent device pins.

2. VSS and VSSDC provide separate return current paths for device supplies, but are not isolated. They must always be connected to the same potential on board.



### 4.1.5.6. Power Mode Summary

The power modes described above are summarized in Table 4.1. Table 3.2 and Table 3.3 provide more information on the power consumption and wake up times for each mode.

| Mode               | Description                                                                                                                                                                                                                                                                                                         | Notes                                                                                                                                                                                                                                          |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Normal             | <ul><li>Core operating at full speed</li><li>Code executing from flash</li></ul>                                                                                                                                                                                                                                    | <ul> <li>Full device operation</li> </ul>                                                                                                                                                                                                      |
| Power Mode 1 (PM1) | <ul><li>Core operating at full speed</li><li>Code executing from RAM</li></ul>                                                                                                                                                                                                                                      | <ul> <li>Full device operation</li> <li>Higher CPU bandwidth than PM0 (RAM can operate with zero wait states at any frequency)</li> </ul>                                                                                                      |
| Power Mode 2 (PM2) | <ul> <li>Core halted</li> <li>AHB, APB and all peripherals operational at full speed</li> </ul>                                                                                                                                                                                                                     | <ul> <li>Fast wakeup from any interrupt source</li> </ul>                                                                                                                                                                                      |
| Power Mode 3 (PM3) | <ul> <li>All clocks to core and peripherals<br/>stopped</li> <li>Faster wake enabled by keeping<br/>LFOSC0 or RTC0TCLK active</li> </ul>                                                                                                                                                                            | <ul> <li>Wake on any wake source or reset<br/>source defined in the PMU</li> </ul>                                                                                                                                                             |
| Power Mode 4 (PM4) | <ul><li>Core operating at low speed</li><li>Code executing from flash</li></ul>                                                                                                                                                                                                                                     | <ul> <li>Same capabilities as PM0, operating at lower speed</li> <li>Lower clock speed enables lower LDO output settings to save power</li> </ul>                                                                                              |
| Power Mode 5 (PM5) | <ul><li>Core operating at low speed</li><li>Code executing from RAM</li></ul>                                                                                                                                                                                                                                       | <ul> <li>Same capabilities as PM1, operating at lower speed</li> <li>Lower clock speed enables lower LDO output settings to save power</li> </ul>                                                                                              |
| Power Mode 6 (PM6) | <ul> <li>Core halted</li> <li>AHB, APB and all peripherals operational at low speed</li> </ul>                                                                                                                                                                                                                      | <ul> <li>Same capabilities as PM2, operating at lower speed</li> <li>Lower clock speed enables lower LDO output settings to save power</li> <li>When running from LFOSC0, power is similar to PM3, but the device wakes much faster</li> </ul> |
| Power Mode 8 (PM8) | <ul> <li>Low power sleep</li> <li>LDO regulators are disabled and all active circuitry operates directly from VBAT</li> <li>The following functions are available:<br/>ACCTR0, RTC0, UART0 running from RTC0TCLK, LPTIMER0, port match, and the LCD controller</li> <li>Register and RAM state retention</li> </ul> | <ul> <li>Lowest power consumption</li> <li>Wake on any wake source or reset<br/>source defined in the PMU</li> </ul>                                                                                                                           |

# Table 4.1. SiM3L1xx Power Modes



# 4.5. Data Peripherals

## 4.5.1. 10-Channel DMA Controller

The DMA facilitates autonomous peripheral operation, allowing the core to finish tasks more quickly without spending time polling or waiting for peripherals to interrupt. This helps reduce the overall power consumption of the system, as the device can spend more time in low-power modes.

The DMA controller has the following features:

- Utilizes ARM PrimeCell uDMA architecture.
- Implements 10 channels.
- DMA crossbar supports DTM0, DTM1, DTM2, SARADC0, IDAC0, I2C0, SPI0, SPI1, USART0, AES0, ENCDEC0, EPCA0, external pin triggers, and timers.
- Supports primary, alternate, and scatter-gather data structures to implement various types of transfers.
- Access allowed to all AHB and APB memory space.

