
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	64KB (64K × 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 23x10/12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/sim3l146-c-gm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 3.2. Power Consumption

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Digital Core Supply Current	• •			1	Ļ	
Normal Mode ^{1,2,3,4} —Full speed with code executing flash,	I _{BAT}	F _{AHB} = 49 MHz, F _{APB} = 24.5 MHz	—	17.5	18.9	mA
peripheral clocks ON		F _{AHB} = 20 MHz, F _{APB} = 10 MHz	—	6.7	7.2	mA
		F _{AHB} = 2.5 MHz, F _{APB} = 1.25 MHz	—	1.15	1.4	mA
Normal Mode ^{1,2,3,4} —Full speed with code executing from flash, peripheral clocks OFF	I _{BAT}	F _{AHB} = 49 MHz, F _{APB} = 24.5 MHz	—	13.3	14.5	mA
		F _{AHB} = 20 MHz, F _{APB} = 10 MHz	—	5.4	5.9	mA
		F _{AHB} = 2.5 MHz, F _{APB} = 1.25 MHz	_	980	1.2	μA
Normal Mode ^{1,2,3,4} —Full speed with code executing from flash, LDOs powered by dc-dc at 1.9 V,	I _{BAT}	F _{AHB} = 49 MHz, F _{APB} = 24.5 MHz V _{BAT} = 3.3 V		9.7		mA
peripheral clocks OFF		F _{AHB} = 49 MHz, F _{APB} = 24.5 MHz V _{BAT} = 3.8 V		8.65		mA
		F _{AHB} = 20 MHz, F _{APB} = 10 MHz V _{BAT} = 3.3 V	_	4.15	_	mA
		F _{AHB} = 20 MHz, F _{APB} = 10 MHz V _{BAT} = 3.8 V	_	3.9	_	mA

Notes:

1. Currents are additive. For example, where I_{BAT} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.

2. Includes all peripherals that cannot have clocks gated in the Clock Control module.

- 3. Includes LDO and PLL0OSC (>20 MHz) or LPOSC0 (<20 MHz) supply current.
- **4.** Internal Digital and Memory LDOs scaled to optimal output voltage.
- 5. Flash AHB clock turned off.
- 6. Running from internal LFO, Includes LFO supply current.
- 7. LCD0 current does not include switching currents for external load.
- 8. IDAC output current not included.
- 9. Does not include LC tank circuit.
- Does not include digital drive current or pullup current for active port I/O. Unloaded I_{VIO} is included in all I_{BAT} PM8 production test measurements.

Table 3.2. Power Consumption (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Power Mode 1 ^{1,2,3,4} —Full speed with code executing from RAM,	I _{BAT}	F _{AHB} = 49 MHz, F _{APB} = 24.5 MHz	—	13.4	16.6	mA
peripheral clocks ON		F _{AHB} = 20 MHz, F _{APB} = 10 MHz	—	4.7		mA
		F _{AHB} = 2.5 MHz, F _{APB} = 1.25 MHz	_	810		μA
Power Mode 1 ^{1,2,3,4} —Full speed with code executing from RAM,	I _{BAT}	F _{AHB} = 49 MHz, F _{APB} = 24.5 MHz		9.4	12.5	mA
peripheral clocks OFF		F _{AHB} = 20 MHz, F _{APB} = 10 MHz	_	3.3	_	mA
		F _{AHB} = 2.5 MHz, F _{APB} = 1.25 MHz	—	630	_	μA
Power Mode 1 ^{1,2,3,4} —Full speed with code executing from RAM, LDOs powered by dc-dc at 1.9 V,	I _{BAT}	F _{AHB} = 49 MHz, F _{APB} = 24.5 MHz V _{BAT} = 3.3 V	_	7.05		mA
peripheral clocks OFF		F _{AHB} = 49 MHz, F _{APB} = 24.5 MHz V _{BAT} = 3.8 V		6.3	_	mA
		F _{AHB} = 20 MHz, F _{APB} = 10 MHz V _{BAT} = 3.3 V	_	2.75	—	mA
		F _{AHB} = 20 MHz, F _{APB} = 10 MHz V _{BAT} = 3.8 V	_	2.6	—	mA
Power Mode 2 ^{1,2,3,4,5} —Core halted with peripheral clocks ON	I _{BAT}	F _{AHB} = 49 MHz, F _{APB} = 24.5 MHz	—	7.6	11.3	mA
		F _{AHB} = 20 MHz, F _{APB} = 10 MHz	_	2.75		mA
		F _{AHB} = 2.5 MHz, F _{APB} = 1.25 MHz	_	575	_	μA

Notes:

