E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	62
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 24x10/12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/sim3l157-c-gq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 3.2. Power Consumption (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
SARADC0	ISARADC	Sampling at 1 Msps, Internal VREF used		1.2	1.6	mA
		Sampling at 250 ksps, lowest power mode settings.		390	540	μA
Temperature Sensor	I _{TSENSE}		· -	75	110	μA
Internal SAR Reference	I _{REFFS}	Normal Power Mode		680	—	μA
		Normal Power Mode		160	—	μA
VREF0	I _{REFP}		-	80	_	μA
Comparator 0 (CMP0),	I _{CMP}	CMPMD = 11	<u> </u>	0.5	2	μA
Comparator 1 (CMP1)		CMPMD = 10	<u> </u>	3	8	μA
		CMPMD = 01	· -	10	16	μA
	1	CMPMD = 00		25	42	μA
IDAC0 ⁸	I _{IDAC}		-	70	100	μA
Voltage Supply Monitor (VMON0)	I _{VMON}		<u> </u>	10	22	μA
Flash Current on VBAT	·			<u> </u>		
Write Operation	I _{FLASH-W}		<u> </u>	_	8	mA
Erase Operation	I _{FLASH-E}		<u> </u>	—	15	mA
Notos:				1		

1. Currents are additive. For example, where I_{BAT} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.

- 2. Includes all peripherals that cannot have clocks gated in the Clock Control module.
- 3. Includes LDO and PLL0OSC (>20 MHz) or LPOSC0 (<20 MHz) supply current.
- 4. Internal Digital and Memory LDOs scaled to optimal output voltage.
- 5. Flash AHB clock turned off.
- 6. Running from internal LFO, Includes LFO supply current.
- 7. LCD0 current does not include switching currents for external load.
- 8. IDAC output current not included.
- 9. Does not include LC tank circuit.
- 10. Does not include digital drive current or pullup current for active port I/O. Unloaded IVIO is included in all IBAT PM8 production test measurements.

Table 3.3. Power Mode Wake Up Times

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit					
Power Mode 2 or 6 Wake Time	t _{PM2}		4	—	5	clocks					
Power Mode 3 Fast Wake Time (using LFO as clock source)	t _{PM3FW}			425		μs					
Power Mode 8 Wake Time	t _{PM8}		—	3.8	—	μs					
 Notes: 1. Wake times are specified as the time from the wake source to the execution phase of the first instruction following WFI. This includes latency to recognize the wake event and fetch the first instruction (assuming wait states = 0). 											

Table 3.4. Reset and Supply Monitor

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
V _{BAT} High Supply Monitor Threshold	V _{VBATMH}	Early Warning		2.20	—	V
(VBATHITHEN = 1)		Reset	1.95	2.05	2.1	V
V _{BAT} Low Supply Monitor Threshold	V _{VBATML}	Early Warning	_	1.85		V
(VBATHITHEN = 0)		Reset	1.70	1.75	1.77	V
Power-On Reset (POR) Threshold	V _{POR}	Rising Voltage on V_{BAT}		1.4	—	V
		Falling Voltage on V _{BAT}	0.8	1	1.3	V
V _{BAT} Ramp Time	t _{RMP}	Time to V _{BAT} ≥ 1.8 V	10		3000	μs
Reset Delay from POR	t _{POR}	Relative to V _{BAT} ≥ V _{POR}	3		100	ms
Reset Delay from non-POR source	t _{RST}	t _{RST} Time between release of reset source and code execution		10		μs
RESET Low Time to Generate Reset	t _{RSTL}		50			ns
Missing Clock Detector Response Time (final rising edge to reset)	t _{MCD}	F _{AHB} > 1 MHz		0.5	1.5	ms
Missing Clock Detector Trigger Frequency	F _{MCD}		—	2.5	10	kHz
V _{BAT} Supply Monitor Turn-On Time	t _{MON}		_	2	—	μs

