
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 23x10/12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/sim3l146-c-gmr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 3.2. Power Consumption

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Digital Core Supply Current	• •			1	Ļ	
Normal Mode ^{1,2,3,4} —Full speed with code executing flash,	I _{BAT}	F _{AHB} = 49 MHz, F _{APB} = 24.5 MHz	—	17.5	18.9	mA
peripheral clocks ON		F _{AHB} = 20 MHz, F _{APB} = 10 MHz	—	6.7	7.2	mA
		F _{AHB} = 2.5 MHz, F _{APB} = 1.25 MHz	—	1.15	1.4	mA
Normal Mode ^{1,2,3,4} —Full speed with code executing from flash, peripheral clocks OFF	I _{BAT}	F _{AHB} = 49 MHz, F _{APB} = 24.5 MHz	—	13.3	14.5	mA
		F _{AHB} = 20 MHz, F _{APB} = 10 MHz	—	5.4	5.9	mA
		F _{AHB} = 2.5 MHz, F _{APB} = 1.25 MHz	_	980	1.2	μA
Normal Mode ^{1,2,3,4} —Full speed with code executing from flash, LDOs powered by dc-dc at 1.9 V,	I _{BAT}	F _{AHB} = 49 MHz, F _{APB} = 24.5 MHz V _{BAT} = 3.3 V		9.7		mA
peripheral clocks OFF		F _{AHB} = 49 MHz, F _{APB} = 24.5 MHz V _{BAT} = 3.8 V		8.65		mA
		F _{AHB} = 20 MHz, F _{APB} = 10 MHz V _{BAT} = 3.3 V	_	4.15		mA
		F _{AHB} = 20 MHz, F _{APB} = 10 MHz V _{BAT} = 3.8 V	_	3.9		mA

Notes:

1. Currents are additive. For example, where I_{BAT} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.

2. Includes all peripherals that cannot have clocks gated in the Clock Control module.

- 3. Includes LDO and PLL0OSC (>20 MHz) or LPOSC0 (<20 MHz) supply current.
- **4.** Internal Digital and Memory LDOs scaled to optimal output voltage.
- 5. Flash AHB clock turned off.
- 6. Running from internal LFO, Includes LFO supply current.
- 7. LCD0 current does not include switching currents for external load.
- 8. IDAC output current not included.
- 9. Does not include LC tank circuit.
- Does not include digital drive current or pullup current for active port I/O. Unloaded I_{VIO} is included in all I_{BAT} PM8 production test measurements.

Table 3.9. SAR ADC

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Resolution	N _{bits}	12 Bit Mode	12			Bits
		10 Bit Mode		10		Bits
Supply Voltage Requirements	V _{ADC}	High Speed Mode	2.2		3.8	V
(VBAT)		Low Power Mode	1.8		3.8	V
Throughput Rate	f _S	12 Bit Mode			250	ksps
(High Speed Mode)		10 Bit Mode			1	Msps
Throughput Rate	f _S	12 Bit Mode			62.5	ksps
(Low Power Mode)		10 Bit Mode			250	ksps
Tracking Time	t _{TRK}	High Speed Mode	230			ns
		Low Power Mode	450			ns
SAR Clock Frequency	f _{SAR}	High Speed Mode			16.24	MHz
		Low Power Mode			4	MHz
Conversion Time	t _{CNV}	10-Bit Conversion, SAR Clock = 16 MHz, APB Clock = 40 MHz		ns		
Sample/Hold Capacitor	C _{SAR}	Gain = 1	_	5	_	pF
		Gain = 0.5		2.5		pF
Input Pin Capacitance	C _{IN}	High Quality Inputs		18	—	pF
		Normal Inputs		20	—	pF
Input Mux Impedance	R _{MUX}	High Quality Inputs		300	—	Ω
		Normal Inputs		550	_	Ω
Voltage Reference Range	V _{REF}		1		V _{BAT}	V
Input Voltage Range*	V _{IN}	Gain = 1	0		V _{REF}	V
		Gain = 0.5	0	_	$2 \mathrm{x} \mathrm{V}_{\mathrm{REF}}$	V
Power Supply Rejection Ratio	PSRR _{ADC}		_	70	—	dB
DC Performance						
Integral Nonlinearity	INL	12 Bit Mode	—	±1	±1.9	LSB
		10 Bit Mode		±0.2	±0.5	LSB
Differential Nonlinearity	DNL	12 Bit Mode	-1	±0.7	1.8	LSB
(Guaranteed Monotonic)		10 Bit Mode		±0.2	±0.5	LSB
Offset Error (using VREFGND)	E _{OFF}	12 Bit Mode, VREF = 2.4 V	-2	0	2	LSB
		10 Bit Mode, VREF = 2.4 V	-1	0	1	LSB

