E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 23x10/12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/sim3l156-c-gmr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 3.2. Power Consumption (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Power Mode 1 ^{1,2,3,4} —Full speed with code executing from RAM,	I _{BAT}	F _{AHB} = 49 MHz, F _{APB} = 24.5 MHz	—	13.4	16.6	mA
peripheral clocks ON		F _{AHB} = 20 MHz, F _{APB} = 10 MHz	_	4.7		mA
		F _{AHB} = 2.5 MHz, F _{APB} = 1.25 MHz	_	810	—	μA
Power Mode 1 ^{1,2,3,4} —Full speed with code executing from RAM, peripheral clocks OFF	I _{BAT}	F _{AHB} = 49 MHz, F _{APB} = 24.5 MHz	_	9.4	12.5	mA
		F _{AHB} = 20 MHz, F _{APB} = 10 MHz		3.3	—	mA
		F _{AHB} = 2.5 MHz, F _{APB} = 1.25 MHz	—	630	—	μA
Power Mode 1 ^{1,2,3,4} —Full speed with code executing from RAM, LDOs powered by dc-dc at 1.9 V,	I _{BAT}	F _{AHB} = 49 MHz, F _{APB} = 24.5 MHz V _{BAT} = 3.3 V	_	7.05	_	mA
		F _{AHB} = 49 MHz, F _{APB} = 24.5 MHz V _{BAT} = 3.8 V	_	6.3		mA
		F _{AHB} = 20 MHz, F _{APB} = 10 MHz V _{BAT} = 3.3 V	_	2.75		mA
		F _{AHB} = 20 MHz, F _{APB} = 10 MHz V _{BAT} = 3.8 V	_	2.6	_	mA
Power Mode 2 ^{1,2,3,4,5} —Core halted with peripheral clocks ON	I _{BAT}	F _{AHB} = 49 MHz, F _{APB} = 24.5 MHz	—	7.6	11.3	mA
		F _{AHB} = 20 MHz, F _{APB} = 10 MHz	_	2.75		mA
		F _{AHB} = 2.5 MHz, F _{APB} = 1.25 MHz	_	575		μA

- 1. Currents are additive. For example, where I_{BAT} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.
- 2. Includes all peripherals that cannot have clocks gated in the Clock Control module.
- 3. Includes LDO and PLL0OSC (>20 MHz) or LPOSC0 (<20 MHz) supply current.
- 4. Internal Digital and Memory LDOs scaled to optimal output voltage.
- 5. Flash AHB clock turned off.
- 6. Running from internal LFO, Includes LFO supply current.
- 7. LCD0 current does not include switching currents for external load.
- **8.** IDAC output current not included.
- 9. Does not include LC tank circuit.
- Does not include digital drive current or pullup current for active port I/O. Unloaded I_{VIO} is included in all I_{BAT} PM8 production test measurements.

Table 3.2. Power Consumption (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Power Mode 2 ^{1,2,3,4,5} —Core halted with only Port I/O clocks on (wake	I _{BAT}	F _{AHB} = 49 MHz, F _{APB} = 24.5 MHz	—	4	7.2	mA
from pin).		F _{AHB} = 20 MHz, F _{APB} = 10 MHz	_	1.47		mA
		F _{AHB} = 2.5 MHz, F _{APB} = 1.25 MHz	_	430		μA
Power Mode 3 ^{1,2,6} —Fast-Wake	I _{BAT}	V _{BAT} = 3.8 V	_	320	530	μA
Mode (PM3CLKEN = 1)		V _{BAT} = 1.8 V	_	225	_	μA
Power Mode 4 ^{1,2,4,6} —Slower clock speed with code executing from	I _{BAT}	$F_{AHB} = F_{APB} = 16 \text{ kHz},$ $V_{BAT} = 3.8 \text{ V}$	—	385	640	μA
flash, peripheral clocks ON		$F_{AHB} = F_{APB} = 16 \text{ kHz},$ $V_{BAT} = 1.8 \text{ V}$	_	330		μA
Power Mode 5 ^{1,2,4,6} —Slower clock speed with code executing from	I _{BAT}	$F_{AHB} = F_{APB} = 16 \text{ kHz},$ $V_{BAT} = 3.8 \text{ V}$	_	320	490	μA
RAM, peripheral clocks ON		F _{AHB} = F _{APB} = 16 kHz, V _{BAT} = 1.8 V	—	275	_	μA
Power Mode 6 ^{1,2,4,6} —Core halted with peripheral clocks ON	I _{BAT}	$F_{AHB} = F_{APB} = 16 \text{ kHz},$ $V_{BAT} = 3.8 \text{ V}$		315	490	μA
		$F_{AHB} = F_{APB} = 16 \text{ kHz},$ $V_{BAT} = 1.8 \text{ V}$	_	270	—	μA
Power Mode 8 ^{1,2} —Low Power Sleep, powered through VBAT,	I _{BAT}	RTC Disabled, T _A = 25 °C	—	75	400	nA
retention RAM		RTC w/ 16.4 kHz LFO, T _A = 25 °C	_	360	_	nA
		RTC w/ 32.768 kHz Crystal, T _A = 25 °C	—	670		nA