## 4.5.2. Data Transfer Managers (DTM0, DTM1, DTM2)

The Data Transfer Manager is a module that collects DMA request signals from various peripherals and generates a series of master DMA requests based on a state-driven configuration. This master request drives a set of DMA channels to perform functions such as assembling and transferring communication packets to external devices. This capability saves power by allowing the core to remain in a low power mode during complex transfer operations. A combination of simple and peripheral scatter-gather DMA configurations can be used to perform complex operations while reducing memory requirements.

The DTM acts as a side channel for the peripheral's DMA control signals. When active, it manages the DMA control signals for the peripherals. When the DTMn module is inactive, the peripherals communicate directly to the DMA module.

The DTMn module has the following features:

- State descriptions stored in RAM with up to 15 states supported per module.
- Supports up to 15 source peripherals and up to 15 destination peripherals per module, in addition to memory or peripherals that do not require a data request.
- Includes error detection and an optional transfer timeout.
- Includes notifications for state transitions.

#### 4.5.3. 128/192/256-bit Hardware AES Encryption (AES0)

The basic AES block cipher is implemented in hardware. The integrated hardware support for Cipher Block Chaining (CBC) and Counter (CTR) algorithms results in identical performance, memory bandwidth, and memory footprint between the most basic Electronic Codebook (ECB) algorithm and these more complex algorithms. This hardware accelerator translates to more core bandwidth available for other functions or a power savings for low-power applications.

The AES module includes the following features:

- Operates on 4-word (16-byte) blocks.
- Supports key sizes of 128, 192, and 256 bits for both encryption and decryption.
- Generates the round key for decryption operations.
- All cipher operations can be performed without any firmware intervention for multiple 4-word blocks (up to 32 kB).
- Support for various chained and stream-ciphering configurations with XOR paths on both the input and output.
- Internal 4-word FIFOs to facilitate DMA operations.
- Integrated key storage.
- Hardware acceleration for Electronic Codebook (ECB), Cipher-Block Chaining (CBC), and Counter (CTR) algorithms utilizing integrated counterblock generation and previous-block caching.



### 4.5.4. 16/32-bit Enhanced CRC (ECRC0)

The ECRC module is designed to provide hardware calculations for flash memory verification and communications protocols. In addition to calculating a result from direct writes from firmware, the ECRC module can automatically snoop the APB bus and calculate a result from data written to or read from a particular peripheral. This allows for an automatic CRC result without directly feeding data through the ECRC module.

The supported 32-bit polynomial is 0x04C11DB7 (IEEE 802.3). The 16-bit polynomial is fully programmable.

The ECRC module includes the following features:

- Support for a programmable 16-bit polynomial and one fixed 32-bit polynomial.
- Byte-level bit reversal for the CRC input.
- Byte-order reorientation of words for the CRC input.
- Word or half-word bit reversal of the CRC result.
- Ability to configure and seed an operation in a single register write.
- Support for single-cycle parallel (unrolled) CRC computation for 32-, 16-, or 8-bit blocks.
- Capability to CRC 32 bits of data per peripheral bus (APB) clock.
- Automatic APB bus snooping.
- Support for DMA writes using firmware request mode.

#### 4.5.5. Encoder / Decoder (ENCDEC0)

The encoder / decoder module supports Manchester and Three-out-of-Six encoding and decoding from either firmware or DMA operations.

This module has the following features:

- Supports Manchester and Three-out-of-Six encoding and decoding.
- Automatic flag clearing when writing the input or reading the output data registers.
- Writing to the input data register automatically initiates an encode or decode operation.
- Optional output in one's complement format.
- Hardware error detection for invalid input data during decode operations, which helps reduce power consumption and packet turn-around time.
- Flexible byte swapping on the input or output data.