- 1. Currents are additive. For example, where I_{BAT} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.
- 2. Includes all peripherals that cannot have clocks gated in the Clock Control module.
- 3. Includes LDO and PLL0OSC (>20 MHz) or LPOSC0 (<20 MHz) supply current.
- 4. Internal Digital and Memory LDOs scaled to optimal output voltage.
- 5. Flash AHB clock turned off.
- 6. Running from internal LFO, Includes LFO supply current.
- 7. LCD0 current does not include switching currents for external load.
- **8.** IDAC output current not included.
- 9. Does not include LC tank circuit.
- Does not include digital drive current or pullup current for active port I/O. Unloaded I_{VIO} is included in all I_{BAT} PM8 production test measurements.

Table 3.2. Power Consumption (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
SARADC0	ISARADC	Sampling at 1 Msps, Internal VREF used		1.2	1.6	mA
		Sampling at 250 ksps, lowest power mode settings.		390	540	μA
Temperature Sensor	I _{TSENSE}			75	110	μA
Internal SAR Reference	I _{REFFS}	Normal Power Mode		680	_	μA
		Normal Power Mode		160	_	μA
VREF0	I _{REFP}			80		μA
Comparator 0 (CMP0),	I _{CMP}	CMPMD = 11		0.5	2	μA
Comparator 1 (CMP1)		CMPMD = 10		3	8	μA
		CMPMD = 01		10	16	μA
		CMPMD = 00		25	42	μA
IDAC0 ⁸	I _{IDAC}		_	70	100	μA
Voltage Supply Monitor (VMON0)	I _{VMON}			10	22	μA
Flash Current on VBAT			1	1		
Write Operation	I _{FLASH-W}				8	mA
Erase Operation	I _{FLASH-E}			_	15	mA
Notes:	1		1	1	1	1

1. Currents are additive. For example, where I_{BAT} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.

- 2. Includes all peripherals that cannot have clocks gated in the Clock Control module.
- 3. Includes LDO and PLL0OSC (>20 MHz) or LPOSC0 (<20 MHz) supply current.
- 4. Internal Digital and Memory LDOs scaled to optimal output voltage.
- 5. Flash AHB clock turned off.
- 6. Running from internal LFO, Includes LFO supply current.
- 7. LCD0 current does not include switching currents for external load.
- 8. IDAC output current not included.
- 9. Does not include LC tank circuit.
- 10. Does not include digital drive current or pullup current for active port I/O. Unloaded IVIO is included in all IBAT PM8 production test measurements.

Table 3.9. SAR ADC

Parameter	Parameter Symbol Test Condition					
Resolution	N _{bits}	12 Bit Mode		12		Bits
		10 Bit Mode		10		Bits
Supply Voltage Requirements	V _{ADC}	High Speed Mode	2.2		3.8	V
(VBAT)		Low Power Mode	1.8		3.8	V
Throughput Rate	f _S	12 Bit Mode			250	ksps
(High Speed Mode)		10 Bit Mode			1	Msps
Throughput Rate	f _S	12 Bit Mode			62.5	ksps
(Low Power Mode)		10 Bit Mode			250	ksps
Tracking Time	t _{TRK}	High Speed Mode	230			ns
		Low Power Mode	450			ns
SAR Clock Frequency	f _{SAR}	High Speed Mode			16.24	MHz
		Low Power Mode			4	MHz
Conversion Time	t _{CNV}	10-Bit Conversion, SAR Clock = 16 MHz, APB Clock = 40 MHz		ns		
Sample/Hold Capacitor	C _{SAR}	Gain = 1	_	5	_	pF
		Gain = 0.5		2.5		pF
Input Pin Capacitance	C _{IN}	High Quality Inputs		18	—	pF
		Normal Inputs		20	—	pF
Input Mux Impedance	R _{MUX}	High Quality Inputs		300	—	Ω
		Normal Inputs		550	_	Ω
Voltage Reference Range	V _{REF}		1		V _{BAT}	V
Input Voltage Range*	V _{IN}	Gain = 1	0		V _{REF}	V
		Gain = 0.5	0	_	$2 \mathrm{x} \mathrm{V}_{\mathrm{REF}}$	V
Power Supply Rejection Ratio	PSRR _{ADC}		_	70	—	dB
DC Performance						
Integral Nonlinearity	INL	12 Bit Mode	—	±1	±1.9	LSB
		10 Bit Mode		±0.2	±0.5	LSB
Differential Nonlinearity	DNL	12 Bit Mode	-1	±0.7	1.8	LSB
(Guaranteed Monotonic)		10 Bit Mode		±0.2	±0.5	LSB
Offset Error (using VREFGND)	E _{OFF}	12 Bit Mode, VREF = 2.4 V	-2	0	2	LSB
		10 Bit Mode, VREF = 2.4 V	-1	0	1	LSB