Notes:

1. Currents are additive. For example, where I_{BAT} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.

2. Includes all peripherals that cannot have clocks gated in the Clock Control module.

3. Includes LDO and PLL0OSC (>20 MHz) or LPOSC0 (<20 MHz) supply current.

4. Internal Digital and Memory LDOs scaled to optimal output voltage.

5. Flash AHB clock turned off.

- 6. Running from internal LFO, Includes LFO supply current.
- 7. LCD0 current does not include switching currents for external load.

8. IDAC output current not included.

9. Does not include LC tank circuit.

Does not include digital drive current or pullup current for active port I/O. Unloaded I_{VIO} is included in all I_{BAT} PM8 production test measurements.

Table 3.2. Power Consumption (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Power Mode 8 ^{1,2} —Low Power Sleep, powered by the low power	I _{BAT}	RTC w/ 16.4 kHz LFO, V _{BAT} = 2.4 V, T _A = 25 °C		180		nA
tion RAM		RTC w/ 32.768 kHz Crystal, V _{BAT} = 2.4 V, T _A = 25 °C	<u> </u>	300		nA
		RTC w/ 16.4 kHz LFO, V _{BAT} = 3.8 V, T _A = 25 °C	-	245		nA
		RTC w/ 32.768 kHz Crystal, V _{BAT} = 3.8 V, T _A = 25 °C	-	390	_	nA
Unloaded V_{IO} and V_{IORF} Current ¹⁰	I _{VIO}		_	2	_	nA
Power Mode 8 Peripheral Currents	3		1	L		
UART0	I _{UART0}	V _{BAT} = 3.8 V, T _A = 25 °C	_	195	600	nA
		V _{BAT} = 2.4 V, T _A = 25 °C	_	120	_	nA
LCD0 ⁷ , No segments active	I _{LCD0}	V _{BAT} = 3.8 V, T _A = 25 °C	_	495	660	nA
		V _{BAT} = 2.4 V, T _A = 25 °C	_	395	_	nA
LCD0 ⁷ , All (4 x 40) segments active	I _{LCD0}	V _{BAT} = 3.8 V, T _A = 25 °C	—	800	_	nA
		V _{BAT} = 2.4 V, T _A = 25 °C	<u> </u>	580		nA
Advanced Capture Counter (ACCTR0), LC Single-Ended	I _{ACCTR}	V _{BAT} = 2.4 V, T _A = 25 °C, CPMD = 01	<u> </u>	1.11	<u> </u>	nA/Hz
Mode, Relative to Sampling ⊢re- quency ⁹		V _{BAT} = 3.8 V, T _A = 25 °C, CPMD = 01	-	1.44		nA/Hz
		V _{BAT} = 2.4 V, T _A = 25 °C, CPMD = 10	-	1.45		nA/Hz
		V _{BAT} = 3.8 V, T _A = 25 °C, CPMD = 10	-	1.82		nA/Hz
		V _{BAT} = 2.4 V, T _A = 25 °C, CPMD = 11	—	2.15	—	nA/Hz
		V _{BAT} = 3.8 V, T _A = 25 °C, CPMD = 11	_	2.54		nA/Hz

- Currents are additive. For example, where I_{BAT} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.
- 2. Includes all peripherals that cannot have clocks gated in the Clock Control module.
- 3. Includes LDO and PLL0OSC (>20 MHz) or LPOSC0 (≤20 MHz) supply current.
- 4. Internal Digital and Memory LDOs scaled to optimal output voltage.
- 5. Flash AHB clock turned off.
- 6. Running from internal LFO, Includes LFO supply current.
- 7. LCD0 current does not include switching currents for external load.
- 8. IDAC output current not included.
- 9. Does not include LC tank circuit.
- Does not include digital drive current or pullup current for active port I/O. Unloaded I_{VIO} is included in all I_{BAT} PM8 production test measurements.

Table 3.3. Power Mode Wake Up Times

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Power Mode 2 or 6 Wake Time	t _{PM2}		4	—	5	clocks
Power Mode 3 Fast Wake Time (using LFO as clock source)	t _{PM3FW}			425		μs
Power Mode 8 Wake Time	t _{PM8}		—	3.8	—	μs
Notes:1. Wake times are specified as the time This includes latency to recognize th	from the wa	ke source to the execution It and fetch the first instruct	phase of th ion (assum	ne first instr ning wait sta	uction follov ates = 0).	wing WFI.