# 4.6. Counters/Timers

## 4.6.1. 32-bit Timer (TIMER0, TIMER1, TIMER2)

Each timer module is independent, and includes the following features:

- Operation as a single 32-bit or two independent 16-bit timers.
- Clocking options include the APB clock, the APB clock scaled using an 8-bit prescaler, the external oscillator, or falling edges on an external input pin (synchronized to the APB clock).
- Auto-reload functionality in both 32-bit and 16-bit modes.

TIMER0 and TIMER1 have the following features:

- Up/Down count capability, controlled by an external input pin.
- Rising and falling edge capture modes.
- Low or high pulse capture modes.
- Period and duty cycle capture mode.
- Square wave output mode, which is capable of toggling an external pin at a given rate with 50% duty cycle.
- 32- or 16-bit pulse-width modulation mode.

TIMER2 does not support the standard input/output features of TIMER0 and TIMER1. The TIMER2 EX signal is internally connected to the outputs of the PVTOSC0 oscillators. TIMER2 can use any of the counting modes that use EX as an input, including up/down mode, edge capture mode, and pulse capture mode. The TIMER2 CT signal is disconnected.

### 4.6.2. Enhanced Programmable Counter Array (EPCA0)

The Enhanced Programmable Counter Array (EPCA) module is a timer/counter system allowing for complex timing or waveform generation. Multiple modules run from the same main counter, allowing for synchronous output waveforms.

This module includes the following features:

- Three sets of channel pairs (six channels total) capable of generating complementary waveforms.
- Center- and edge-aligned waveform generation.
- Programmable dead times that ensure channel pairs are never active at the same time.
- Programmable clock divisor and multiple options for clock source selection.
- Waveform update scheduling.
- Option to function while the core is inactive.
- Multiple synchronization triggers.
- Pulse-Width Modulation (PWM) waveform generation.



# 5. Ordering Information



# Figure 5.1. SiM3L1xx Part Numbering

All devices in the SiM3L1xx family have the following features:

- Core: ARM Cortex-M3 with maximum operating frequency of 50 MHz.
- PLL.
- 10-Channel DMA Controller.
- 128/192/256-bit AES.
- 16/32-bit CRC.
- Encoder/Decoder.
- DC-DC Buck Converter.
- **Timers:** 3 x 32-bit (6 x 16-bit).
- Real-Time Clock.
- Low-Power Timer.
- **PCA:** 1 x 6 channels (Enhanced)
- ADC: 12-bit 250 ksps (10-bit 1 Msps) SAR.
- DAC: 10-bit IDAC.
- Temperature Sensor.
- Internal VREF.
- Comparator: 2 x low current.
- Serial Buses: 2 x USART, 2 x SPI, 1 x I2C

Additionally, all devices in the SiM3L1xx family include the low power mode advanced capture counter (ACCTR0), though the smaller packages (SiM3L1x4) only support some of the external inputs and outputs.