Table 3.9. SAR ADC (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit									
Offset Temperature Coefficient	TC _{OFF}			0.004		LSB/°C									
Slope Error	EM		-0.07	-0.02	0.02	%									
Dynamic Performance (10 kHz Sine Wave Input 1dB below full scale, Max throughput)															
Signal-to-Noise	SNR	12 Bit Mode	62	66		dB									
		10 Bit Mode	58	60		dB									
Signal-to-Noise Plus Distortion	SNDR	12 Bit Mode	62	66		dB									
		10 Bit Mode	58	60	_	dB									
Total Harmonic Distortion (Up to	THD	12 Bit Mode		78	_	dB									
5th Harmonic)		10 Bit Mode		77	_	dB									
Spurious-Free Dynamic Range	SFDR	12 Bit Mode		-79		dB									
		10 Bit Mode	_	-74		dB									
*Note: Absolute input pin voltage is lir	nited by the lo	wer of the supply at VBAT and VIC	D.		*Note: Absolute input pin voltage is limited by the lower of the supply at VBAT and VIO.										

Table 3.16. Port I/O

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Output High Voltage (PB0, PB1,	V _{OH}	Low Drive, I _{OH} = -1 mA	V _{IO} – 0.7			V
PB3, or PB4)		Low Drive, $I_{OH} = -10 \ \mu A$	V _{IO} – 0.1	_		V
		High Drive, I _{OH} = –3 mA	V _{IO} – 0.7	_		V
		High Drive, $I_{OH} = -10 \ \mu A$	V _{IO} – 0.1	_	_	V
Output High Voltage (PB2)	V _{OH}	Low Drive, $I_{OH} = -1 \text{ mA}$	$V_{IORF} - 0.7$	_	_	V
		Low Drive, $I_{OH} = -10 \ \mu A$	$V_{IORF} - 0.1$	_	_	V
		High Drive, I _{OH} = –3 mA	$V_{IORF} - 0.7$	_	—	V
		High Drive, $I_{OH} = -10 \ \mu A$	V _{IORF} - 0.1	_	—	V
Output Low Voltage (any Port I/O	V _{OL}	Low Drive, I _{OL} = 1.4 mA	—	_	0.6	V
pin or RESET ¹)		Low Drive, $I_{OL} = 10 \ \mu A$	—	_	0.1	V
		High Drive, I _{OL} = 8.5 mA	—	_	0.6	V
		High Drive, I _{OL} = 10 μA	—	_	0.1	V
Input High Vo <u>ltage (P</u> B0, PB1, PB3, PB4 or RESET)	V _{IH}		V _{IO} – 0.6			V
Input High Voltage (PB2)	V _{IH}		V _{IORF} - 0.6	_		V
Input Low Voltage any Port I/O pin or RESET)	V _{IL}		—		0.6	V
Weak Pull-Up Current ² (per pin)	I _{PU}	V _{IO} or V _{IORF} = 1.8	-6	-3.5	-2	μA
		V _{IO} or V _{IORF} = 3.8	-32	-20	-10	μA
Input Leakage (Pullups off or Analog)	I _{LK}	$0 \le V_{IN} \le V_{IO} \text{ or } V_{IORF}$	-1		1	μA

Notes:

 Specifications for RESET V_{OL} adhere to the low drive setting.
 On the SiM3L1x6 and SiM3L1x4 devices, the SWV pin will have double the weak pull-up current specified whenever the device is held in reset.