Table 3.11. ACCTR (Advanced Capture Counter)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
LC Comparator Response Time,	t _{RESP0}	+100 mV Differential		100	_	ns
CMPMD = 11 (Highest Speed)		–100 mV Differential		150		ns
LC Comparator Response Time,	t _{RESP3}	+100 mV Differential	—	1.4	_	μs
CMPMD = 00 (Lowest Power)		-100 mV Differential		3.5		μs
LC Comparator Positive Hysteresis	HYS _{CP+}	CMPHYP = 00		0.37		mV
Mode 0 (CPMD = 11)		CMPHYP = 01	—	7.9	_	mV
		CMPHYP = 10		16.7	_	mV
		CMPHYP = 11		32.8	—	mV
LC Comparator Negative Hysteresis	HYS _{CP-}	CMPHYN = 00		0.37		mV
Mode 0 (CPMD = 11)		CMPHYN = 01		-7.9	_	mV
		CMPHYN = 10		-16.1	—	mV
		CMPHYN = 11		-32.7	_	mV
LC Comparator Positive Hysteresis	HYS _{CP+}	CMPHYP = 00		0.47	_	mV
Mode 1 (CPMD = 10)		CMPHYP = 01		5.85	_	mV
		CMPHYP = 10		12	_	mV
		CMPHYP = 11	—	24.4		mV
LC Comparator Negative Hysteresis	HYS _{CP-}	CMPHYN = 00		0.47	—	mV
Mode 1 (CPMD = 10)		CMPHYN = 01		-6.0		mV
		CMPHYN = 10		-12.1		mV
		CMPHYN = 11		-24.6		mV
LC Comparator Positive Hysteresis	HYS _{CP+}	CMPHYP = 00		0.66		mV
Mode 2 (CPMD = 01)		CMPHYP = 01		4.55		mV
		CMPHYP = 10		9.3	_	mV
		CMPHYP = 11		19		mV
LC Comparator Negative Hysteresis	HYS _{CP-}	CMPHYN = 00		0.6	_	mV
Mode 2 (CPMD = 01)		CMPHYN = 01		-4.5	—	mV
		CMPHYN = 10		-9.5		mV
		CMPHYN = 11		-19		mV

Table 3.11. ACCTR (Advanced Capture Counter) (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
LC Comparator Positive Hysteresis	HYS _{CP+}	CMPHYP = 00	—	1.37	—	mV
Mode 3 (CPMD = 00)		CMPHYP = 01	_	3.8	_	mV
		CMPHYP = 10	_	7.8	_	mV
		CMPHYP = 11	_	15.6	_	mV
LC Comparator Negative Hysteresis	HYS _{CP-}	CMPHYN = 00	_	1.37		mV
Mode 3 (CPMD = 00)		CMPHYN = 01	_	-3.9		mV
		CMPHYN = 10	-	-7.9	_	mV
		CMPHYN = 11	_	-16		mV
LC Comparator Input Range (ACCTR0_LCIN pin)	V _{IN}		-0.25	_	V _{BAT} + 0.25	V
LC Comparator Common-Mode Rejection Ratio	CMRR _{CP}		_	75	_	dB
LC Comparator Power Supply Rejec- tion Ratio	PSRR _{CP}		_	72	—	dB
LC Comparator Input Offset Voltage	V _{OFF}	T _A = 25 °C	-10	0	10	mV
LC Comparator Input Offset Tempco	TC _{OFF}		_	3.5	_	µV/°C
Reference DAC Offset Error	DAC _{EOFF}		-1	—	1	LSB
Reference DAC Full Scale Output	DAC _{FS}	Low Range	_	V _{IO} /8	_	V
		High Range	_	V _{IO}		V
Reference DAC Step Size	DAC _{LSB}	Low Range (48 steps)	_	V _{IO} /384	_	V
		High Range (64 steps)	_	V _{IO} /64	_	V
LC Oscillator Period	T _{LCOSC}		_	25	_	ns
LC Bias Output Impedance	R _{LCBIAS}	10 µA Load	—	1	—	kΩ
LC Bias Drive Strength	I _{LCBIAS}		_	_	2	mA
Pull-Up Resistor Tolerance	R _{TOL}	PUVAL[4:2] = 0 to 6	-15	_	15	%
		PUVAL[4:2] = 7	-10		10	%

