

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Not For New Designs
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	28
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 20x10/12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-VFQFN Exposed Pad
Supplier Device Package	40-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/sim3l154-c-gm

2

Table 3.2. Power Consumption (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
SARADC0	I _{SARADC}	Sampling at 1 Msps, Internal VREF used	_	1.2	1.6	mA
		Sampling at 250 ksps, lowest power mode settings.	_	390	540	μA
Temperature Sensor	I _{TSENSE}		_	75	110	μA
Internal SAR Reference	I _{REFFS}	Normal Power Mode	_	680	_	μA
		Normal Power Mode	_	160	_	μA
VREF0	I _{REFP}		_	80	_	μA
Comparator 0 (CMP0),	I _{CMP}	CMPMD = 11	_	0.5	2	μA
Comparator 1 (CMP1)		CMPMD = 10	_	3	8	μA
		CMPMD = 01	_	10	16	μA
		CMPMD = 00	_	25	42	μA
IDAC0 ⁸	I _{IDAC}		_	70	100	μA
Voltage Supply Monitor (VMON0)	I _{VMON}		_	10	22	μA
Flash Current on VBAT			I	I	I	
Write Operation	I _{FLASH-W}		_	_	8	mA
Erase Operation	I _{FLASH-E}		_	_	15	mA

Notes:

- 1. Currents are additive. For example, where I_{BAT} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.
- 2. Includes all peripherals that cannot have clocks gated in the Clock Control module.
- 3. Includes LDO and PLL0OSC (>20 MHz) or LPOSC0 (≤20 MHz) supply current.
- 4. Internal Digital and Memory LDOs scaled to optimal output voltage.
- 5. Flash AHB clock turned off.
- 6. Running from internal LFO, Includes LFO supply current.
- 7. LCD0 current does not include switching currents for external load.
- 8. IDAC output current not included.
- 9. Does not include LC tank circuit.
- **10.** Does not include digital drive current or pullup current for active port I/O. Unloaded I_{VIO} is included in all I_{BAT} PM8 production test measurements.

14

Table 3.5. On-Chip Regulators (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Memory LDO Output Setting ⁵	V _{LDOMEM}	During Programming	1.8	_	1.9	V
		During Normal Operation	1.5	_	1.9	٧
Digital LDO Output Setting	V_{LDODIG}	F _{AHB} ≤ 20 MHz	1.0	_	1.9	V
		F _{AHB} > 20 MHz	1.2	_	1.9	V
Analog LDO Output Setting During Normal Operation ⁶	V _{LDOANA}			1.8		V

Notes:

- 1. See reference manual for recommended inductors.
- 2. Recommended: X7R or X5R ceramic capacitors with low ESR. Example: Murata GRM21BR71C225K with ESR < 10 m Ω (@ frequency > 1 MHz).
- 3. Input voltage specification accounts for the internal LDO dropout voltage under the maximum load condition to ensure that the LDO output voltage will remain at a valid level as long as V_{LDOIN} is at or above the specified minimum.
- **4.** The memory LDO output should always be set equal to or lower than the output of the analog LDO. When lowering both LDOs (for example to go into PM8 under low supply conditions), first adjust the memory LDO and then the analog LDO. When raising the output of both LDOs, adjust the analog LDO before adjusting the memory LDO.
- **5.** Output range represents the programmable output range, and does not reflect the minimum voltage under all conditions. Dropout when the input supply is close to the output setting is normal, and accounted for.
- 6. Analog peripheral specifications assume a 1.8 V output on the analog LDO.