Table 3.5. On-Chip Regulators (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Memory LDO Output Setting ⁵	V _{LDOMEM}	During Programming	1.8	—	1.9	V
		During Normal Operation	1.5	_	1.9	V
Digital LDO Output Setting V _{LDO}		V_{LDODIG} $F_{AHB} \le 20 \text{ MHz}$		—	1.9	V
		F _{AHB} > 20 MHz	1.2	—	1.9	V
Analog LDO Output Setting During Normal Operation ⁶	V _{LDOANA}			1.8		V

Notes:

- 1. See reference manual for recommended inductors.
- 2. Recommended: X7R or X5R ceramic capacitors with low ESR. Example: Murata GRM21BR71C225K with ESR < 10 $m\Omega$ (@ frequency > 1 MHz).

 Input voltage specification accounts for the internal LDO dropout voltage under the maximum load condition to ensure that the LDO output voltage will remain at a valid level as long as V_{LDOIN} is at or above the specified minimum.

4. The memory LDO output should always be set equal to or lower than the output of the analog LDO. When lowering both LDOs (for example to go into PM8 under low supply conditions), first adjust the memory LDO and then the analog LDO. When raising the output of both LDOs, adjust the analog LDO before adjusting the memory LDO.

5. Output range represents the programmable output range, and does not reflect the minimum voltage under all conditions. Dropout when the input supply is close to the output setting is normal, and accounted for.

6. Analog peripheral specifications assume a 1.8 V output on the analog LDO.

Table 3.9. SAR ADC

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit	
Resolution	N _{bits}	12 Bit Mode		12		Bits	
		10 Bit Mode		10		Bits	
Supply Voltage Requirements	V _{ADC}	High Speed Mode	2.2		3.8	V	
(VBAT)		Low Power Mode	1.8		3.8	V	
Throughput Rate	f _S	12 Bit Mode			250	ksps	
(High Speed Mode)		10 Bit Mode			1	Msps	
Throughput Rate	f _S	12 Bit Mode			62.5	ksps	
(Low Power Mode)		10 Bit Mode		_	250	ksps	
Tracking Time	t _{TRK}	High Speed Mode	230	_		ns	
		Low Power Mode	450	_	_	ns	
SAR Clock Frequency	f _{SAR}	High Speed Mode		_	16.24	MHz	
		Low Power Mode		_	4	MHz	
Conversion Time	t _{CNV}	10-Bit Conversion, SAR Clock = 16 MHz, APB Clock = 40 MHz		762.5			
Sample/Hold Capacitor	C _{SAR}	Gain = 1		5	_	pF	
		Gain = 0.5		2.5		pF	
Input Pin Capacitance	C _{IN}	High Quality Inputs		18	_	pF	
		Normal Inputs		20	_	pF	
Input Mux Impedance	R _{MUX}	High Quality Inputs		300	_	Ω	
		Normal Inputs		550	_	Ω	
Voltage Reference Range	V _{REF}		1		V _{BAT}	V	
Input Voltage Range*	V _{IN}	Gain = 1	0		V _{REF}	V	
		Gain = 0.5	0		$2 \mathrm{xV}_{REF}$	V	
Power Supply Rejection Ratio	PSRR _{ADC}		_	70	_	dB	
DC Performance					Lı		
Integral Nonlinearity	INL	12 Bit Mode		±1	±1.9	LSB	
		10 Bit Mode		±0.2	±0.5	LSB	
Differential Nonlinearity	DNL	12 Bit Mode	-1	±0.7	1.8	LSB	
(Guaranteed Monotonic)		10 Bit Mode		±0.2	±0.5	LSB	
Offset Error (using VREFGND)	E _{OFF}	12 Bit Mode, VREF = 2.4 V	-2	0	2	LSB	
		10 Bit Mode, VREF = 2.4 V	-1	0	1	LSB	

4. Precision32[™] SiM3L1xx System Overview

The SiM3L1xx Precision32[™] devices are fully integrated, mixed-signal system-on-a-chip MCUs. Highlighted features are listed below. Refer to Table 5.1 for specific product feature selection and part ordering numbers.