3.3. Absolute Maximum Ratings

Stresses above those listed under Table 3.18 may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Parameter	Symbol	Test Condition	Min	Max	Unit
Ambient Temperature Under Bias	T _{BIAS}		-55	125	°C
Storage Temperature	T _{STG}		-65	150	°C
Voltage on VBAT/VBATDC	V _{BAT}		V _{SS} 0.3	4.2	V
Voltage on VDC	V _{DC}		V _{SSDC} -0.3	4.2	V
Voltage on VDRV	V _{DRV}		V _{SS} -0.3	4.2	V
Voltage on VIO	V _{IO}		V _{SS} -0.3	4.2	V
Voltage on VIORF	V _{IORF}		V _{SS} -0.3	4.2	V
Voltage on VLCD	V _{LCD}		V _{SS} -0.3	4.2	V
Voltage on I/O (PB0, PB1, PB3, PB4) or	V _{IN}	V _{IO} ≥ 3.3 V	V _{SS} -0.3	5.8	V
RESET ¹	-	V _{IO} < 3.3 V	V _{SS} 0.3	V _{IO} +2.5	V
Voltage on PB2 I/O Pins ¹	V _{IN}	V _{IORF} ≥ 3.3 V	V _{SS} -0.3	5.8	V
	-	V _{IORF} < 3.3 V	V _{SS} -0.3	V _{IORF} +2.5	V
Total Current Sunk into Supply Pins	I _{SUPP}	VBAT/VBATDC, VIO, VIORF, VDRV, VDC, VLCD	_	400	mA
Total Current Sourced out of Ground Pins ²	I _{VSS}	V _{SS,} V _{SSDC}	400	—	mA
Current Sourced or Sunk by any I/O Pin	I _{PIO}	All I/O and RESET	-100	100	mA
Power Dissipation at T _A = 85 °C	PD	TQFP-80 Packages	_	500	mW
		QFN-64 Packages	—	800	mW
		TQFP-64 Packages	_	650	mW
		QFN-40 Packages	_	650	mW

Notes:

1. Exceeding the minimum V_{IO} voltage may cause current to flow through adjacent device pins.

2. VSS and VSSDC provide separate return current paths for device supplies, but are not isolated. They must always be connected to the same potential on board.

4.5.4. 16/32-bit Enhanced CRC (ECRC0)

The ECRC module is designed to provide hardware calculations for flash memory verification and communications protocols. In addition to calculating a result from direct writes from firmware, the ECRC module can automatically snoop the APB bus and calculate a result from data written to or read from a particular peripheral. This allows for an automatic CRC result without directly feeding data through the ECRC module.

The supported 32-bit polynomial is 0x04C11DB7 (IEEE 802.3). The 16-bit polynomial is fully programmable.

The ECRC module includes the following features:

- Support for a programmable 16-bit polynomial and one fixed 32-bit polynomial.
- Byte-level bit reversal for the CRC input.
- Byte-order reorientation of words for the CRC input.
- Word or half-word bit reversal of the CRC result.
- Ability to configure and seed an operation in a single register write.
- Support for single-cycle parallel (unrolled) CRC computation for 32-, 16-, or 8-bit blocks.
- Capability to CRC 32 bits of data per peripheral bus (APB) clock.
- Automatic APB bus snooping.
- Support for DMA writes using firmware request mode.

4.5.5. Encoder / Decoder (ENCDEC0)

The encoder / decoder module supports Manchester and Three-out-of-Six encoding and decoding from either firmware or DMA operations.

This module has the following features:

- Supports Manchester and Three-out-of-Six encoding and decoding.
- Automatic flag clearing when writing the input or reading the output data registers.
- Writing to the input data register automatically initiates an encode or decode operation.
- Optional output in one's complement format.
- Hardware error detection for invalid input data during decode operations, which helps reduce power consumption and packet turn-around time.
- Flexible byte swapping on the input or output data.

4.7. Communications Peripherals

4.7.1. USART (USART0)

The USART uses two signals (TX and RX) to communicate serially with an external device. In addition to these signals, the USART module can optionally use a clock (UCLK) or hardware handshaking (RTS and CTS).

The USART module provides the following features:

- Independent transmitter and receiver configurations with separate 16-bit baud rate generators.
- Synchronous or asynchronous transmissions and receptions.
- Clock master or slave operation with programmable polarity and edge controls.
- Up to 5 Mbaud (synchronous or asynchronous, TX or RX, and master or slave) or 1 Mbaud Smartcard (TX or RX).
- Individual enables for generated clocks during start, stop, and idle states.
- Internal transmit and receive FIFOs with flush capability and support for byte, half-word, and word reads and writes.
- Data bit lengths from 5 to 9 bits.
- Programmable inter-packet transmit delays.
- Auto-baud detection with support for the LIN SYNC byte.
- Automatic parity generation (with enable).
- Automatic start and stop generation (with separate enables).
- Transmit and receive hardware flow-control.
- Independent inversion correction for TX, RX, RTS, and CTS signals.
- IrDA modulation and demodulation with programmable pulse widths.
- Smartcard ACK/NACK support.
- Parity error, frame error, overrun, and underrun detection.
- Multi-master and half-duplex support.
- Multiple loop-back modes supported.
- Multi-processor communications support.