Table 3.9. SAR ADC

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Resolution	N _{bits}	12 Bit Mode		12		Bits
		10 Bit Mode		10		Bits
Supply Voltage Requirements	V _{ADC}	High Speed Mode	2.2	_	3.8	V
(VBAT)		Low Power Mode	1.8		3.8	V
Throughput Rate	f _S	12 Bit Mode	_	_	250	ksps
(High Speed Mode)		10 Bit Mode	_	_	1	Msps
Throughput Rate	f _S	12 Bit Mode	_	_	62.5	ksps
(Low Power Mode)		10 Bit Mode	_	_	250	ksps
Tracking Time	t _{TRK}	High Speed Mode	230	_	_	ns
		Low Power Mode	450	_	_	ns
SAR Clock Frequency	f _{SAR}	High Speed Mode	_	_	16.24	MHz
		Low Power Mode	_	MHz		
Conversion Time	t _{CNV}	10-Bit Conversion, SAR Clock = 16 MHz, APB Clock = 40 MHz	762.5			ns
Sample/Hold Capacitor	Hold Capacitor C _{SAR}		_	5	_	pF
		Gain = 0.5	_	2.5	_	pF
Input Pin Capacitance	C _{IN}	High Quality Inputs	_	18	_	pF
		Normal Inputs	_	20	_	pF
Input Mux Impedance	R _{MUX}	High Quality Inputs	_	300	_	Ω
		Normal Inputs	_	550	_	Ω
Voltage Reference Range	V _{REF}		1	_	V _{BAT}	V
Input Voltage Range*	V _{IN}	Gain = 1	0	_	V _{REF}	V
		Gain = 0.5	0	_	2xV _{REF}	V
Power Supply Rejection Ratio	PSRR _{ADC}		_	70	_	dB
DC Performance						
Integral Nonlinearity	INL	12 Bit Mode	_	±1	±1.9	LSB
		10 Bit Mode	_	±0.2	±0.5	LSB
Differential Nonlinearity	DNL	12 Bit Mode	-1	±0.7	1.8	LSB
(Guaranteed Monotonic)		10 Bit Mode	_	±0.2	±0.5	LSB
Offset Error (using VREFGND)	E _{OFF}	12 Bit Mode, VREF = 2.4 V	-2	0	2	LSB
		10 Bit Mode, VREF = 2.4 V	-1	0	1	LSB

Table 3.10. IDAC

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Static Performance						
Resolution	N _{bits}			10		Bits
Integral Nonlinearity	INL			±0.5	±2	LSB
Differential Nonlinearity (Guaranteed Monotonic)	DNL		_	±0.5	±1	LSB
Output Compliance Range	V _{OCR}		_	_	V _{BAT} – 1.0	V
Full Scale Output Current	I _{OUT}	2 mA Range, T _A = 25 °C	1.98	2.046	2.1	mA
		1 mA Range, T _A = 25 °C	0.99	1.023	1.05	mA
		0.5 mA Range, T _A = 25 °C	491	511.5	525	μA
Offset Error	E _{OFF}		_	250	_	nA
Full Scale Error Tempco	TC _{FS}	2 mA Range	_	100	_	ppm/°C
VBAT Power Supply Rejection Ratio		2 mA Range	_	-220	_	ppm/V
Test Load Impedance (to V _{SS})	R _{TEST}		_	1	_	kΩ
Dynamic Performance	1				1	
Output Settling Time to 1/2 LSB		min output to max output	_	1.2	_	μs
Startup Time			_	3	_	μs

Table 3.14. Comparator

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Response Time, CMPMD = 00	t _{RESP0}	+100 mV Differential	_	100	_	ns
(Highest Speed)		-100 mV Differential	_	150	_	ns
Response Time, CMPMD = 11	t _{RESP3}	+100 mV Differential	_	1.4	_	μs
(Lowest Power)		-100 mV Differential	_	3.5	_	μs
Positive Hysteresis	HYS _{CP+}	CMPHYP = 00	_	0.37	_	mV
Mode 0 (CPMD = 00)		CMPHYP = 01	_	7.9	_	mV
		CMPHYP = 10	_	16.7	_	mV
		CMPHYP = 11	_	32.8	_	mV
Negative Hysteresis	HYS _{CP}	CMPHYN = 00	_	0.37	_	mV
Mode 0 (CPMD = 00)		CMPHYN = 01	_	-7.9	_	mV
		CMPHYN = 10	_	-16.1	_	mV
		CMPHYN = 11	_	-32.7	_	mV
Positive Hysteresis	HYS _{CP+}	CMPHYP = 00	_	0.47	_	mV
Mode 1 (CPMD = 01)		CMPHYP = 01	_	5.85	_	mV
		CMPHYP = 10	_	12	_	mV
		CMPHYP = 11	_	24.4	_	mV
Negative Hysteresis	HYS _{CP}	CMPHYN = 00	_	0.47	_	mV
Mode 1 (CPMD = 01)		CMPHYN = 01	_	-6.0	_	mV
		CMPHYN = 10	_	-12.1	_	mV
		CMPHYN = 11	_	-24.6	_	mV
Positive Hysteresis	HYS _{CP+}	CMPHYP = 00	_	0.66	_	mV
Mode 2 (CPMD = 10)		CMPHYP = 01	_	4.55	_	mV
		CMPHYP = 10	_	9.3	_	mV
		CMPHYP = 11	_	19	_	mV
Negative Hysteresis	HYS _{CP} -	CMPHYN = 00	_	0.6	_	mV
Mode 2 (CPMD = 10)		CMPHYN = 01	_	-4.5	_	mV
		CMPHYN = 10	_	-9.5	_	mV
		CMPHYN = 11	_	-19	_	mV