Table 3.4. Reset and Supply Monitor

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
V _{BAT} High Supply Monitor Threshold	V _{VBATMH}	Early Warning		2.20	—	V
(VBATHITHEN = 1)		Reset	1.95	2.05	2.1	V
V _{BAT} Low Supply Monitor Threshold	V _{VBATML}	Early Warning	—	1.85		V
(VBATHITHEN = 0)		Reset	1.70	1.75	1.77	V
Power-On Reset (POR) Threshold	V _{POR}	Rising Voltage on V_{BAT}		1.4	—	V
		Falling Voltage on V _{BAT}	0.8	1	1.3	V
V _{BAT} Ramp Time	t _{RMP}	Time to V _{BAT} ≥ 1.8 V	10		3000	μs
Reset Delay from POR	t _{POR}	Relative to V _{BAT} ≥ V _{POR}	3		100	ms
Reset Delay from non-POR source	t _{RST}	Time between release of reset source and code execution	—	10		μs
RESET Low Time to Generate Reset	t _{RSTL}		50			ns
Missing Clock Detector Response Time (final rising edge to reset)	t _{MCD}	F _{AHB} > 1 MHz		0.5	1.5	ms
Missing Clock Detector Trigger Frequency	F _{MCD}		—	2.5	10	kHz
V _{BAT} Supply Monitor Turn-On Time	t _{MON}		_	2	_	μs

Table 3.6. Flash Memory

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Write Time ¹	t _{WRITE}	One 16-bit Half Word	20	21	22	μs
Erase Time ¹	t _{ERASE}	One Page	20	21	22	ms
	t _{ERALL}	Full Device	20	21	22	ms
Endurance (Write/Erase Cycles)	N _{WE}		20k	100k	—	Cycles
Retention ²	t _{RET}	T _A = 25 °C, 1k Cycles	10	100	_	Years

Notes:

Does not include sequencing time before and after the write/erase operation, which may take up to 35 µs. During sequential write operations, this extra time is only taken prior to the first write and after the last write.

2. Additional Data Retention Information is published in the Quarterly Quality and Reliability Report.

Table 3.7. Internal Oscillators

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Phase-Locked Loop (PLL0OSC)					L	
Calibrated Output Frequency (Free-running output mode, RANGE = 2)	f _{PLL0OSC}	Full Temperature and Supply Range	48.3	49	49.7	MHz
Power Supply Sensitivity (Free-running output mode, RANGE = 2)	PSS _{PLL0OSC}	T _A = 25 °C, Fout = 49 MHz		300		ppm/V
Temperature Sensitivity (Free-running output mode, RANGE = 2)	TS _{PLL0OSC}	V _{BAT} = 3.3 V, Fout = 49 MHz		50		ppm/°C
Adjustable Output Frequency Range	f _{PLL0OSC}		23		50	MHz
Lock Time	^t PLLOLOCK	f _{REF} = 20 MHz, f _{PLL0OSC} = 50 MHz M=39, N=99, LOCKTH = 0		2.75		μs
		f _{REF} = 2.5 MHz, f _{PLL0OSC} = 50 MHz M=19, N=399, LOCKTH = 0		9.45		μs
		f _{REF} = 32.768 kHz, f _{PLL0OSC} = 50 MHz M=0, N=1524, LOCKTH = 0		92		μs
Low Power Oscillator (LPOSC0)						. <u> </u>
Oscillator Frequency	f _{LPOSC}	Full Temperature and Supply Range	19	20	21	MHz
Divided Oscillator Frequency	f _{LPOSCD}	Full Temperature and Supply Range	2.375	2.5	2.625	MHz
Power Supply Sensitivity	PSS _{LPOSC}	T _A = 25 °C		0.5	_	%/V
Temperature Sensitivity	TS _{LPOSC}	V _{BAT} = 3.3 V	_	55		ppm/°C
Low Frequency Oscillator (LFOS	C0)					
Oscillator Frequency	fLFOSC	Full Temperature and Supply Range	13.4	16.4	19.7	kHz
		T _A = 25 °C, V _{BAT} = 3.3 V	15.8	16.4	17.3	kHz
Power Supply Sensitivity	PSS _{LFOSC}	T _A = 25 °C	_	2.4		%/V
Temperature Sensitivity	TS _{LFOSC}	V _{BAT} = 3.3 V		0.2		%/°C