# 6. Pin Definitions

# 6.1. SiM3L1x7 Pin Definitions







| Pin Name           | Туре                                           | Pin Numbers (TQFP-80) | I/O Voltage Domain | Crossbar Capability | Port Match   | LCD Interface | Output Toggle Logic | External Trigger Inputs /<br>Digital Functions | Analog Functions  |
|--------------------|------------------------------------------------|-----------------------|--------------------|---------------------|--------------|---------------|---------------------|------------------------------------------------|-------------------|
| PB0.9              | Standard I/O                                   | 75                    | VIO                | ~                   | >            |               | ~                   | LPT0T1<br>INT0.9<br>WAKE.9<br>ACCTR0_LCPUL0    | ADC0.1<br>CMP0N.1 |
| PB0.10             | Standard I/O                                   | 74                    | VIO                | V                   | ~            |               | ~                   | LPT0T2<br>INT0.10<br>WAKE.10<br>ACCTR0_LCPUL1  | ADC0.2<br>CMP1P.1 |
| PB0.11/<br>TDO/SWV | Standard I/O /<br>JTAG / Serial<br>Wire Viewer | 73                    | VIO                | ~                   | 1            |               | ~                   | LPT0T3<br>LPT0OUT1<br>INT0.11<br>WAKE.11       | ADC0.3<br>CMP1N.1 |
| PB1.0              | Standard I/O                                   | 66                    | VIO                | ~                   | ~            | LCD0.39       |                     | LPT0T4<br>INT0.12<br>ACCTR0_LCBIAS0            | CMP0P.2           |
| PB1.1              | Standard I/O                                   | 65                    | VIO                | V                   | ~            | LCD0.38       |                     | LPT0T5<br>INT0.13<br>ACCTR0_LCBIAS1            | CMP0N.2           |
| PB1.2              | Standard I/O                                   | 64                    | VIO                | V                   | ~            | LCD0.37       |                     | LPT0T6<br>INT0.14<br>UART0_TX                  | CMP1P.2           |
| PB1.3              | Standard I/O                                   | 63                    | VIO                | ~                   | ~            | LCD0.36       |                     | LPT0T7<br>INT0.15<br>UART0_RX                  | CMP1N.2           |
| PB1.4              | Standard I/O                                   | 62                    | VIO                | ~                   | $\checkmark$ | LCD0.35       |                     | ACCTR0_DBG0                                    | ADC0.4            |
| PB1.5              | Standard I/O                                   | 61                    | VIO                | ~                   | ~            | LCD0.34       |                     | ACCTR0_DBG1                                    | ADC0.5            |
| PB1.6/TDI          | Standard I/O /<br>JTAG                         | 60                    | VIO                | V                   | ~            | LCD0.33       |                     |                                                | ADC0.6            |
| PB1.7              | Standard I/O                                   | 59                    | VIO                | ~                   | $\checkmark$ | LCD0.32       |                     | RTC0TCLK_OUT                                   | ADC0.7            |

# Table 6.1. Pin Definitions and Alternate Functions for SiM3L1x7 (Continued)



| Pin Name | Туре         | Pin Numbers (TQFP-80) | I/O Voltage Domain | Crossbar Capability | Port Match   | LCD Interface | Output Toggle Logic | External Trigger Inputs /<br>Digital Functions | Analog Functions   |
|----------|--------------|-----------------------|--------------------|---------------------|--------------|---------------|---------------------|------------------------------------------------|--------------------|
| PB1.8    | Standard I/O | 58                    | VIO                | $\checkmark$        | ~            | LCD0.31       |                     |                                                | CMP0P.3            |
| PB1.9    | Standard I/O | 57                    | VIO                | $\checkmark$        | ~            | LCD0.30       |                     |                                                | CMP0N.3            |
| PB1.10   | Standard I/O | 56                    | VIO                | $\checkmark$        | ~            | LCD0.29       |                     |                                                | CMP1P.3            |
| PB1.11   | Standard I/O | 55                    | VIO                | $\checkmark$        | ~            | LCD0.28       |                     |                                                | CMP1N.3            |
| PB2.0    | Standard I/O | 54                    | VIORF              | ~                   | V            |               |                     | LPT0T8<br>INT1.0<br>WAKE.12<br>SPI1_CTS        | ADC0.8<br>CMP0P.4  |
| PB2.1    | Standard I/O | 53                    | VIORF              | ~                   | ~            |               |                     | LPT0T9<br>INT1.1<br>WAKE.13<br>VIORFCLK        | ADC0.9<br>CMP0N.4  |
| PB2.4    | Standard I/O | 51                    | VIORF              | ~                   | V            |               |                     | LPT0T12<br>INT1.4<br>SPI1_SCLK                 | ADC0.10<br>CMP0P.5 |
| PB2.5    | Standard I/O | 50                    | VIORF              | ~                   | V            |               |                     | LPT0T13<br>INT1.5<br>SPI1_MISO                 | ADC0.11<br>CMP0N.5 |
| PB2.6    | Standard I/O | 49                    | VIORF              | ~                   | V            |               |                     | LPT0T14<br>INT1.6<br>SPI1_MOSI                 | ADC0.12<br>CMP1P.5 |
| PB2.7    | Standard I/O | 48                    | VIORF              | $\checkmark$        | ~            |               |                     | INT1.7<br>SPI1_NSS                             | ADC0.13<br>CMP1N.5 |
| PB3.0    | Standard I/O | 47                    | VIO                | $\checkmark$        | ~            | LCD0.27       |                     | INT1.8                                         | ADC0.14            |
| PB3.1    | Standard I/O | 46                    | VIO                | $\checkmark$        | ~            | LCD0.26       |                     | INT1.9                                         | ADC0.15            |
| PB3.2    | Standard I/O | 45                    | VIO                | $\checkmark$        | $\checkmark$ | LCD0.25       |                     | INT1.10                                        | ADC0.16            |
| PB3.3    | Standard I/O | 44                    | VIO                | $\checkmark$        | $\checkmark$ | LCD0.24       |                     | INT1.11                                        | ADC0.17            |