- Supports synchronizing the regulator switching with the system clock.
- Automatically limits the peak inductor current if the load current rises beyond a safe limit.
- Automatically goes into bypass mode if the battery voltage cannot provide sufficient headroom.
- Sources current, but cannot sink current.

4.1.2. Three Low Dropout LDO Regulators (LDO0)

The SiM3L1xx devices include one LDO0 module with three low dropout regulators. Each of these regulators have independent switches to select the battery voltage or the output of the dc-dc converter as the input to each LDO, and an adjustable output voltage.

The LDOs consume little power and provide flexibility in choosing a power supply for the system. Each regulator can be independently adjusted between 0.8 and 1.9 V output.

4.1.3. Voltage Supply Monitor (VMON0)

The SiM3L1xx devices include a voltage supply monitor that can monitor the main supply voltage. This module includes the following features:

- Main supply "VBAT Low" (VBAT below the early warning threshold) notification.
- Holds the device in reset if the main VBAT supply drops below the VBAT Reset threshold.

The voltage supply monitor allows devices to function in known, safe operating conditions without the need for external hardware.

4.1.4. Power Management Unit (PMU)

The Power Management Unit on the SiM3L1xx manages the power systems of the device. It manages the power-up sequence during power on and the wake up sources for PM8. On power-up, the PMU ensures the core voltages are a proper value before core instruction execution begins.

The VDRV pin powers external circuitry from either the VBAT battery input voltage or the output of the dc-dc converter on VDC. The PMU includes an internal switch to select one of these sources for the VDRV pin.

The PMU has a specialized VBAT-divided-by-2 charge pump that can power some internal modules while in PM8 to save power.

The PMU module includes the following features:

- Provides the enable or disable for the analog power system, including the three LDO regulators.
- Up to 14 pin wake inputs can wake the device from Power Mode 8.
- The Low Power Timer, RTC0 (alarms and oscillator failure), Comparator 0, Advanced Capture Counter, LCD0 VBAT monitor, UART0, low power mode charge pump failure, and the RESET pin can also serve as wake sources for Power Mode 8.
- Controls which 4 kB RAM blocks are retained while in Power Mode 8.
- Provides a PMU_Asleep signal to a pin as an indicator that the device is in PM8.
- Specialized charge pump to reduce power consumption in PM8.

Provides control for the internal switch between VBAT and VDC to power the VDRV pin for external circuitry.

4.1.5. Device Power Modes

The SiM3L1xx devices feature seven low power modes in addition to normal operating mode. Several peripherals provide wake up sources for these low power modes, including the Low Power Timer (LPTIMER0), RTC0 (alarms and oscillator failure notification), Comparator 0 (CMP0), Advanced Capture Counter (ACCTR0), LCD VBAT monitor (LCD0), UART0, low power mode charge pump failure, and PMU Pin Wake.

In addition, all peripherals can have their clocks disabled to reduce power consumption whenever a peripheral is not being used using the clock control (CLKCTRL) registers.

4.1.5.1. Normal Mode (Power Mode 0) and Power Mode 4

Normal Mode and Power Mode 4 are fully operational modes with code executing from flash memory. PM4 is the same as Normal Mode, but with the clocks operating at a lower speed. This enables power to be conserved by reducing the LDO regulator outputs.

4.1.6. Process/Voltage/Temperature Monitor (TIMER2 and PVTOSC0)

The Process/Voltage/Temperature monitor consists of two modules (TIMER2 and PVTOSC0) designed to monitor the digital circuit performance of the SiM3L1xx device.