4.7.2. UART (UART0)

The low-power UART uses two signals (TX and RX) to communicate serially with an external device.

The UART0 module can operate in PM8 mode by taking the clock directly from the RTC0 time clock (RTC0TCLK) and running from the low power mode charge pump. This will allow the system to conserve power while transmitting or receiving UART traffic. The UART supports standard baud-rates of 9600, 4800, 2400 and 1200 in this low power mode.

The UART0 module provides the following features:

- Independent transmitter and receiver configurations with separate 16-bit baud rate generators.
- Asynchronous transmissions and receptions.
- Up to 5 Mbaud (TX or RX).
- Internal transmit and receive FIFOs with flush capability and support for byte, half-word, and word reads and writes.
- Data bit lengths from 5 to 9 bits.
- Programmable inter-packet transmit delays.
- Auto-baud detection with support for the LIN SYNC byte.
- Automatic parity generation (with enable).
- Automatic start and stop generation (with separate enables).
- Independent inversion correction for TX and RX signals.
- Parity error, frame error, overrun, and underrun detection.
- Half-duplex support.

- Multiple loop-back modes supported.
- Multi-processor communications support.
- Operates at 9600, 4800, 2400, or 1200 baud in Power Mode 8.

4.7.3. SPI (SPI0, SPI1)

SPI is a 3- or 4-wire communication interface that includes a clock, input data, output data, and an optional select signal.

The SPI0 and SPI1 modules include the following features:

- Supports 3- or 4-wire master or slave modes.
- Supports up to 10 MHz clock in master mode and 5 MHz clock in slave mode.
- Support for all clock phase and slave select (NSS) polarity modes.
- 16-bit programmable clock rate.
- Programmable MSB-first or LSB-first shifting.
- 8-byte FIFO buffers for both transmit and receive data paths to support high speed transfers.
- Support for multiple masters on the same data lines.

In addition, the SPI modules include several features to support autonomous DMA transfers:

- Hardware NSS control.
- Programmable FIFO threshold levels.
- Configurable FIFO data widths.
- Master or slave hardware flow control for the MISO and MOSI signals.

SPI1 is on fixed pins and supports additional flow control options using a fixed input (SPI1CTS). Neither SPI1 nor the flow control input are on the crossbar.

4.7.4. I2C (I2C0)

The I2C interface is a two-wire, bi-directional serial bus. The clock and data signals operate in open-drain mode with external pull-ups to support automatic bus arbitration.

Reads and writes to the interface are byte oriented with the I2C interface autonomously controlling the serial transfer of the data. Data can be transferred at up to 1/8th of the APB clock as a master or slave, which can be faster than allowed by the I2C specification, depending on the clock source used. A method of extending the clock-low duration is available to accommodate devices with different speed capabilities on the same bus.

The I2C interface may operate as a master and/or slave, and may function on a bus with multiple masters. The I2C provides control of SDA (serial data), SCL (serial clock) generation and synchronization, arbitration logic, and start/ stop control and generation.

The I2C0 module includes the following features:

- Standard (up to 100 kbps) and Fast (400 kbps) transfer speeds.
- Can operate down to APB clock divided by 32768 or up to APB clock divided by 8.
- Support for master, slave, and multi-master modes.
- Hardware synchronization and arbitration for multi-master mode.
- Clock low extending (clock stretching) to interface with faster masters.
- Hardware support for 7-bit slave and general call address recognition.
- Firmware support for 10-bit slave address decoding.
- Ability to disable all slave states.
- Programmable clock high and low period.
- Programmable data setup/hold times.
- Spike suppression up to 2 times the APB period.