3.3. Absolute Maximum Ratings

Stresses above those listed under Table 3.18 may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Parameter	Symbol	Test Condition	Min	Max	Unit
Ambient Temperature Under Bias	T _{BIAS}		-55	125	°C
Storage Temperature	T _{STG}		-65	150	°C
Voltage on VBAT/VBATDC	V _{BAT}		V _{SS} 0.3	4.2	V
Voltage on VDC	V _{DC}		V _{SSDC} -0.3	4.2	V
Voltage on VDRV	V _{DRV}		V _{SS} -0.3	4.2	V
Voltage on VIO	V _{IO}		V _{SS} -0.3	4.2	V
Voltage on VIORF	V _{IORF}		V _{SS} -0.3	4.2	V
Voltage on VLCD	V _{LCD}		V _{SS} -0.3	4.2	V
Voltage on I/O (PB0, PB1, PB3, PB4) or	V _{IN}	V _{IO} ≥ 3.3 V	V _{SS} -0.3	5.8	V
RESET ¹	-	V _{IO} < 3.3 V	V _{SS} 0.3	V _{IO} +2.5	V
Voltage on PB2 I/O Pins ¹	V _{IN}	V _{IORF} ≥ 3.3 V	V _{SS} -0.3	5.8	V
	-	V _{IORF} < 3.3 V	V _{SS} -0.3	V _{IORF} +2.5	V
Total Current Sunk into Supply Pins	I _{SUPP}	VBAT/VBATDC, VIO, VIORF, VDRV, VDC, VLCD	_	400	mA
Total Current Sourced out of Ground Pins ²	I _{VSS}	V _{SS,} V _{SSDC}	400	—	mA
Current Sourced or Sunk by any I/O Pin	I _{PIO}	All I/O and RESET	-100	100	mA
Power Dissipation at T _A = 85 °C	PD	TQFP-80 Packages	_	500	mW
		QFN-64 Packages	—	800	mW
		TQFP-64 Packages	_	650	mW
		QFN-40 Packages	_	650	mW

Notes:

1. Exceeding the minimum V_{IO} voltage may cause current to flow through adjacent device pins.

2. VSS and VSSDC provide separate return current paths for device supplies, but are not isolated. They must always be connected to the same potential on board.

4.2. I/O

4.2.1. General Features

The SiM3L1xx ports have the following features:

- 5 V tolerant.
- Push-pull or open-drain output modes to the VIO or VIORF voltage level.
- Analog or digital modes.
- Option for high or low output drive strength.
- Port Match allows the device to recognize a change on a port pin value.
- Internal pull-up resistors are enabled or disabled on a port-by-port basis.
- Two external interrupts with up to 16 inputs each provide monitoring capability for external signals.
- Internal Pulse Generator Timer (PB0 only) to generate simple square waves and pulses.

4.2.2. Crossbar

The SiM3L1xx devices have one crossbar with the following features:

- Flexible peripheral assignment to port pins.
- Pins can be individually skipped to move peripherals as needed for design or layout considerations.

The crossbar has a fixed priority for each I/O function and assigns these functions to the port pins. When a digital resource is selected, the least-significant unassigned port pin is assigned to that resource. If a port pin is assigned, the crossbar skips that pin when assigning the next selected resource. Additionally, the crossbar will skip port pins whose associated bits in the PBSKIPEN registers are set. This provides flexibility when designing a system: pins involved with sensitive analog measurements can be moved away from digital I/O, and peripherals can be moved around the chip as needed to ease layout constraints.

4.3.1. PLL (PLL0)

The PLL module consists of a dedicated Digitally-Controlled Oscillator (DCO) that can be used in Free-Running mode without a reference frequency, Frequency-Locked to a reference frequency, or Phase-Locked to a reference frequency. The reference frequency for Frequency-Lock and Phase-Lock modes can use one of multiple sources (including the external oscillator) to provide maximum flexibility for different application needs. Because the PLL module generates its own clock, the DCO can be locked to a particular reference frequency and then moved to Free-Running mode to reduce system power and noise.