The PVT oscillator (PVTOSC0) consists of two oscillators, one operating from the memory LDO and one operating from the digital LDO. These oscillators have two independent speed options and provide the clocks for two 16-bit timers in the TIMER2 module using the EX input. By monitoring the resulting counts of the TIMER2 timers, firmware can monitor the current device performance and increase the scalable LDO regulator (LDO0) output voltages as needed or decrease the output voltages to save power.

The PVT monitor has the following features:

- Two separate oscillators and timers for the memory and digital logic voltage domains.
- Two oscillator output divider settings.
- Provides a method for monitoring digital performance to allow firmware to adjust the scalable LDO regulator output voltages to the lowest level possible, saving power.

4.2. I/O

4.2.1. General Features

The SiM3L1xx ports have the following features:

- 5 V tolerant.
- Push-pull or open-drain output modes to the VIO or VIORF voltage level.
- Analog or digital modes.
- Option for high or low output drive strength.
- Port Match allows the device to recognize a change on a port pin value.
- Internal pull-up resistors are enabled or disabled on a port-by-port basis.
- Two external interrupts with up to 16 inputs each provide monitoring capability for external signals.
- Internal Pulse Generator Timer (PB0 only) to generate simple square waves and pulses.

4.2.2. Crossbar

The SiM3L1xx devices have one crossbar with the following features:

- Flexible peripheral assignment to port pins.
- Pins can be individually skipped to move peripherals as needed for design or layout considerations.

The crossbar has a fixed priority for each I/O function and assigns these functions to the port pins. When a digital resource is selected, the least-significant unassigned port pin is assigned to that resource. If a port pin is assigned, the crossbar skips that pin when assigning the next selected resource. Additionally, the crossbar will skip port pins whose associated bits in the PBSKIPEN registers are set. This provides flexibility when designing a system: pins involved with sensitive analog measurements can be moved away from digital I/O, and peripherals can be moved around the chip as needed to ease layout constraints.

4.9. Reset Sources

Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this reset state, the following occur:

- The core halts program execution.
- Module registers are initialized to their defined reset values unless the bits reset only with a power-on reset.
- External port pins are forced to a known state.
- Interrupts and timers are disabled.
- AHB peripheral clocks to flash and RAM are enabled.
- Clocks to all APB peripherals other than the Watchdog Timer and DMAXBAR are disabled.

All registers are reset to the predefined values noted in the register descriptions unless the bits only reset with a power-on reset. The contents of RAM are unaffected during a reset; any previously stored data is preserved as long as power is not lost.

The Port I/O latches are reset to 1 in open-drain mode. Weak pullups are enabled during and after the reset. For VBAT Supply Monitor and power-on resets, the RESET pin is driven low until the device exits the reset state.

On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to the internal low-power oscillator. The Watchdog Timer is enabled with the low frequency oscillator as its clock source. Program execution begins at location 0x00000000.

All RSTSRC0 registers may be locked against writes by setting the CLKRSTL bit in the LOCK0_PERIPHLOCK0 register to 1.

The reset sources can also optionally reset individual modules, including the low power mode charge pump, UARTO, LCDO, advanced capture counter (ACCTRO), and RTCO.