Table 3.9. SAR ADC

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Resolution	N _{bits}	12 Bit Mode		12		Bits
		10 Bit Mode		10		Bits
Supply Voltage Requirements	V _{ADC}	High Speed Mode	2.2		3.8	V
(VBAT)		Low Power Mode	1.8		3.8	V
Throughput Rate	f _S	12 Bit Mode			250	ksps
(High Speed Mode)		10 Bit Mode			1	Msps
Throughput Rate	f _S	12 Bit Mode			62.5	ksps
(Low Power Mode)		10 Bit Mode		_	250	ksps
Tracking Time	t _{TRK}	High Speed Mode	230	_		ns
		Low Power Mode	450	_		ns
SAR Clock Frequency	f _{SAR}	High Speed Mode		_	16.24	MHz
		Low Power Mode		_	4	MHz
Conversion Time	t _{CNV}	10-Bit Conversion, SAR Clock = 16 MHz, APB Clock = 40 MHz		762.5		
Sample/Hold Capacitor	C _{SAR}	Gain = 1		5	_	pF
		Gain = 0.5		2.5		pF
Input Pin Capacitance	C _{IN}	High Quality Inputs		18	_	pF
		Normal Inputs		20	_	pF
Input Mux Impedance	R _{MUX}	High Quality Inputs		300	_	Ω
		Normal Inputs		550	_	Ω
Voltage Reference Range	V _{REF}		1		V _{BAT}	V
Input Voltage Range*	V _{IN}	Gain = 1	0		V _{REF}	V
		Gain = 0.5	0		$2 \mathrm{xV}_{REF}$	V
Power Supply Rejection Ratio	PSRR _{ADC}			70	_	dB
DC Performance					Lı	
Integral Nonlinearity	INL	12 Bit Mode		±1	±1.9	LSB
		10 Bit Mode		±0.2	±0.5	LSB
Differential Nonlinearity	DNL	12 Bit Mode	-1	±0.7	1.8	LSB
(Guaranteed Monotonic)		10 Bit Mode		±0.2	±0.5	LSB
Offset Error (using VREFGND)	E _{OFF}	12 Bit Mode, VREF = 2.4 V	-2	0	2	LSB
		10 Bit Mode, VREF = 2.4 V	-1	0	1	LSB

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit		
Internal Fast Settling Referen	nternal Fast Settling Reference							
Output Voltage	V _{REFFS}	−40 to +85 °C, V _{BAT} = 1.8−3.8 V	1.6	1.65	1.7	V		
Temperature Coefficient	TC _{REFFS}		_	50		ppm/°C		
Turn-on Time	t _{REFFS}		—	_	1.5	μs		
Power Supply Rejection	PSRR _{REFFS}		_	400	—	ppm/V		
Internal Precision Reference	·							
Valid Supply Range	V _{BAT}	VREF2X = 0	1.8		3.8	V		
valid Supply Range		VREF2X = 1	2.7		3.8	V		
	V _{REFP}	25 °C ambient, VREF2X = 0	1.17	1.2	1.23	V		
Output voltage		25 °C ambient, VREF2X = 1	2.35	2.4	2.45	V		
Short-Circuit Current	I _{SC}		_	_	10	mA		
Temperature Coefficient	TC _{VREFP}		_	35	_	ppm/°C		
Load Regulation	LR _{VREFP}	Load = 0 to 200 µA to VREFGND	—	4.5	—	ppm/µA		
Load Capacitor	C _{VREFP}	Load = 0 to 200 µA to VREFGND	0.1	_	—	μF		
Turn-on Time	t _{VREFPON}	4.7 μF tantalum, 0.1 μF ceramic bypass	_	3.8	—	ms		
		0.1 µF ceramic bypass	_	200	_	μs		
Power Supply Rejection	PSRR _{VREFP}	VREF2X = 0	_	320	—	ppm/V		
		VREF2X = 1	_	560	—	ppm/V		
External Reference								
Input Current	I _{EXTREF}	Sample Rate = 250 ksps; VREF = 3.0 V		5.25	_	μΑ		

Table 3.12. Ve	oltage Reference	Electrical	Characteristics
----------------	------------------	------------	-----------------

Table 3.13. Temperature Sensor

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit	
Offset	V _{OFF}	T _A = 0 °C	—	760	—	mV	
Offset Error*	E _{OFF}	T _A = 0 °C	—	±14	—	mV	
Slope	М		_	2.77	—	mV/°C	
Slope Error*	E _M		_	±25	—	µV/°C	
Linearity			_	1	—	°C	
Turn-on Time				1.8		μs	
*Note: Absolute input pin voltage is limited by the lower of the supply at VBAT and VIO.							