- Core:
 - 32-bit ARM Cortex-M3 CPU.
 - 50 MHz maximum operating frequency.
 - Branch target cache and prefetch buffers to minimize wait states.
- Memory: 32–256 kB flash; in-system programmable, 8–32 kB SRAM configurable to retention mode in 4 kB blocks. Blocks configured to retention mode preserve state in the low power PM8 mode.
- Power:
 - Three adjustable low drop-out (LDO) regulators.
 - DC-DC buck converter allows dynamic voltage scaling for maximum efficiency (250 mW output).
 - Power-on reset circuit and brownout detectors.
 - Power Management Unit (PMU).
 - Specialized charge pump reduces power consumption in low power modes.
 - Process/Voltage/Temperature (PVT) Monitor.
 - Register state retention in lowest power mode.
- I/O: Up to 62 contiguous 5 V tolerant I/O pins and one flexible peripheral crossbar.
- Clock Sources:
 - Internal oscillator with PLL: 23-50 MHz with ± 1.5% accuracy in free-running mode.
 - Low-power internal oscillator: 20 MHz.
 - Low-frequency internal oscillator: 16.4 kHz.
 - External RTC crystal oscillator: 32.768 kHz.
 - External oscillator: Crystal, RC, C, CMOS clock.

■ Integrated LCD Controller (4x40).

- Data Peripherals:
 - 10-Channel DMA Controller.
 - 3 x Data Transfer Managers.
 - 128/192/256-bit Hardware AES Encryption.
 - CRC with programmable 16-bit polynomial, one 32-bit polynomial, and bus snooping capability.
 - Encoder / Decoder.

Timers/Counters:

- 3 x 32-bit Timers.
- 1 x Enhanced Programmable Counter Array (EPCA).
- Real Time Clock (RTC0).
- Low Power Timer.
- Watchdog Timer.
- Low Power Mode Advanced Capture Counter (ACCTR).

Communications Peripherals:

- 1 x USART with IrDA and ISO7816 SmartCard support.
- 1 x UART that operates in low power mode (PM8).
- 2 x SPIs.
- 1 x l2C.
- Analog:
 - 1 x 12-Bit Analog-to-Digital Converter (SARADC).
 - 1 x 10-Bit Digital-to-Analog Converter (IDAC).
 - 2 x Low-Current Comparators (CMP).

On-Chip Debugging

With on-chip power-on reset, voltage supply monitor, watchdog timer, and clock oscillators, the SiM3L1xx devices are truly stand-alone system-on-a-chip solutions. The flash memory is reprogrammable in-circuit, providing non-volatile data storage and allowing field upgrades of the firmware. User firmware has complete control of all

4.1. Power

The SiM3L1xx devices include a dc-dc buck converter that can take an input from 1.8–3.8 V and create an output from 1.25–3.8 V. In addition, SiM3L1xx devices include three low dropout regulators as part of the LDO0 module: one LDO powers the analog subsystems, one LDO powers the flash and SRAM memory at 1.8 V, and one LDO powers the digital and core circuitry. Each of these regulators can be independently powered from the dc-dc converter or directly from the battery voltage, and their outputs are adjustable to conserve system power. SiM3L1xx devices also include a low power charge pump in the PMU module for use in low power modes (PM8) to further reduce the power consumption of the device.

Figure 4.2 shows the power system configuration of these devices.