Table 5.1. Product Selection Guide

Ordering Part Number	Flash Memory (kB)	RAM (kB)	LCD Segments	Digital Port I/Os	Digital Port I/Os on the Crossbar	Number of SARADC0 Channels	Number of Comparator 0/1 Inputs (+/-)	Number of PMU Pin Wake Sources	Number of ACCTR0 Inputs and Outputs	JTAG Debugging Interface	ETM Debugging Interface	Serial Wire Debugging Interface	Lead-free (RoHS Compliant)	Package
SiM3L167-C-GQ	256	32	160 (4x40)	62	38	24	15/15	14	12	\checkmark	\checkmark	\checkmark	\checkmark	TQFP-80
SiM3L166-C-GM	256	32	128 (4x32)	51	34	23	14/12	11	12		\checkmark	\checkmark	\checkmark	QFN-64
SiM3L166-C-GQ	256	32	128 (4x32)	51	34	23	14/12	11	12		\checkmark	\checkmark	\checkmark	TQFP-64
SiM3L164-C-GM	256	32		28	26	20	9/10	11	5			\checkmark	\checkmark	QFN-40
SiM3L157-C-GQ	128	32	160 (4x40)	62	38	24	15/15	14	12	\checkmark	\checkmark	\checkmark	\checkmark	TQFP-80
SiM3L156-C-GM	128	32	128 (4x32)	51	34	23	14/12	11	12		\checkmark	\checkmark	\checkmark	QFN-64
SiM3L156-C-GQ	128	32	128 (4x32)	51	34	23	14/12	11	12		\checkmark	\checkmark	\checkmark	TQFP-64
SiM3L154-C-GM	128	32		28	26	20	9/10	11	5			\checkmark	\checkmark	QFN-40
SiM3L146-C-GM	64	16	128 (4x32)	51	34	23	14/12	11	12		\checkmark	\checkmark	\checkmark	QFN-64
SiM3L146-C-GQ	64	16	128 (4x32)	51	34	23	14/12	11	12		\checkmark	\checkmark	\checkmark	TQFP-64
SiM3L144-C-GM	64	16		28	26	20	9/10	11	5			\checkmark	\checkmark	QFN-40
SiM3L136-C-GM	32	8	128 (4x32)	51	34	23	14/12	11	12		\checkmark	\checkmark	\checkmark	QFN-64
SiM3L136-C-GQ	32	8	128 (4x32)	51	34	23	14/12	11	12		\checkmark	\checkmark	\checkmark	TQFP-64
SiM3L134-C-GM	32	8		28	26	20	9/10	11	5			\checkmark	\checkmark	QFN-40

Pin Name	Туре	Pin Numbers (TQFP-80)	I/O Voltage Domain	Crossbar Capability	Port Match	LCD Interface	Output Toggle Logic	External Trigger Inputs / Digital Functions	Analog Functions			
PB0.9	Standard I/O	75	VIO	>			~	LPT0T1 INT0.9 WAKE.9 ACCTR0_LCPUL0	ADC0.1 CMP0N.1			
PB0.10	Standard I/O	74	VIO	~	~		~	LPT0T2 INT0.10 WAKE.10 ACCTR0_LCPUL1	ADC0.2 CMP1P.1			
PB0.11/ TDO/SWV	Standard I/O / JTAG / Serial Wire Viewer	73	VIO	~	~		~	LPT0T3 LPT0OUT1 INT0.11 WAKE.11	ADC0.3 CMP1N.1			
PB1.0	Standard I/O	66	VIO	~	~	LCD0.39		LPT0T4 INT0.12 ACCTR0_LCBIAS0	CMP0P.2			
PB1.1	Standard I/O	65	VIO	~	~	LCD0.38		LPT0T5 INT0.13 ACCTR0_LCBIAS1	CMP0N.2			
PB1.2	Standard I/O	64	VIO	\checkmark	\checkmark	LCD0.37		LPT0T6 INT0.14 UART0_TX	CMP1P.2			
PB1.3	Standard I/O	63	VIO	>	~	LCD0.36		LPT0T7 INT0.15 UART0_RX	CMP1N.2			
PB1.4	Standard I/O	62	VIO	~	\checkmark	LCD0.35		ACCTR0_DBG0	ADC0.4			
PB1.5	Standard I/O	61	VIO	\checkmark	\checkmark	LCD0.34		ACCTR0_DBG1	ADC0.5			
PB1.6/TDI	Standard I/O / JTAG	60	VIO	~	\checkmark	LCD0.33			ADC0.6			
PB1.7	Standard I/O	59	VIO	~	\checkmark	LCD0.32		RTC0TCLK_OUT	ADC0.7			

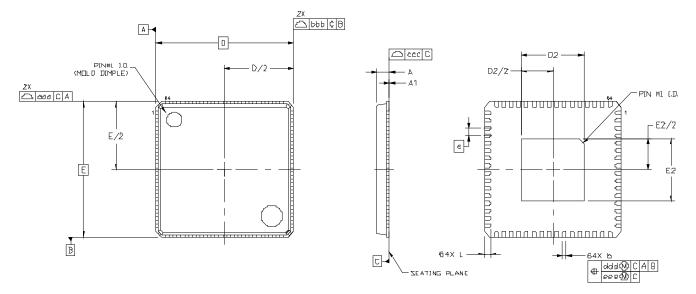
Table 6.1. Pin Definitions and Alternate Functions for SiM3L1x7 (Continued)