Table 3.14. Comparator

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Response Time, CMPMD = 00	t _{RESP0}	+100 mV Differential	—	100		ns
(Highest Speed)		-100 mV Differential	—	150		ns
Response Time, CMPMD = 11	t _{RESP3}	+100 mV Differential		1.4		μs
(Lowest Power)		-100 mV Differential		3.5		μs
Positive Hysteresis	HYS _{CP+}	CMPHYP = 00	—	0.37		mV
Mode 0 (CPMD = 00)		CMPHYP = 01	—	7.9		mV
		CMPHYP = 10	—	16.7	—	mV
		CMPHYP = 11		32.8		mV
Negative Hysteresis	HYS _{CP-}	CMPHYN = 00		0.37		mV
Mode 0 (CPMD = 00)		CMPHYN = 01		-7.9		mV
		CMPHYN = 10		-16.1		mV
		CMPHYN = 11		-32.7		mV
Positive Hysteresis Mode 1 (CPMD = 01)	HYS _{CP+}	CMPHYP = 00		0.47		mV
		CMPHYP = 01		5.85		mV
		CMPHYP = 10		12		mV
		CMPHYP = 11		24.4		mV
Negative Hysteresis	HYS _{CP-}	CMPHYN = 00		0.47		mV
Mode 1 (CPMD = 01)		CMPHYN = 01		-6.0		mV
		CMPHYN = 10		-12.1		mV
		CMPHYN = 11		-24.6		mV
Positive Hysteresis	HYS _{CP+}	CMPHYP = 00		0.66		mV
Mode 2 (CPMD = 10)		CMPHYP = 01		4.55		mV
		CMPHYP = 10		9.3		mV
		CMPHYP = 11		19		mV
Negative Hysteresis	HYS _{CP-}	CMPHYN = 00		0.6		mV
Mode 2 (CPMD = 10)		CMPHYN = 01		-4.5		mV
		CMPHYN = 10		-9.5		mV
		CMPHYN = 11		-19		mV

4.1. Power

The SiM3L1xx devices include a dc-dc buck converter that can take an input from 1.8–3.8 V and create an output from 1.25–3.8 V. In addition, SiM3L1xx devices include three low dropout regulators as part of the LDO0 module: one LDO powers the analog subsystems, one LDO powers the flash and SRAM memory at 1.8 V, and one LDO powers the digital and core circuitry. Each of these regulators can be independently powered from the dc-dc converter or directly from the battery voltage, and their outputs are adjustable to conserve system power. SiM3L1xx devices also include a low power charge pump in the PMU module for use in low power modes (PM8) to further reduce the power consumption of the device.

Figure 4.2 shows the power system configuration of these devices.

Figure 4.2. SiM3L1xx Power

4.1.1. DC-DC Buck Converter (DCDC0)

SiM3L1xx devices include an on-chip step-down dc-dc converter to efficiently utilize the energy stored in the battery, thus extending the operational life time. The dc-dc converter is a switching buck converter with a programmable output voltage that should be at least 0.45 V lower than the input battery voltage; if this criteria is not met and the converter can no longer operate, the output of the dc-dc converter automatically connects to the battery. The dc-dc converter can supply up to 100 mA and can be used to power the MCU and/or external devices in the system.

The dc-dc converter has a built in voltage reference and oscillator and will automatically limit or turn off the switching activity in case the peak inductor current rises beyond a safe limit or the output voltage rises above the programmed target value. This allows the dc-dc converter output to be safely overdriven by a secondary power source (when available) in order to preserve battery life. When enabled, the dc-dc converter can source current into the output capacitor, but cannot sink current.

The dc-dc converter includes the following features:

- Efficiently utilizes the energy stored in a battery, extending its operational lifetime.
- Input range: 1.8 to 3.8 V.
- Output range: 1.25 to 3.8 V in 50 mV (1.25–1.8 V) or 100 mV (1.8–3.8 V) steps.
- Supplies up to 100 mA.
- Includes a voltage reference and an oscillator.

4.1.5.6. Power Mode Summary

The power modes described above are summarized in Table 4.1. Table 3.2 and Table 3.3 provide more information on the power consumption and wake up times for each mode.

Mode	Description	Notes
Normal	Core operating at full speedCode executing from flash	 Full device operation
Power Mode 1 (PM1)	Core operating at full speedCode executing from RAM	 Full device operation Higher CPU bandwidth than PM0 (RAM can operate with zero wait states at any frequency)
Power Mode 2 (PM2)	 Core halted AHB, APB and all peripherals operational at full speed 	 Fast wakeup from any interrupt source
Power Mode 3 (PM3)	 All clocks to core and peripherals stopped Faster wake enabled by keeping LFOSC0 or RTC0TCLK active 	 Wake on any wake source or reset source defined in the PMU
Power Mode 4 (PM4)	Core operating at low speedCode executing from flash	 Same capabilities as PM0, operating at lower speed Lower clock speed enables lower LDO output settings to save power
Power Mode 5 (PM5)	Core operating at low speedCode executing from RAM	 Same capabilities as PM1, operating at lower speed Lower clock speed enables lower LDO output settings to save power
Power Mode 6 (PM6)	 Core halted AHB, APB and all peripherals operational at low speed 	 Same capabilities as PM2, operating at lower speed Lower clock speed enables lower LDO output settings to save power When running from LFOSC0, power is similar to PM3, but the device wakes much faster
Power Mode 8 (PM8)	 Low power sleep LDO regulators are disabled and all active circuitry operates directly from VBAT The following functions are available: ACCTR0, RTC0, UART0 running from RTC0TCLK, LPTIMER0, port match, and the LCD controller Register and RAM state retention 	 Lowest power consumption Wake on any wake source or reset source defined in the PMU