The PLL module includes the following features:

- Three output ranges with output frequencies ranging from 23 to 50 MHz.
- Multiple reference frequency inputs, including the RTC0 oscillator, Low Power Oscillator, and external oscillator.
- Three output modes: Free-Running Digitally-Controlled Oscillator, Frequency-Locked, and Phase-Locked.
- Able to sense the rising edge or falling edge of the reference source.
- DCO frequency LSB dithering to provide finer average output frequencies.
- Spectrum spreading to reduce generated system noise.
- Low jitter and fast lock times.\
- All output frequency updates (including dithering and spectrum spreading) can be temporarily suspended using the STALL bit during noise-sensitive measurements.

4.3.2. Low Power Oscillator (LPOSC0)

The Low Power Oscillator is the default AHB oscillator on SiM3L1xx devices and enables or disables automatically, as needed.

The default output frequency of this oscillator is factory calibrated to 20 MHz, and a divided 2.5 MHz version of this clock is also available as an AHB clock source.

The Low Power Oscillator has the following features:

- 20 MHz and divided 2.5 MHz frequencies available for the AHB clock.
- Automatically starts and stops as needed.

4.3.3. Low Frequency Oscillator (LFOSC0)

The low frequency oscillator (LFOSC) provides a low power internal clock source for the RTC0 timer and other peripherals on the device. No external components are required to use the low frequency oscillator, and the RTC1 and RTC2 pins do not need to be shorted together.

The Low Frequency Oscillator has the following features:

■ 16.4 kHz output frequency.

4.3.4. External Oscillators (EXTOSC0)

The EXTOSC0 external oscillator circuit may drive an external crystal, ceramic resonator, capacitor, or RC network. A CMOS clock may also provide a clock input. The external oscillator output may be selected as the AHB clock or used to clock other modules independent of the AHB clock selection.

The External Oscillator control has the following features:

- Support for external crystal, resonator, RC, C, or CMOS oscillators.
- Support for external CMOS frequencies from 10 kHz to 50 MHz.
- Support for external crystal frequencies from 10 kHz to 25 MHz.
- Various drive strengths for flexible crystal oscillator support.
- Internal frequency divide-by-two option available.

4.5.4. 16/32-bit Enhanced CRC (ECRC0)

The ECRC module is designed to provide hardware calculations for flash memory verification and communications protocols. In addition to calculating a result from direct writes from firmware, the ECRC module can automatically snoop the APB bus and calculate a result from data written to or read from a particular peripheral. This allows for an automatic CRC result without directly feeding data through the ECRC module.

The supported 32-bit polynomial is 0x04C11DB7 (IEEE 802.3). The 16-bit polynomial is fully programmable.

The ECRC module includes the following features:

- Support for a programmable 16-bit polynomial and one fixed 32-bit polynomial.
- Byte-level bit reversal for the CRC input.
- Byte-order reorientation of words for the CRC input.
- Word or half-word bit reversal of the CRC result.
- Ability to configure and seed an operation in a single register write.
- Support for single-cycle parallel (unrolled) CRC computation for 32-, 16-, or 8-bit blocks.
- Capability to CRC 32 bits of data per peripheral bus (APB) clock.
- Automatic APB bus snooping.
- Support for DMA writes using firmware request mode.

4.5.5. Encoder / Decoder (ENCDEC0)

The encoder / decoder module supports Manchester and Three-out-of-Six encoding and decoding from either firmware or DMA operations.

This module has the following features:

- Supports Manchester and Three-out-of-Six encoding and decoding.
- Automatic flag clearing when writing the input or reading the output data registers.
- Writing to the input data register automatically initiates an encode or decode operation.
- Optional output in one's complement format.
- Hardware error detection for invalid input data during decode operations, which helps reduce power consumption and packet turn-around time.
- Flexible byte swapping on the input or output data.