Figure 4.2. SiM3L1xx Power

4.1.1. DC-DC Buck Converter (DCDC0)

SiM3L1xx devices include an on-chip step-down dc-dc converter to efficiently utilize the energy stored in the battery, thus extending the operational life time. The dc-dc converter is a switching buck converter with a programmable output voltage that should be at least 0.45 V lower than the input battery voltage; if this criteria is not met and the converter can no longer operate, the output of the dc-dc converter automatically connects to the battery. The dc-dc converter can supply up to 100 mA and can be used to power the MCU and/or external devices in the system.

The dc-dc converter has a built in voltage reference and oscillator and will automatically limit or turn off the switching activity in case the peak inductor current rises beyond a safe limit or the output voltage rises above the programmed target value. This allows the dc-dc converter output to be safely overdriven by a secondary power source (when available) in order to preserve battery life. When enabled, the dc-dc converter can source current into the output capacitor, but cannot sink current.

The dc-dc converter includes the following features:

- Efficiently utilizes the energy stored in a battery, extending its operational lifetime.
- Input range: 1.8 to 3.8 V.
- Output range: 1.25 to 3.8 V in 50 mV (1.25–1.8 V) or 100 mV (1.8–3.8 V) steps.
- Supplies up to 100 mA.
- Includes a voltage reference and an oscillator.

4.1.5.2. Power Mode 1 and Power Mode 5

Power Mode 1 and Power Mode 5 are fully operational modes with code executing from RAM. PM5 is the same as PM1, but with the clocks operating at a lower speed. This enables power to be conserved by reducing the LDO regulator outputs. Compared with the corresponding flash operational mode (Normal or PM4), the active power consumption of the device in these modes is reduced. Additionally, at higher speeds in PM1, the core throughput can also be increased because RAMdoesnot require additional wait states that reduce the instruction fetch speed.

4.1.5.3. Power Mode 2 and Power Mode 6

In Power Mode 2 and Power Mode 6, the core halts and the peripherals continue to run at the selected clock speed. PM6 is the same as PM2, but with the clocks operating at a lower speed. This enables power to be conserved by reducing the LDO regulator outputs. To place the device in PM2 or PM6, the core should execute a wait-for-interrupt (WFI) or wait-for-event (WFE) instruction. If the WFI instruction is called from an interrupt service routine, the interrupt that wakes the device from PM2 or PM6 must be of a sufficient priority to be recognized by the core. It is recommended to perform both a DSB (Data Synchronization Barrier) and an ISB (Instruction Syncronization Barrier) operation prior to the WFI to ensure all bus accesses complete. When operating from the LFOSCO, PM6 can achieve similar power consumption to PM3, but with faster wake times and the ability to wake on any interrupt.

4.1.5.4. Power Mode 3

In Power Mode 3 the core and peripheral clocks are halted. The available sources to wake from PM3 are controlled by the Power Management Unit (PMU). A special Fast Wake option allows the core to wake faster by keeping the LFOSC0 or RTC0 clock active. Because the current consumption of these blocks is minimal, it is recommended to use the fast wake option.

Before entering PM3, the DMA controller should be disabled, and the desired wake source(s) should be configured in the PMU. The SLEEPDEEP bit in the ARM System Control Register should be set, and the PMSEL bit in the CLKCTRL0_CONFIG register should be cleared to indicate that PM3 is the desired power mode. For fast wake, the core clocks (AHB and APB) should be configured to run from the LPOSC, and the PM3 Fast wake option and clock source should be selected in the PM3CN register.

The device will enter PM3 on a WFI or WFE instruction. If the WFI instruction is called from an interrupt service routine, the interrupt that wakes the device from PM3 must be of a sufficient priority to be recognized by the core. It is recommended to perform both a DSB (Data Synchronization Barrier) and an ISB (Instruction Synchronization Barrier) operation prior to the WFI to ensure all bus access is complete.

4.1.5.5. Power Mode 8

In Power Mode 8, the core and most peripherals are completely powered down, but all registers and selected RAM blocks retain their state. The LDO regulators are disabled, so all active circuitry operates directly from VBAT. Alternatively, the PMU has a specialized VBAT-divided-by-2 charge pump that can power some internal modules while in PM8 to save power. The fully operational functions in this mode are: LPTIMER0, RTC0, UART0 running from RTC0TCLK, PMU Pin Wake, the advanced capture counter, and the LCD controller.