Table 4.1. SiM3L1xx Power Modes

4.5. Data Peripherals

4.5.1. 10-Channel DMA Controller

The DMA facilitates autonomous peripheral operation, allowing the core to finish tasks more quickly without spending time polling or waiting for peripherals to interrupt. This helps reduce the overall power consumption of the system, as the device can spend more time in low-power modes.

The DMA controller has the following features:

- Utilizes ARM PrimeCell uDMA architecture.
- Implements 10 channels.
- DMA crossbar supports DTM0, DTM1, DTM2, SARADC0, IDAC0, I2C0, SPI0, SPI1, USART0, AES0, ENCDEC0, EPCA0, external pin triggers, and timers.
- Supports primary, alternate, and scatter-gather data structures to implement various types of transfers.
- Access allowed to all AHB and APB memory space.

4.5.2. Data Transfer Managers (DTM0, DTM1, DTM2)

The Data Transfer Manager is a module that collects DMA request signals from various peripherals and generates a series of master DMA requests based on a state-driven configuration. This master request drives a set of DMA channels to perform functions such as assembling and transferring communication packets to external devices. This capability saves power by allowing the core to remain in a low power mode during complex transfer operations. A combination of simple and peripheral scatter-gather DMA configurations can be used to perform complex operations while reducing memory requirements.

The DTM acts as a side channel for the peripheral's DMA control signals. When active, it manages the DMA control signals for the peripherals. When the DTMn module is inactive, the peripherals communicate directly to the DMA module.

The DTMn module has the following features:

- State descriptions stored in RAM with up to 15 states supported per module.
- Supports up to 15 source peripherals and up to 15 destination peripherals per module, in addition to memory or peripherals that do not require a data request.
- Includes error detection and an optional transfer timeout.
- Includes notifications for state transitions.

4.5.3. 128/192/256-bit Hardware AES Encryption (AES0)

The basic AES block cipher is implemented in hardware. The integrated hardware support for Cipher Block Chaining (CBC) and Counter (CTR) algorithms results in identical performance, memory bandwidth, and memory footprint between the most basic Electronic Codebook (ECB) algorithm and these more complex algorithms. This hardware accelerator translates to more core bandwidth available for other functions or a power savings for low-power applications.

The AES module includes the following features:

- Operates on 4-word (16-byte) blocks.
- Supports key sizes of 128, 192, and 256 bits for both encryption and decryption.
- Generates the round key for decryption operations.
- All cipher operations can be performed without any firmware intervention for multiple 4-word blocks (up to 32 kB).
- Support for various chained and stream-ciphering configurations with XOR paths on both the input and output.
- Internal 4-word FIFOs to facilitate DMA operations.
- Integrated key storage.
- Hardware acceleration for Electronic Codebook (ECB), Cipher-Block Chaining (CBC), and Counter (CTR) algorithms utilizing integrated counterblock generation and previous-block caching.

4.5.4. 16/32-bit Enhanced CRC (ECRC0)

The ECRC module is designed to provide hardware calculations for flash memory verification and communications protocols. In addition to calculating a result from direct writes from firmware, the ECRC module can automatically snoop the APB bus and calculate a result from data written to or read from a particular peripheral. This allows for an automatic CRC result without directly feeding data through the ECRC module.

The supported 32-bit polynomial is 0x04C11DB7 (IEEE 802.3). The 16-bit polynomial is fully programmable.

The ECRC module includes the following features:

- Support for a programmable 16-bit polynomial and one fixed 32-bit polynomial.
- Byte-level bit reversal for the CRC input.
- Byte-order reorientation of words for the CRC input.
- Word or half-word bit reversal of the CRC result.
- Ability to configure and seed an operation in a single register write.
- Support for single-cycle parallel (unrolled) CRC computation for 32-, 16-, or 8-bit blocks.
- Capability to CRC 32 bits of data per peripheral bus (APB) clock.
- Automatic APB bus snooping.
- Support for DMA writes using firmware request mode.

4.5.5. Encoder / Decoder (ENCDEC0)

The encoder / decoder module supports Manchester and Three-out-of-Six encoding and decoding from either firmware or DMA operations.