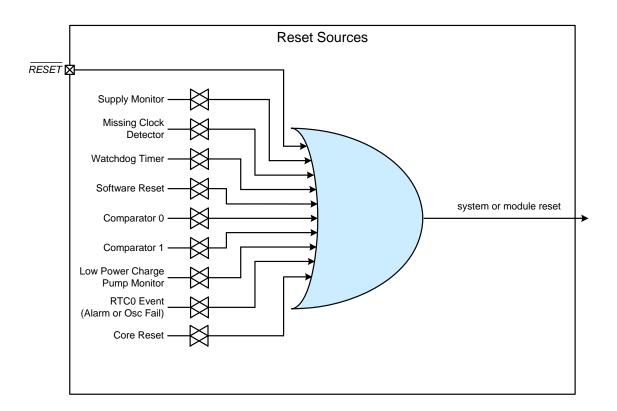


Figure 4.4. SiM3L1xx Reset Sources Block Diagram

6. Pin Definitions

6.1. SiM3L1x7 Pin Definitions

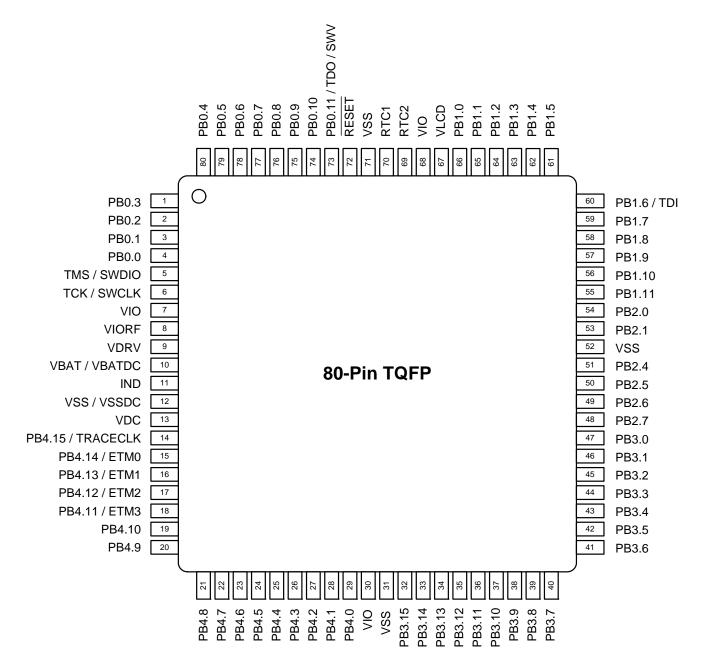


Figure 6.1. SiM3L1x7-GQ Pinout

Table 6.1. Pin Definitions and Alternate Functions for SiM3L1x7 (Continued)

Pin Name	Туре	Pin Numbers (TQFP-80)	I/O Voltage Domain	Crossbar Capability	Port Match	LCD Interface	Output Toggle Logic	External Trigger Inputs / Digital Functions	Analog Functions
PB1.8	Standard I/O	58	VIO	V	V	LCD0.31			CMP0P.3
PB1.9	Standard I/O	57	VIO	\	/	LCD0.30			CMP0N.3
PB1.10	Standard I/O	56	VIO	V	V	LCD0.29			CMP1P.3
PB1.11	Standard I/O	55	VIO	/	V	LCD0.28			CMP1N.3
PB2.0	Standard I/O	54	VIORF	✓	✓			LPT0T8 INT1.0 WAKE.12 SPI1_CTS	ADC0.8 CMP0P.4
PB2.1	Standard I/O	53	VIORF	V	✓			LPT0T9 INT1.1 WAKE.13 VIORFCLK	ADC0.9 CMP0N.4
PB2.4	Standard I/O	51	VIORF	✓	✓			LPT0T12 INT1.4 SPI1_SCLK	ADC0.10 CMP0P.5
PB2.5	Standard I/O	50	VIORF	✓	✓			LPT0T13 INT1.5 SPI1_MISO	ADC0.11 CMP0N.5
PB2.6	Standard I/O	49	VIORF	✓	✓			LPT0T14 INT1.6 SPI1_MOSI	ADC0.12 CMP1P.5
PB2.7	Standard I/O	48	VIORF	√	√			INT1.7 SPI1_NSS	ADC0.13 CMP1N.5
PB3.0	Standard I/O	47	VIO	/	✓	LCD0.27		INT1.8	ADC0.14
PB3.1	Standard I/O	46	VIO	/	/	LCD0.26		INT1.9	ADC0.15
PB3.2	Standard I/O	45	VIO	✓	✓	LCD0.25		INT1.10	ADC0.16
PB3.3	Standard I/O	44	VIO	✓	✓	LCD0.24		INT1.11	ADC0.17