4.7. Communications Peripherals

4.7.1. USART (USART0)

The USART uses two signals (TX and RX) to communicate serially with an external device. In addition to these signals, the USART module can optionally use a clock (UCLK) or hardware handshaking (RTS and CTS).

The USART module provides the following features:

- Independent transmitter and receiver configurations with separate 16-bit baud rate generators.
- Synchronous or asynchronous transmissions and receptions.
- Clock master or slave operation with programmable polarity and edge controls.
- Up to 5 Mbaud (synchronous or asynchronous, TX or RX, and master or slave) or 1 Mbaud Smartcard (TX or RX).
- Individual enables for generated clocks during start, stop, and idle states.
- Internal transmit and receive FIFOs with flush capability and support for byte, half-word, and word reads and writes.
- Data bit lengths from 5 to 9 bits.
- Programmable inter-packet transmit delays.
- Auto-baud detection with support for the LIN SYNC byte.
- Automatic parity generation (with enable).
- Automatic start and stop generation (with separate enables).
- Transmit and receive hardware flow-control.
- Independent inversion correction for TX, RX, RTS, and CTS signals.
- IrDA modulation and demodulation with programmable pulse widths.
- Smartcard ACK/NACK support.
- Parity error, frame error, overrun, and underrun detection.
- Multi-master and half-duplex support.
- Multiple loop-back modes supported.
- Multi-processor communications support.

4.7.2. UART (UART0)

The low-power UART uses two signals (TX and RX) to communicate serially with an external device.

The UART0 module can operate in PM8 mode by taking the clock directly from the RTC0 time clock (RTC0TCLK) and running from the low power mode charge pump. This will allow the system to conserve power while transmitting or receiving UART traffic. The UART supports standard baud-rates of 9600, 4800, 2400 and 1200 in this low power mode.

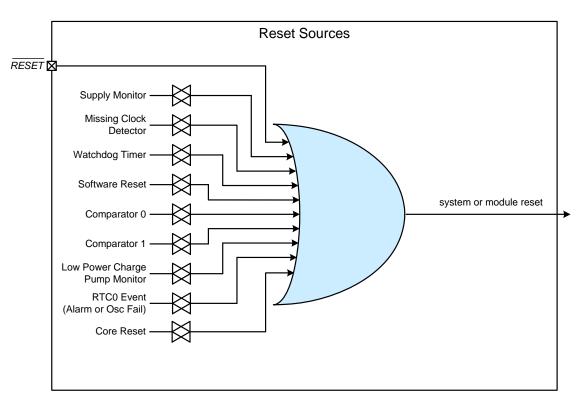
The UART0 module provides the following features:

- Independent transmitter and receiver configurations with separate 16-bit baud rate generators.
- Asynchronous transmissions and receptions.
- Up to 5 Mbaud (TX or RX).
- Internal transmit and receive FIFOs with flush capability and support for byte, half-word, and word reads and writes.
- Data bit lengths from 5 to 9 bits.
- Programmable inter-packet transmit delays.
- Auto-baud detection with support for the LIN SYNC byte.
- Automatic parity generation (with enable).
- Automatic start and stop generation (with separate enables).
- Independent inversion correction for TX and RX signals.
- Parity error, frame error, overrun, and underrun detection.
- Half-duplex support.

4.9. Reset Sources

Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this reset state, the following occur:

- The core halts program execution.
- Module registers are initialized to their defined reset values unless the bits reset only with a power-on reset.
- External port pins are forced to a known state.
- Interrupts and timers are disabled.
- AHB peripheral clocks to flash and RAM are enabled.
- Clocks to all APB peripherals other than the Watchdog Timer and DMAXBAR are disabled.