This mode provides the lowest power consumption for the device, but requires an appropriate wake up source or reset to exit. The available wake up or reset sources to wake from PM8 are controlled by the Power Management Unit (PMU). The available wake up sources are: Low Power Timer (LPTIMER0), RTC0 (alarms and oscillator failure notification), Comparator 0 (CMP0), advanced capture counter (ACCTR0), LCD VBAT monitor (LCD0), UART0, low power mode charge pump failure, and PMU Pin Wake. The available reset sources are: RESET pin, VBAT supply monitor, Comparator 0, Comparator 1, low power mode charge pump failure, RTC0 oscillator failure, or a PMU wake event.

Before entering PM8, the desired wake source(s) should be configured in the PMU. The SLEEPDEEP bit in the ARM System Control Register should be set, and the PMSEL bit in the CLKCTRL0_CONFIG register should be set to indicate that PM8 is the desired power mode.

The device will enter PM8 on a WFI or WFE instruction, and remain in PM8 until a reset configured by the PMU occurs. It is recommended to perform both a DSB (Data Synchronization Barrier) and an ISB (Instruction Synchronization Barrier) operation prior to the WFI to ensure all bus access is complete.

4.2. I/O

4.2.1. General Features

The SiM3L1xx ports have the following features:

- 5 V tolerant.
- Push-pull or open-drain output modes to the VIO or VIORF voltage level.
- Analog or digital modes.
- Option for high or low output drive strength.
- Port Match allows the device to recognize a change on a port pin value.
- Internal pull-up resistors are enabled or disabled on a port-by-port basis.
- Two external interrupts with up to 16 inputs each provide monitoring capability for external signals.
- Internal Pulse Generator Timer (PB0 only) to generate simple square waves and pulses.

4.2.2. Crossbar

The SiM3L1xx devices have one crossbar with the following features:

- Flexible peripheral assignment to port pins.
- Pins can be individually skipped to move peripherals as needed for design or layout considerations.

The crossbar has a fixed priority for each I/O function and assigns these functions to the port pins. When a digital resource is selected, the least-significant unassigned port pin is assigned to that resource. If a port pin is assigned, the crossbar skips that pin when assigning the next selected resource. Additionally, the crossbar will skip port pins whose associated bits in the PBSKIPEN registers are set. This provides flexibility when designing a system: pins involved with sensitive analog measurements can be moved away from digital I/O, and peripherals can be moved around the chip as needed to ease layout constraints.

4.3.1. PLL (PLL0)

The PLL module consists of a dedicated Digitally-Controlled Oscillator (DCO) that can be used in Free-Running mode without a reference frequency, Frequency-Locked to a reference frequency, or Phase-Locked to a reference frequency. The reference frequency for Frequency-Lock and Phase-Lock modes can use one of multiple sources (including the external oscillator) to provide maximum flexibility for different application needs. Because the PLL module generates its own clock, the DCO can be locked to a particular reference frequency and then moved to Free-Running mode to reduce system power and noise.

The PLL module includes the following features:

- Three output ranges with output frequencies ranging from 23 to 50 MHz.
- Multiple reference frequency inputs, including the RTC0 oscillator, Low Power Oscillator, and external oscillator.
- Three output modes: Free-Running Digitally-Controlled Oscillator, Frequency-Locked, and Phase-Locked.
- Able to sense the rising edge or falling edge of the reference source.
- DCO frequency LSB dithering to provide finer average output frequencies.
- Spectrum spreading to reduce generated system noise.
- Low jitter and fast lock times.\
- All output frequency updates (including dithering and spectrum spreading) can be temporarily suspended using the STALL bit during noise-sensitive measurements.