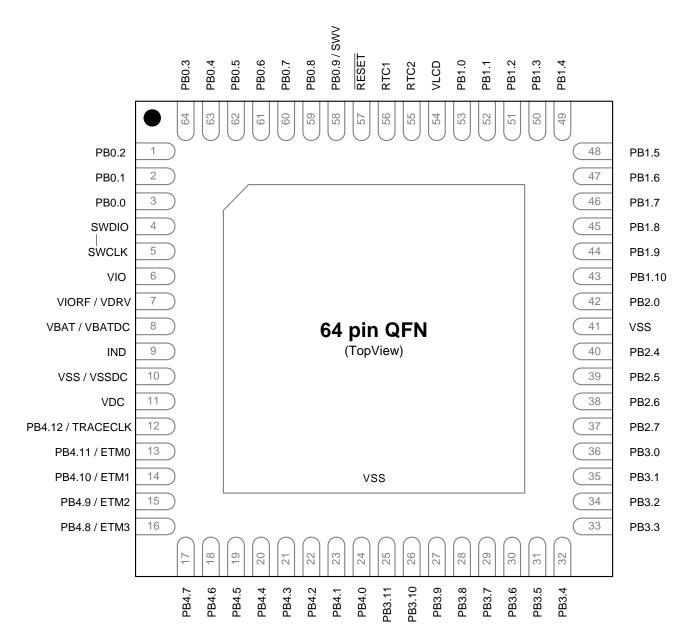


Figure 6.3. SiM3L1x6-GM Pinout

Table 6.2. Pin Definitions and Alternate Functions for SiM3L1x6 (Continued)

		I	l	1	ı		ı		
Pin Name	Туре	Pin Numbers	I/O Voltage Domain	Crossbar Capability	Port Match	LCD Interface	Output Toggle Logic	External Trigger Inputs / Digital Functions	Analog Functions
PB0.2	Standard I/O	1	VIO	XBR 0	✓		✓	INT0.2 WAKE.3	ADC0.23 CMP1N.0 XTAL1
PB0.3	Standard I/O	64	VIO	XBR 0	✓		✓	INT0.3 WAKE.4	ADC0.0 CMP0P.1 IDAC0
PB0.4	Standard I/O	63	VIO	XBR 0	✓		✓	INT0.4 WAKE.5 ACCTR0_STOP0	ACCTR0_IN0
PB0.5	Standard I/O	62	VIO	XBR 0	✓		✓	INT0.5 WAKE.6 ACCTR0_STOP1	ACCTR0_IN1
PB0.6	Standard I/O	61	VIO	XBR 0	✓		✓	INT0.6 WAKE.7	ACCTR0_LCIN0
PB0.7	Standard I/O	60	VIO	XBR 0	✓		V	LPT0T0 LPT0OUT0 INT0.7 WAKE.8	ACCTR0_LCIN1
PB0.8	Standard I/O	59	VIO	XBR 0	✓		✓	LPT0T1 INT0.8 WAKE.9 ACCTR0_LCPUL0	ADC0.1 CMP0N.1
PB0.9/SWV	Standard I/O /Serial Wire Viewer	58	VIO	XBR 0	V		V	LPT0T2 INT0.9 WAKE.10 LPT0OUT1 ACCTR0_LCPUL1	ADC0.2 CMP1P.1
PB1.0	Standard I/O	53	VIO	XBR 0	√	LCD0.31		LPT0T4 INT0.12 ACCTR0_LCBIAS0	CMP0P.2

Table 6.2. Pin Definitions and Alternate Functions for SiM3L1x6 (Continued)

Pin Name	Туре	Pin Numbers	I/O Voltage Domain	Crossbar Capability	Port Match	LCD Interface	Output Toggle Logic	External Trigger Inputs / Digital Functions	Analog Functions
PB1.1	Standard I/O	52	VIO	XBR 0	\	LCD0.30		LPT0T5 INT0.13 ACCTR0_LCBIAS1	CMP0N.2
PB1.2	Standard I/O	51	VIO	XBR 0	\	LCD0.29		LPT0T6 INT0.14 UART0_TX	CMP1P.2
PB1.3	Standard I/O	50	VIO	XBR 0	V	LCD0.28		LPT0T7 INT0.15 UART0_RX	CMP1N.2
PB1.4	Standard I/O	49	VIO	XBR 0	/	LCD0.27		ACCTR0_DBG0	ADC0.3
PB1.5	Standard I/O	48	VIO	XBR 0	✓	LCD0.26		ACCTR0_DBG1	ADC0.4
PB1.6	Standard I/O	47	VIO	XBR 0	✓	LCD0.25		RTC0TCLK_OUT	ADC0.5
PB1.7	Standard I/O	46	VIO	XBR 0	✓	LCD0.24			CMP0P.3
PB1.8	Standard I/O	45	VIO	XBR 0	V	LCD0.23			CMP0N.3
PB1.9	Standard I/O	44	VIO	XBR 0	>	LCD0.22			CMP1P.3
PB1.10	Standard I/O	43	VIO	XBR 0	✓	LCD0.21			CMP1N.3
PB2.0	Standard I/O	42	VIOR F	XBR 0	✓			LPT0T8 INT1.0 WAKE.12 SPI1_CTS	ADC0.6 CMP0P.4
PB2.4	Standard I/O	40	VIOR F	XBR 0	√			LPT0T12 INT1.4 SPI1_SCLK	ADC0.7 CMP0P.5