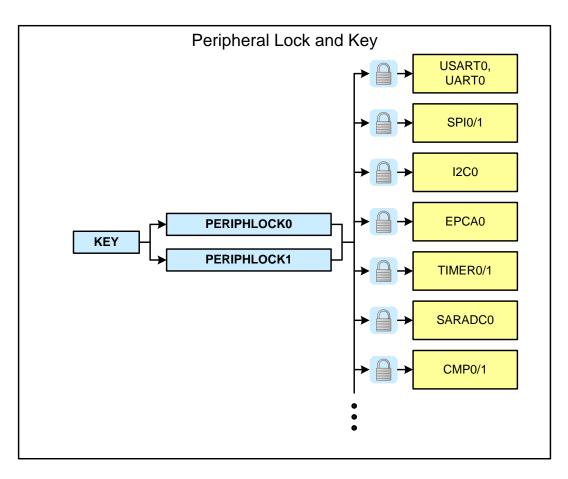

All registers are reset to the predefined values noted in the register descriptions unless the bits only reset with a power-on reset. The contents of RAM are unaffected during a reset; any previously stored data is preserved as long as power is not lost.

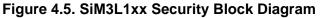
The Port I/O latches are reset to 1 in open-drain mode. Weak pullups are enabled during and after the reset. For VBAT Supply Monitor and power-on resets, the RESET pin is driven low until the device exits the reset state.

On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to the internal lowpower oscillator. The Watchdog Timer is enabled with the low frequency oscillator as its clock source. Program execution begins at location 0x00000000.

All RSTSRC0 registers may be locked against writes by setting the CLKRSTL bit in the LOCK0_PERIPHLOCK0 register to 1.

The reset sources can also optionally reset individual modules, including the low power mode charge pump, UART0, LCD0, advanced capture counter (ACCTR0), and RTC0.





4.10. Security

The peripherals on the SiM3L1xx devices have a register lock and key mechanism that prevents undesired accesses of the peripherals from firmware. Each bit in the PERIPHLOCKx registers controls a set of peripherals. A key sequence must be written to the KEY register to modify bits in PERIPHLOCKx. Any subsequent write to KEY will then inhibit accesses of PERIPHLOCKx until it is unlocked again through KEY. Reading the KEY register indicates the current status of the PERIPHLOCKx lock state.

If a peripheral's registers are locked, all writes will be ignored. The registers can be read, regardless of the peripheral's lock state.

4.11. On-Chip Debugging

The SiM3L1xx devices include JTAG and Serial Wire programming and debugging interfaces and ETM for instruction trace. The JTAG interface is supported on SiM3L1x7 devices only, and does not include boundary scan capabilites. The ETM interface is supported on SiM3L1x7, and SiM3L1x6 devices only. The JTAG and ETM interfaces can be optionally enabled to provide more visibility while debugging at the cost of using several Port I/O pins. Additionally, if the core is configured for Serial Wire (SW) mode and not JTAG, then the Serial Wire Viewer (SWV) is available to provide a single pin to send out TPIU messages. Serial Wire Viewer is supported on all SiM3Lxxx devices.

Most peripherals on SiM3L1xx devices have the option to halt or continue functioning when the core halts in debug mode.

Pin Name	Туре	Pin Numbers (TQFP-80)	I/O Voltage Domain	Crossbar Capability	Port Match	LCD Interface	Output Toggle Logic	External Trigger Inputs / Digital Functions	Analog Functions
VSS	Ground	12 31 52 71							
VSSDC	Ground (DC- DC)	12							
VIO	Power (I/O)	7 30 68							
VIORF	Power (RF I/O)	8							
VBAT/ VBATDC		10							
VDRV		9							
VDC		13							
VLCD	Power (LCD Charge Pump)	67							
IND	DC-DC Inductor	11							
RESET	Active-low Reset	72							
TCK/ SWCLK	JTAG / Serial Wire	6							
TMS/ SWDIO	JTAG / Serial Wire	5							
RTC1	RTC Oscillator Input	70							
RTC2	RTC Oscillator Output	69							