# Table 6.1. Pin Definitions and Alternate Functions for SiM3L1x7 (Continued)



| Pin Name         | Туре                     | Pin Numbers | I/O Voltage Domain | Crossbar Capability | Port Match | Output Toggle Logic | External Trigger Inputs /<br>Digital Functions | Analog Functions                       |
|------------------|--------------------------|-------------|--------------------|---------------------|------------|---------------------|------------------------------------------------|----------------------------------------|
| VSS              | Ground                   | 9<br>25     |                    |                     |            |                     |                                                |                                        |
| VSSDC            | Ground (DC-DC)           | 9           |                    |                     |            |                     |                                                |                                        |
| VIO              | Power (I/O)              | 5           |                    |                     |            |                     |                                                |                                        |
| VIORF /<br>VDRV  | Power (RF I/O)           | 6           |                    |                     |            |                     |                                                |                                        |
| VBAT /<br>VBATDC |                          | 7           |                    |                     |            |                     |                                                |                                        |
| VDC              |                          | 10          |                    |                     |            |                     |                                                |                                        |
| IND              | DC-DC Inductor           | 8           |                    |                     |            |                     |                                                |                                        |
| RESET            | Active-low Reset         | 35          |                    |                     |            |                     |                                                |                                        |
| SWCLK            | Serial Wire              | 4           |                    |                     |            |                     |                                                |                                        |
| SWDIO            | Serial Wire              | 3           |                    |                     |            |                     |                                                |                                        |
| RTC1             | RTC Oscillator Input     | 34          |                    |                     |            |                     |                                                |                                        |
| RTC2             | RTC Oscillator<br>Output | 33          |                    |                     |            |                     |                                                |                                        |
| PB0.0            | Standard I/O             | 2           | VIO                | XBR0                | ~          | ~                   | INT0.0<br>WAKE.0                               | ADC0.20<br>VREF<br>CMP0P.0             |
| PB0.1            | Standard I/O             | 1           | VIO                | XBR0                | ~          | ~                   | INT0.1<br>WAKE.2                               | ADC0.22<br>CMP0N.0<br>CMP1P.0<br>XTAL2 |

 Table 6.3. Pin Definitions and Alternate Functions for SiM3L1x4







Figure 6.5. TQFP-80 Package Drawing



| Dimension | Min       | Max         |      |  |  |  |  |
|-----------|-----------|-------------|------|--|--|--|--|
| А         | —         | —           | 1.20 |  |  |  |  |
| A1        | 0.05      | 0.05 — 0.15 |      |  |  |  |  |
| A2        | 0.95      | 1.00        | 1.05 |  |  |  |  |
| b         | 0.17      | 0.20        | 0.27 |  |  |  |  |
| С         | 0.09      | 0.20        |      |  |  |  |  |
| D         |           | 14.00 BSC   | L    |  |  |  |  |
| D1        |           | 12.00 BSC   |      |  |  |  |  |
| е         |           | 0.50 BSC    |      |  |  |  |  |
| E         | 14.00 BSC |             |      |  |  |  |  |
| E1        |           | 12.00 BSC   |      |  |  |  |  |
| L         | 0.45      | 0.60        | 0.75 |  |  |  |  |
| L1        |           | 1.00 Ref    | L    |  |  |  |  |
| Θ         | 0°        | 3.5°        | 7°   |  |  |  |  |
| aaa       |           | 0.20        | L    |  |  |  |  |
| bbb       |           | 0.20        |      |  |  |  |  |
| CCC       | 0.08      |             |      |  |  |  |  |
| ddd       | 0.08      |             |      |  |  |  |  |
| eee       | 0.05      |             |      |  |  |  |  |