4.3.2. Low Power Oscillator (LPOSC0)

The Low Power Oscillator is the default AHB oscillator on SiM3L1xx devices and enables or disables automatically, as needed.

The default output frequency of this oscillator is factory calibrated to 20 MHz, and a divided 2.5 MHz version of this clock is also available as an AHB clock source.

The Low Power Oscillator has the following features:

- 20 MHz and divided 2.5 MHz frequencies available for the AHB clock.
- Automatically starts and stops as needed.

4.3.3. Low Frequency Oscillator (LFOSC0)

The low frequency oscillator (LFOSC) provides a low power internal clock source for the RTC0 timer and other peripherals on the device. No external components are required to use the low frequency oscillator, and the RTC1 and RTC2 pins do not need to be shorted together.

The Low Frequency Oscillator has the following features:

■ 16.4 kHz output frequency.

4.3.4. External Oscillators (EXTOSC0)

The EXTOSC0 external oscillator circuit may drive an external crystal, ceramic resonator, capacitor, or RC network. A CMOS clock may also provide a clock input. The external oscillator output may be selected as the AHB clock or used to clock other modules independent of the AHB clock selection.

The External Oscillator control has the following features:

- Support for external crystal, resonator, RC, C, or CMOS oscillators.
- Support for external CMOS frequencies from 10 kHz to 50 MHz.
- Support for external crystal frequencies from 10 kHz to 25 MHz.
- Various drive strengths for flexible crystal oscillator support.
- Internal frequency divide-by-two option available.

4.4. Integrated LCD Controller (LCD0)

SiM3L1xx devices contain an LCD segment driver and on-chip bias generation that supports static, 2-mux, 3-mux and 4-mux LCDs with 1/2 or 1/3 bias. The on-chip charge pump with programmable output voltage allows software contrast control which is independent of the supply voltage. LCD timing is derived from the RTC timer clock (RTC0TCLK) to allow precise control over the refresh rate.

The SiM3L1xx devices use registers to store the enabled/disabled state of individual LCD segments. All LCD waveforms are generated on-chip based on the contents of these registers with flexible waveform control to reduce power consumption wherever possible. An LCD blinking function is also supported on a subset of LCD segments.

The LCD0 module has the following features:

- Up to 40 segment pins and 4 common pins.
- Supports LCDs with 1/2 or 1/3 bias.
- Includes an on-chip charge pump with programmable output that allows firmware to control the contrast independent of the supply voltage.
- The RTC timer clock (RTC0TCLK) determines the LCD timing and refresh rate.
- All LCD waveforms are generated on-chip based on the contents of the LCD0 registers with flexible waveform control.
- LCD segments can be placed in a discharge state for a configurable number of RTC clock cycles before switching to the next state to reduce power consumption due to display loading.
- Includes a VBAT monitor that can serve as a wakeup source for Power Mode 8.
- Supports four hardware auto-contrast modes: bypass, constant, minimum, and auto-bypass.
- Supports hardware blinking for up to 8 segments.

4.8. Analog

4.8.1. 12-Bit Analog-to-Digital Converter (SARADC0)

The SARADC0 module on SiM3L1xx devices implements the Successive Approximation Register (SAR) ADC architecture. The key features of the module are as follows:

- Single-ended 12-bit and 10-bit modes.
- Supports an output update rate of 250 k samples per second in 12-bit mode or 1 M samples per second in 10-bit mode.
- Operation in low power modes at lower conversion speeds.
- Selectable asynchronous hardware conversion trigger with hardware channel select.
- DC offset cancellation.
- Automatic result notification with multiple programmable thresholds.
- Support for Burst Mode, which produces one set of accumulated data per conversion-start trigger with programmable power-on settling and tracking time.
- Non-burst mode operation can also automatically accumulate multiple conversions, but a conversion start is required for each conversion.
- Conversion complete, multiple conversion complete, and FIFO overflow and underflow flags and interrupts supported.
- Flexible output data formatting.
- Sequencer allows up to eight sources to be automatically scanned using one of four channel characteristic profiles without software intervention.
- Eight-word conversion data FIFO for DMA operations.
- Includes two internal references (1.65 V fast-settling, 1.2/2.4 V precision), support for an external reference, and support for an external signal ground.