This module has the following features:

- Supports Manchester and Three-out-of-Six encoding and decoding.
- Automatic flag clearing when writing the input or reading the output data registers.
- Writing to the input data register automatically initiates an encode or decode operation.
- Optional output in one's complement format.
- Hardware error detection for invalid input data during decode operations, which helps reduce power consumption and packet turn-around time.
- Flexible byte swapping on the input or output data.

Pin Name	Туре	Pin Numbers (TQFP-80)	I/O Voltage Domain	Crossbar Capability	Port Match	LCD Interface	Output Toggle Logic	External Trigger Inputs / Digital Functions	Analog Functions
VSS	Ground	12 31 52 71							
VSSDC	Ground (DC- DC)	12							
VIO	Power (I/O)	7 30 68							
VIORF	Power (RF I/O)	8							
VBAT/ VBATDC		10							
VDRV		9							
VDC		13							
VLCD	Power (LCD Charge Pump)	67							
IND	DC-DC Inductor	11							
RESET	Active-low Reset	72							
TCK/ SWCLK	JTAG / Serial Wire	6							
TMS/ SWDIO	JTAG / Serial Wire	5							
RTC1	RTC Oscillator Input	70							
RTC2	RTC Oscillator Output	69							

 Table 6.1. Pin Definitions and Alternate Functions for SiM3L1x7

Pin Name	Туре	Pin Numbers (TQFP-80)	I/O Voltage Domain	Crossbar Capability	Port Match	LCD Interface	Output Toggle Logic	External Trigger Inputs / Digital Functions	Analog Functions
PB0.9	Standard I/O	75	VIO	~	>		~	LPT0T1 INT0.9 WAKE.9 ACCTR0_LCPUL0	ADC0.1 CMP0N.1
PB0.10	Standard I/O	74	VIO	V	~		~	LPT0T2 INT0.10 WAKE.10 ACCTR0_LCPUL1	ADC0.2 CMP1P.1
PB0.11/ TDO/SWV	Standard I/O / JTAG / Serial Wire Viewer	73	VIO	~	1		~	LPT0T3 LPT0OUT1 INT0.11 WAKE.11	ADC0.3 CMP1N.1
PB1.0	Standard I/O	66	VIO	~	~	LCD0.39		LPT0T4 INT0.12 ACCTR0_LCBIAS0	CMP0P.2
PB1.1	Standard I/O	65	VIO	V	~	LCD0.38		LPT0T5 INT0.13 ACCTR0_LCBIAS1	CMP0N.2
PB1.2	Standard I/O	64	VIO	V	~	LCD0.37		LPT0T6 INT0.14 UART0_TX	CMP1P.2
PB1.3	Standard I/O	63	VIO	~	~	LCD0.36		LPT0T7 INT0.15 UART0_RX	CMP1N.2
PB1.4	Standard I/O	62	VIO	~	\checkmark	LCD0.35		ACCTR0_DBG0	ADC0.4
PB1.5	Standard I/O	61	VIO	~	~	LCD0.34		ACCTR0_DBG1	ADC0.5
PB1.6/TDI	Standard I/O / JTAG	60	VIO	V	~	LCD0.33			ADC0.6
PB1.7	Standard I/O	59	VIO	~	\checkmark	LCD0.32		RTC0TCLK_OUT	ADC0.7

Table 6.1. Pin Definitions and Alternate Functions for SiM3L1x7 (Continued)

Pin Name	Туре	Pin Numbers	I/O Voltage Domain	Crossbar Capability	Port Match	LCD Interface	Output Toggle Logic	External Trigger Inputs / Digital Functions	Analog Functions
PB1.1	Standard I/O	52	VIO	XBR 0	\checkmark	LCD0.30		LPT0T5 INT0.13 ACCTR0_LCBIAS1	CMP0N.2
PB1.2	Standard I/O	51	VIO	XBR 0	~	LCD0.29		LPT0T6 INT0.14 UART0_TX	CMP1P.2
PB1.3	Standard I/O	50	VIO	XBR 0	~	LCD0.28		LPT0T7 INT0.15 UART0_RX	CMP1N.2
PB1.4	Standard I/O	49	VIO	XBR 0	~	LCD0.27		ACCTR0_DBG0	ADC0.3
PB1.5	Standard I/O	48	VIO	XBR 0	\checkmark	LCD0.26		ACCTR0_DBG1	ADC0.4
PB1.6	Standard I/O	47	VIO	XBR 0	\checkmark	LCD0.25		RTC0TCLK_OUT	ADC0.5
PB1.7	Standard I/O	46	VIO	XBR 0	\checkmark	LCD0.24			CMP0P.3
PB1.8	Standard I/O	45	VIO	XBR 0	\checkmark	LCD0.23			CMP0N.3
PB1.9	Standard I/O	44	VIO	XBR 0	~	LCD0.22			CMP1P.3
PB1.10	Standard I/O	43	VIO	XBR 0	\checkmark	LCD0.21			CMP1N.3
PB2.0	Standard I/O	42	VIOR F	XBR 0				LPT0T8 INT1.0 WAKE.12 SPI1_CTS	ADC0.6 CMP0P.4
PB2.4	Standard I/O	40	VIOR F	XBR 0	~			LPT0T12 INT1.4 SPI1_SCLK	ADC0.7 CMP0P.5