Table 6.4. TQFP-80 Package Dimensions

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This package outline conforms to JEDEC MS-026, variant ADD.

**4.** Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.



### 6.4.1. TQFP-80 Solder Mask Design

All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

### 6.4.2. TQFP-80 Stencil Design

- 1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 2. The stencil thickness should be 0.125 mm (5 mils).
- 3. The ratio of stencil aperture to land pad size should be 1:1 for all pads.

#### 6.4.3. TQFP-80 Card Assembly

- 1. A No-Clean, Type-3 solder paste is recommended.
- 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.



#### 6.5.1. QFN-64 Solder Mask Design

All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

### 6.5.2. QFN-64 Stencil Design

- 1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 2. The stencil thickness should be 0.125 mm (5 mils).
- 3. The ratio of stencil aperture to land pad size should be 1:1 for all pads.
- 4. A 3x3 array of 1.0 mm square openings on a 1.5 mm pitch should be used for the center ground pad.

### 6.5.3. QFN-64 Card Assembly

- 1. A No-Clean, Type-3 solder paste is recommended.
- 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.



| —<br>0.05<br>0.95 |                                     | 1.20<br>0.15                                                                                                                                                                                                                                                                               |
|-------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.05<br>0.95      |                                     | 0.15                                                                                                                                                                                                                                                                                       |
| 0.95              | 1.00                                |                                                                                                                                                                                                                                                                                            |
|                   | 1.00                                | 1.05                                                                                                                                                                                                                                                                                       |
| 0.17              | 0.22                                | 0.27                                                                                                                                                                                                                                                                                       |
| 0.09              | —                                   | 0.20                                                                                                                                                                                                                                                                                       |
| 12.00 BSC         |                                     |                                                                                                                                                                                                                                                                                            |
| 10.00 BSC         |                                     |                                                                                                                                                                                                                                                                                            |
| 0.50 BSC          |                                     |                                                                                                                                                                                                                                                                                            |
| 12.00 BSC         |                                     |                                                                                                                                                                                                                                                                                            |
| 10.00 BSC         |                                     |                                                                                                                                                                                                                                                                                            |
| 0.45              | 0.60                                | 0.75                                                                                                                                                                                                                                                                                       |
| 0°                | 3.5°                                | 7°                                                                                                                                                                                                                                                                                         |
|                   | —                                   | 0.20                                                                                                                                                                                                                                                                                       |
|                   | —                                   | 0.20                                                                                                                                                                                                                                                                                       |
|                   | —                                   | 0.08                                                                                                                                                                                                                                                                                       |
| _                 | —                                   | 0.08                                                                                                                                                                                                                                                                                       |
|                   | 0.45<br>0°<br>—<br>—<br>—<br>—<br>— | 12.00 BSC       10.00 BSC       0.50 BSC       12.00 BSC       12.00 BSC       10.00 BSC       0.45       0.60       0°       3.5°       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       —       — |

Table 6.8. TQFP-64 Package Dimensions

**4.** Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.







| Dimension | mm   |
|-----------|------|
| C1        | 5.90 |
| C2        | 5.90 |
| E         | 0.50 |
| X1        | 0.30 |
| Y1        | 0.85 |
| X2        | 4.65 |
| Y2        | 4.65 |
| Notes:    |      |

# Table 6.11. QFN-40 Landing Diagram Dimensions

- 1. All dimensions shown are in millimeters (mm).
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- 3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a

Fabrication Allowance of 0.05 mm.