4.8.2. 10-Bit Digital-to-Analog Converter (IDAC0)

The IDAC module takes a digital value as an input and outputs a proportional constant current on a pin. The IDAC module includes the following features:

- 10-bit current DAC with support for four timer, up to seven external I/O and on demand output update triggers.
- Ability to update on rising, falling, or both edges for any of the external I/O trigger sources.
- Supports an output update rate greater than 600 k samples per second.
- Support for three full-scale output modes: 0.5 mA, 1.0 mA and 2.0 mA.
- Four-word FIFO to aid with high-speed waveform generation or DMA interactions.
- Individual FIFO overrun, underrun, and went-empty interrupt status sources.
- Support for multiple data packing formats, including: single 10-bit sample per word, dual 10-bit samples per word, or four 8-bit samples per word.
- Support for left- and right-justified data.

4.8.3. Low Current Comparators (CMP0, CMP1)

The Comparators take two analog input voltages and output the relationship between these voltages (less than or greater than) as a digital signal. The low power comparator module includes the following features:

- Multiple sources for the positive and negative inputs, including VBAT, VREF, and 8 I/O pins.
- Two outputs available: a digital synchronous latched output and a digital asynchronous raw output.
- Programmable hysteresis and response time.
- Falling or rising edge interrupt options on the comparator output.
- 6-bit programmable reference divider.

4.9. Reset Sources

Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this reset state, the following occur:

- The core halts program execution.
- Module registers are initialized to their defined reset values unless the bits reset only with a power-on reset.
- External port pins are forced to a known state.
- Interrupts and timers are disabled.
- AHB peripheral clocks to flash and RAM are enabled.
- Clocks to all APB peripherals other than the Watchdog Timer and DMAXBAR are disabled.

All registers are reset to the predefined values noted in the register descriptions unless the bits only reset with a power-on reset. The contents of RAM are unaffected during a reset; any previously stored data is preserved as long as power is not lost.

The Port I/O latches are reset to 1 in open-drain mode. Weak pullups are enabled during and after the reset. For VBAT Supply Monitor and power-on resets, the RESET pin is driven low until the device exits the reset state.

On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to the internal lowpower oscillator. The Watchdog Timer is enabled with the low frequency oscillator as its clock source. Program execution begins at location 0x00000000.

All RSTSRC0 registers may be locked against writes by setting the CLKRSTL bit in the LOCK0_PERIPHLOCK0 register to 1.

The reset sources can also optionally reset individual modules, including the low power mode charge pump, UART0, LCD0, advanced capture counter (ACCTR0), and RTC0.

Pin Name	Туре	Pin Numbers (TQFP-80)	I/O Voltage Domain	Crossbar Capability	Port Match	LCD Interface	Output Toggle Logic	External Trigger Inputs / Digital Functions	Analog Functions
PB0.0	Standard I/O	4	VIO	~	~		~	INT0.0 WAKE.0	ADC0.20 VREF CMP0P.0
PB0.1	Standard I/O	3	VIO	~	~		~	INT0.1 WAKE.1	ADC0.21 VREFGND CMP0N.0
PB0.2	Standard I/O	2	VIO	~	~		~	INT0.2 WAKE.2	ADC0.22 CMP1P.0 XTAL2
PB0.3	Standard I/O	1	VIO	V	V		~	INT0.3 WAKE.3	ADC0.23 CMP1N.0 XTAL1
PB0.4	Standard I/O	80	VIO	V	V		~	INT0.4 WAKE.4	ADC0.0 CMP0P.1 IDAC0
PB0.5	Standard I/O	79	VIO	~	~		\checkmark	INT0.5 WAKE.5 ACCTR0_STOP0	ACCTR0_IN0
PB0.6	Standard I/O	78	VIO	V	V		\checkmark	INT0.6 WAKE.6 ACCTR0_STOP1	ACCTR0_IN1
PB0.7	Standard I/O	77	VIO	~	~		\checkmark	INT0.7 WAKE.7	ACCTR0_LCIN0
PB0.8	Standard I/O	76	VIO	~	~		~	LPT0T0 LPT0OUT0 INT0.8 WAKE.8	ACCTR0_LCIN1