Table 6.2. Pin Definitions and Alternate Functions for SiM3L1x6 (Continued)

Pin Name	Туре	Pin Numbers	I/O Voltage Domain	Crossbar Capability	Port Match	LCD Interface	Output Toggle Logic	External Trigger Inputs / Digital Functions	Analog Functions
PB4.0	Standard I/O	24	VIO		V	COM0.1			
PB4.1	Standard I/O	23	VIO		~	COM0.0			
PB4.2	Standard I/O	22	VIO		V	LCD0.10			ADC0.19
PB4.3	Standard I/O	21	VIO		✓	LCD0.9			
PB4.4	Standard I/O	20	VIO		V	LCD0.8			
PB4.5	Standard I/O	19	VIO		V	LCD0.7			
PB4.6	Standard I/O	18	VIO		✓	LCD0.6		PMU_Asleep	
PB4.7	Standard I/O	17	VIO		V	LCD0.5			
PB4.8/ETM3	Standard I/O / ETM	16	VIO		V	LCD0.4			
PB4.9/ETM2	Standard I/O / ETM	15	VIO		V	LCD0.3			
PB4.10/ ETM1	Standard I/O / ETM	14	VIO		V	LCD0.2			
PB4.11/ ETM0	Standard I/O / ETM	13	VIO		✓	LCD0.1			
PB4.12/ TRACECLK	Standard I/O / ETM	12	VIO		V	LCD0.0			

Table 6.3. Pin Definitions and Alternate Functions for SiM3L1x4 (Continued)

Pin Name	Туре	Pin Numbers	I/O Voltage Domain	Crossbar Capability	Port Match	Output Toggle Logic	External Trigger Inputs / Digital Functions	Analog Functions
PB3.6	Standard I/O	14	VIO	XBR0	V		INT1.14	ADC0.13
PB3.7	Standard I/O	13	VIO	XBR0	V		INT1.15	ADC0.14
PB3.8	Standard I/O	12	VIO		√			ADC0.15
PB3.9	Standard I/O	11	VIO		V			ADC0.16

73

Table 6.4. TQFP-80 Package Dimensions

Min	Nominal	Max						
_	_	1.20						
0.05	_	0.15						
0.95 1.00 1.05								
0.17	0.20	0.27						
0.09	0.20							
14.00 BSC								
12.00 BSC								
0.50 BSC								
14.00 BSC								
	12.00 BSC							
0.45	0.60	0.75						
	1.00 Ref							
0°	3.5°	7°						
	0.20							
	0.20							
	0.08							
	0.08							
	0.05							
	0.05 0.95 0.17 0.09	0.05						

Notes:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
- 3. This package outline conforms to JEDEC MS-026, variant ADD.
- **4.** Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

6.4.1. TQFP-80 Solder Mask Design

All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

6.4.2. TQFP-80 Stencil Design

- 1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 2. The stencil thickness should be 0.125 mm (5 mils).
- 3. The ratio of stencil aperture to land pad size should be 1:1 for all pads.

6.4.3. TQFP-80 Card Assembly

- 1. A No-Clean, Type-3 solder paste is recommended.
- 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

6.7.1. QFN-40 Solder Mask Design

All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

6.7.2. QFN-40 Stencil Design

- 1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 2. The stencil thickness should be 0.125 mm (5 mils).
- 3. The ratio of stencil aperture to land pad size should be 1:1 for all pads.
- 4. A 3x3 array of 1.1 mm square openings on a 1.6 mm pitch should be used for the center ground pad.

6.7.3. QFN-40 Card Assembly

- 1. A No-Clean, Type-3 solder paste is recommended.
- 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