 Table 6.1. Pin Definitions and Alternate Functions for SiM3L1x7

		1					1	-	-
Pin Name	Туре	Pin Numbers (TQFP-80)	I/O Voltage Domain	Crossbar Capability	Port Match	LCD Interface	Output Toggle Logic	External Trigger Inputs / Digital Functions	Analog Functions
PB3.4	Standard I/O	43	VIO	\checkmark	\checkmark	LCD0.23		INT1.12	CMP0P.6
PB3.5	Standard I/O	42	VIO	~	~	LCD0.22		INT1.13	CMP0N.6
PB3.6	Standard I/O	41	VIO	~	\checkmark	LCD0.21		INT1.14	CMP1P.6
PB3.7	Standard I/O	40	VIO	\checkmark	\checkmark	LCD0.20		INT1.15	CMP1N.6
PB3.8	Standard I/O	39	VIO		\checkmark	LCD0.19			CMP0P.7
PB3.9	Standard I/O	38	VIO		\checkmark	LCD0.18			CMP0N.7
PB3.10	Standard I/O	37	VIO		\checkmark	LCD0.17			CMP1P.7
PB3.11	Standard I/O	36	VIO		\checkmark	LCD0.16			CMP1N.7
PB3.12	Standard I/O	35	VIO		\checkmark	LCD0.15			ADC0.18
PB3.13	Standard I/O	34	VIO		\checkmark	LCD0.14			ADC0.19
PB3.14	Standard I/O	33	VIO		\checkmark	COM0.3			
PB3.15	Standard I/O	32	VIO		\checkmark	COM0.2			
PB4.0	Standard I/O	29	VIO		\checkmark	COM0.1			
PB4.1	Standard I/O	28	VIO		\checkmark	COM0.0			
PB4.2	Standard I/O	27	VIO		\checkmark	LCD0.13			
PB4.3	Standard I/O	26	VIO		~	LCD0.12			
PB4.4	Standard I/O	25	VIO		\checkmark	LCD0.11			
PB4.5	Standard I/O	24	VIO		\checkmark	LCD0.10			
PB4.6	Standard I/O	23	VIO		\checkmark	LCD0.9		PMU_Asleep	
PB4.7	Standard I/O	22	VIO		~	LCD0.8			
PB4.8	Standard I/O	21	VIO		\checkmark	LCD0.7			

Table 6.1. Pin Definitions and Alternate Functions for SiM3L1x7 (Continued)

Pin Name	Туре	Pin Numbers	I/O Voltage Domain	Crossbar Capability	Port Match	LCD Interface	Output Toggle Logic	External Trigger Inputs / Digital Functions	Analog Functions
VSS	Ground	10 41							
VSSDC	Ground (DC-DC)	10							
VIO	Power (I/O)	6							
VIORF / VDRV	Power (RF I/O)	7							
VBAT / VBATDC		8							
VDC		11							
VLCD	Power (LCD Charge Pump)	54							
IND	DC-DC Inductor	9							
RESET	Active-low Reset	57							
SWCLK	Serial Wire	5							
SWDIO	Serial Wire	4							
RTC1	RTC Oscillator Input	56							
RTC2	RTC Oscillator Output	55							
PB0.0	Standard I/O	3	VIO	XBR 0	~		V	INT0.0 WAKE.0	ADC0.20 VREF CMP0P.0
PB0.1	Standard I/O	2	VIO	XBR 0	V		~	INT0.1 WAKE.2	ADC0.22 CMP0N.0 CMP1P.0 XTAL2