Table 6.2. Pin Definitions and Alternate Functions for SiM3L1x6 (Continued)

Pin Name	Туре	Pin Numbers	I/O Voltage Domain	Crossbar Capability	Port Match	Output Toggle Logic	External Trigger Inputs / Digital Functions	Analog Functions
PB2.1	Standard I/O	28	VIORF	XBR0	~		LPT0T9 INT1.1 WAKE.13 VIORFCLK	ADC0.3 CMP0N.4
PB2.2	Standard I/O	27	VIORF	XBR0	~		LPT0T10 INT1.2 WAKE.14	ADC0.4 CMP1P.4
PB2.3	Standard I/O	26	VIORF	XBR0	~		LPT0T11 INT1.3 WAKE.15	ADC0.5 CMP1N.4
PB2.4	Standard I/O	24	VIORF	XBR0	\checkmark		LPT0T12 INT1.4 SPI1_SCLK	ADC0.6 CMP0P.5
PB2.5	Standard I/O	23	VIORF	XBR0	~		LPT0T13 INT1.5 SPI1_MISO	ADC0.7 CMP0N.5
PB2.6	Standard I/O	22	VIORF	XBR0	~		LPT0T14 INT1.6 SPI1_MOSI	ADC0.8 CMP1P.5
PB2.7	Standard I/O	21	VIORF	XBR0	\checkmark		INT1.7 SPI1_NSS	ADC0.9 CMP1N.5
PB3.0	Standard I/O	20	VIO	XBR0	\checkmark		INT1.8	CMP0N.7
PB3.1	Standard I/O	19	VIO	XBR0	\checkmark		INT1.9	CMP1P.7
PB3.2	Standard I/O	18	VIO	XBR0	\checkmark		INT1.10	CMP1N.7
PB3.3	Standard I/O	17	VIO	XBR0	~		INT1.11	ADC0.10
PB3.4	Standard I/O	16	VIO	XBR0	\checkmark		INT1.12	ADC0.11
PB3.5	Standard I/O	15	VIO	XBR0	\checkmark		INT1.13	ADC0.12

Table 6.3. Pin Definitions and Alternate Functions for SiM3L1x4 (Continued)

6.5. QFN-64 Package Specifications

Dimension	Min	Nominal	Max				
A	0.80	0.90					
A1	0.00	0.05					
b	0.18	0.30					
D	9.00 BSC						
D2	3.95 4.10 4.25						
e	0.50 BSC						
E	9.00 BSC						
E2	3.95 4.10 4.25						
L	0.30	0.50					
aaa	0.10						
bbb	0.10						
CCC	0.08						
ddd		0.10					
eee		0.05					
	-						

Table 6.6. QFN-64 Package Dimensions

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
- 3. This package outline conforms to JEDEC MO-220.
- **4.** Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

6.7. QFN-40 Package Specifications

Min	Max					
0.80	0.80 0.85					
0.00	0.00 0.02					
0.18	0.18 0.25					
6.00 BSC						
4.35	4.65					
0.50 BSC						
6.00 BSC						
4.35	4.65					
0.30	0.50					
	0.10					
0.10						
0.08						
	0.10					
	0.05					
	Min 0.80 0.00 0.18 4.35 0.30	Min Nominal 0.80 0.85 0.00 0.02 0.18 0.25 6.00 BSC 6.00 BSC 4.35 4.50 0.50 BSC 6.00 BSC 4.35 4.5 0.30 0.40 0.10 0.10 0.08 0.10 0.05 0.10				

Table 6.10. QFN-40 Package Dimensions

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
- 3. This package outline conforms to JEDEC MO-220.
- **4.** Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

7. Revision Specific Behavior

This chapter describes any differences between released revisions of the device.

7.1. Revision Identification

The Lot ID Code on the top side of the device package can be used for decoding device revision information. Figures 7.1, 7.2, and 7.3 show how to find the Lot ID Code on the top side of the device package. In addition, firmware can determine the revision of the device by checking the DEVICEID registers.

QFN-40 SiMBL

Figure 7.2. SiM3L1x6-GM and SiM3L1x6-GQ Revision Information