Pin Name	Туре	Pin Numbers (TQFP-80)	I/O Voltage Domain	Crossbar Capability	Port Match	LCD Interface	Output Toggle Logic	External Trigger Inputs / Digital Functions	Analog Functions
PB4.9	Standard I/O	20	VIO		\checkmark	LCD0.6			
PB4.10	Standard I/O	19	VIO		\checkmark	LCD0.5			
PB4.11/ ETM3	Standard I/O / ETM	18	VIO		~	LCD0.4			
PB4.12/ ETM2	Standard I/O / ETM	17	VIO		~	LCD0.3			
PB4.13/ ETM1	Standard I/O / ETM	16	VIO		V	LCD0.2			
PB4.14/ ETM0	Standard I/O / ETM	15	VIO		~	LCD0.1			
PB4.15/ TRACE- CLK	Standard I/O / ETM	14	VIO		\checkmark	LCD0.0			

Pin Name	Туре	Pin Numbers	I/O Voltage Domain	Crossbar Capability	Port Match	LCD Interface	Output Toggle Logic	External Trigger Inputs / Digital Functions	Analog Functions
PB0.2	Standard I/O	1	VIO	XBR 0	7		~	INT0.2 WAKE.3	ADC0.23 CMP1N.0 XTAL1
PB0.3	Standard I/O	64	VIO	XBR 0	~		~	INT0.3 WAKE.4	ADC0.0 CMP0P.1 IDAC0
PB0.4	Standard I/O	63	VIO	XBR 0	~		~	INT0.4 WAKE.5 ACCTR0_STOP0	ACCTR0_IN0
PB0.5	Standard I/O	62	VIO	XBR 0	~		~	INT0.5 WAKE.6 ACCTR0_STOP1	ACCTR0_IN1
PB0.6	Standard I/O	61	VIO	XBR 0	~		~	INT0.6 WAKE.7	ACCTR0_LCIN0
PB0.7	Standard I/O	60	VIO	XBR 0	~		V	LPT0T0 LPT0OUT0 INT0.7 WAKE.8	ACCTR0_LCIN1
PB0.8	Standard I/O	59	VIO	XBR 0	~		V	LPT0T1 INT0.8 WAKE.9 ACCTR0_LCPUL0	ADC0.1 CMP0N.1
PB0.9/SWV	Standard I/O /Serial Wire Viewer	58	VIO	XBR 0	~		V	LPT0T2 INT0.9 WAKE.10 LPT0OUT1 ACCTR0_LCPUL1	ADC0.2 CMP1P.1
PB1.0	Standard I/O	53	VIO	XBR 0	~	LCD0.31		LPT0T4 INT0.12 ACCTR0_LCBIAS0	CMP0P.2

Table 6.2. Pin Definitions and Alternate Functions for SiM3L1x6 (Continued)

1		1						
Pin Name	Туре	Pin Numbers	I/O Voltage Domain	Crossbar Capability	Port Match	Output Toggle Logic	External Trigger Inputs / Digital Functions	Analog Functions
VSS	Ground	9 25						
VSSDC	Ground (DC-DC)	9						
VIO	Power (I/O)	5						
VIORF / VDRV	Power (RF I/O)	6						
VBAT / VBATDC		7						
VDC		10						
IND	DC-DC Inductor	8						
RESET	Active-low Reset	35						
SWCLK	Serial Wire	4						
SWDIO	Serial Wire	3						
RTC1	RTC Oscillator Input	34						
RTC2	RTC Oscillator Output	33						
PB0.0	Standard I/O	2	VIO	XBR0	~	~	INT0.0 WAKE.0	ADC0.20 VREF CMP0P.0
PB0.1	Standard I/O	1	VIO	XBR0	\checkmark	~	INT0.1 WAKE.2	ADC0.22 CMP0N.0 CMP1P.0 XTAL2