 Table 6.2. Pin Definitions and Alternate Functions for SiM3L1x6

6.3. SiM3L1x4 Pin Definitions

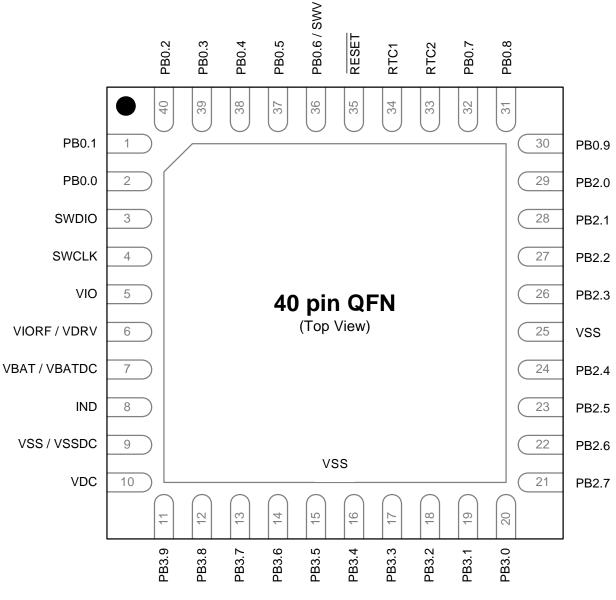


Figure 6.4. SiM3L1x4-GM Pinout

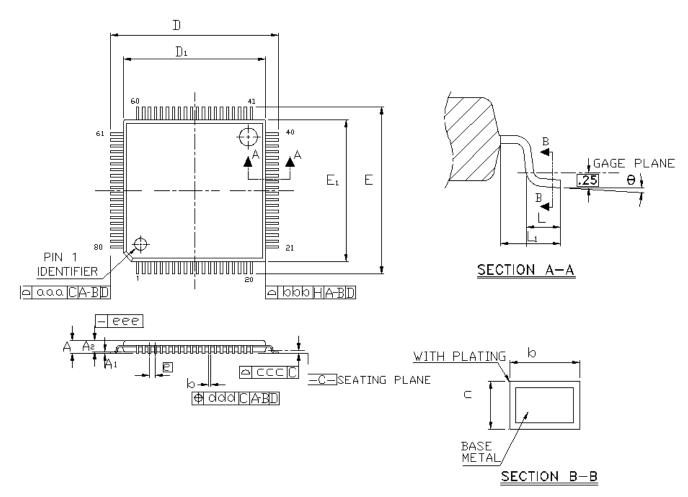


Figure 6.5. TQFP-80 Package Drawing

6.4.1. TQFP-80 Solder Mask Design

All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

6.4.2. TQFP-80 Stencil Design

- 1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 2. The stencil thickness should be 0.125 mm (5 mils).
- 3. The ratio of stencil aperture to land pad size should be 1:1 for all pads.

6.4.3. TQFP-80 Card Assembly

- 1. A No-Clean, Type-3 solder paste is recommended.
- 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

7. Revision Specific Behavior

This chapter describes any differences between released revisions of the device.

7.1. Revision Identification

The Lot ID Code on the top side of the device package can be used for decoding device revision information. Figures 7.1, 7.2, and 7.3 show how to find the Lot ID Code on the top side of the device package. In addition, firmware can determine the revision of the device by checking the DEVICEID registers.

QFN-40 SiMBL

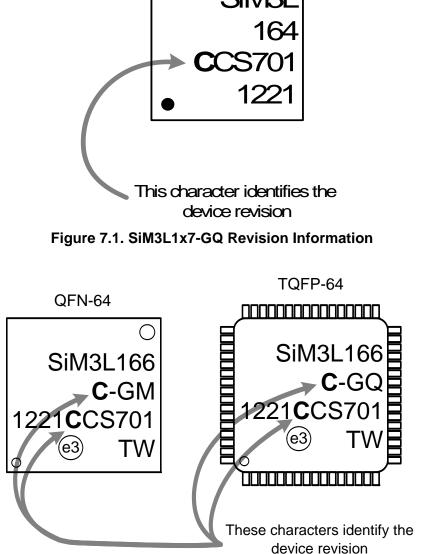


Figure 7.2. SiM3L1x6-GM and SiM3L1x6-GQ Revision Information

DOCUMENT CHANGE LIST

Revision 0.5 to Revision 1.0

- Updated Electrical Specifications Tables with latest characterization data and production test limits.
- Added missing signal ACCTR0_LCPUL1 to Table 6.2, "Pin Definitions and Alternate Functions for SiM3L1x6," on page 64.
- Removed ACCTR0_LCIN1 and ACCTR0_STOP0/1 signals from Table 6.3, "Pin Definitions and Alternate Functions for SiM3L1x4," on page 70.
- Updated Figure 6.8, "TFBGA-80 Package Drawing," on page 79.

Revision 1.0 to Revision 1.1

■ Removed all references to BGA-80 and the parts SiM3L167-C-GL and SiM3L157-C-GL.