 Table 6.3. Pin Definitions and Alternate Functions for SiM3L1x4

Pin Name	Туре	Pin Numbers	I/O Voltage Domain	Crossbar Capability	Port Match	Output Toggle Logic	External Trigger Inputs / Digital Functions	Analog Functions
PB2.1	Standard I/O	28	VIORF	XBR0	~		LPT0T9 INT1.1 WAKE.13 VIORFCLK	ADC0.3 CMP0N.4
PB2.2	Standard I/O	27	VIORF	XBR0	~		LPT0T10 INT1.2 WAKE.14	ADC0.4 CMP1P.4
PB2.3	Standard I/O	26	VIORF	XBR0	\checkmark		LPT0T11 INT1.3 WAKE.15	ADC0.5 CMP1N.4
PB2.4	Standard I/O	24	VIORF	XBR0	~		LPT0T12 INT1.4 SPI1_SCLK	ADC0.6 CMP0P.5
PB2.5	Standard I/O	23	VIORF	XBR0	~		LPT0T13 INT1.5 SPI1_MISO	ADC0.7 CMP0N.5
PB2.6	Standard I/O	22	VIORF	XBR0	~		LPT0T14 INT1.6 SPI1_MOSI	ADC0.8 CMP1P.5
PB2.7	Standard I/O	21	VIORF	XBR0	~		INT1.7 SPI1_NSS	ADC0.9 CMP1N.5
PB3.0	Standard I/O	20	VIO	XBR0	\checkmark		INT1.8	CMP0N.7
PB3.1	Standard I/O	19	VIO	XBR0	\checkmark		INT1.9	CMP1P.7
PB3.2	Standard I/O	18	VIO	XBR0	\checkmark		INT1.10	CMP1N.7
PB3.3	Standard I/O	17	VIO	XBR0	\checkmark		INT1.11	ADC0.10
PB3.4	Standard I/O	16	VIO	XBR0	\checkmark		INT1.12	ADC0.11
PB3.5	Standard I/O	15	VIO	XBR0	\checkmark		INT1.13	ADC0.12

Table 6.3. Pin Definitions and Alternate Functions for SiM3L1x4 (Continued)

6.5. QFN-64 Package Specifications

		•				
Dimension	Min	Nominal	Max			
A	0.80	0.85	0.90			
A1	0.00	0.02	0.05			
b	0.18	0.25	0.30			
D		9.00 BSC				
D2	3.95 4.10 4.25					
e	0.50 BSC					
E	9.00 BSC					
E2	3.95 4.10 4.25					
L	0.30 0.40 0.5					
aaa	aaa 0.10					
bbb	0.10					
CCC	0.08					
ddd	0.10					
eee	0.05					

Table 6.6. QFN-64 Package Dimensions

Notes:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
- 3. This package outline conforms to JEDEC MO-220.
- **4.** Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Dimension	Min	Nominal	Мах			
A	_	—	1.20			
A1	0.05	—	0.15			
A2	0.95	1.00	1.05			
b	0.17	0.22	0.27			
с	0.09	—	0.20			
D		12.00 BSC				
D1	10.00 BSC					
е	0.50 BSC					
E	12.00 BSC					
E1	10.00 BSC					
L	0.45	0.75				
Θ	0°	3.5°	7°			
aaa	_		0.20			
bbb	—	—	0.20			
ccc	—	—	0.08			
ddd	_	_	0.08			

Table 6.8. TQFP-64 Package Dimensions

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

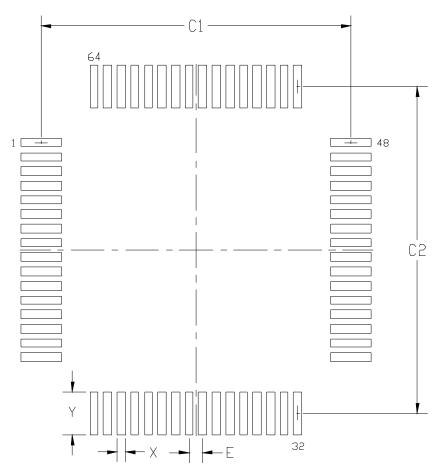


Figure 6.10. TQFP-64 Landing Diagram

Table 6.9. TQFP-64 Landing Dia	agram Dimensions
--------------------------------	------------------

Dimension	Min	Мах				
C1	11.30	11.40				
C2	11.30	11.40				
E	E 0.50 BSC					
Х	0.20	0.30				
Y	1.40	1.50				
 Notes: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. This land pattern design is based on the IPC-7351 guidelines. 						

6.7.1. QFN-40 Solder Mask Design

All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μ m minimum, all the way around the pad.

6.7.2. QFN-40 Stencil Design

- 1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 2. The stencil thickness should be 0.125 mm (5 mils).
- 3. The ratio of stencil aperture to land pad size should be 1:1 for all pads.
- 4. A 3x3 array of 1.1 mm square openings on a 1.6 mm pitch should be used for the center ground pad.

6.7.3. QFN-40 Card Assembly

- 1. A No-Clean, Type-3 solder paste is recommended.
- 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