Table 6.1. Pin Definitions and Alternate Functions for SiM3L1x7 (Continued)

Pin Name	Туре	Pin Numbers (TQFP-80)	I/O Voltage Domain	Crossbar Capability	Port Match	LCD Interface	Output Toggle Logic	External Trigger Inputs / Digital Functions	Analog Functions
PB3.4	Standard I/O	43	VIO	\checkmark	\checkmark	LCD0.23		INT1.12	CMP0P.6
PB3.5	Standard I/O	42	VIO	V	\checkmark	LCD0.22		INT1.13	CMP0N.6
PB3.6	Standard I/O	41	VIO	~	\checkmark	LCD0.21		INT1.14	CMP1P.6
PB3.7	Standard I/O	40	VIO	V	~	LCD0.20		INT1.15	CMP1N.6
PB3.8	Standard I/O	39	VIO		\checkmark	LCD0.19			CMP0P.7
PB3.9	Standard I/O	38	VIO		\checkmark	LCD0.18			CMP0N.7
PB3.10	Standard I/O	37	VIO		\checkmark	LCD0.17			CMP1P.7
PB3.11	Standard I/O	36	VIO		\checkmark	LCD0.16			CMP1N.7
PB3.12	Standard I/O	35	VIO		\checkmark	LCD0.15			ADC0.18
PB3.13	Standard I/O	34	VIO		\checkmark	LCD0.14			ADC0.19
PB3.14	Standard I/O	33	VIO		V	COM0.3			
PB3.15	Standard I/O	32	VIO		V	COM0.2			
PB4.0	Standard I/O	29	VIO		\checkmark	COM0.1			
PB4.1	Standard I/O	28	VIO		\checkmark	COM0.0			
PB4.2	Standard I/O	27	VIO		\checkmark	LCD0.13			
PB4.3	Standard I/O	26	VIO		\checkmark	LCD0.12			
PB4.4	Standard I/O	25	VIO		\checkmark	LCD0.11			
PB4.5	Standard I/O	24	VIO		\checkmark	LCD0.10			
PB4.6	Standard I/O	23	VIO		\checkmark	LCD0.9		PMU_Asleep	
PB4.7	Standard I/O	22	VIO		\checkmark	LCD0.8			
PB4.8	Standard I/O	21	VIO		\checkmark	LCD0.7			

Table 6.1. Pin Definitions and Alternate Functions for SiM3L1x7 (Continued)

6.2. SiM3L1x6 Pin Definitions

Figure 6.2. SiM3L1x6-GQ Pinout

Pin Name	Туре	Pin Numbers	I/O Voltage Domain	Crossbar Capability	Port Match	LCD Interface	Output Toggle Logic	External Trigger Inputs / Digital Functions	Analog Functions
PB1.1	Standard I/O	52	VIO	XBR 0	\checkmark	LCD0.30		LPT0T5 INT0.13 ACCTR0_LCBIAS1	CMP0N.2
PB1.2	Standard I/O	51	VIO	XBR 0	~	LCD0.29		LPT0T6 INT0.14 UART0_TX	CMP1P.2
PB1.3	Standard I/O	50	VIO	XBR 0	~	LCD0.28		LPT0T7 INT0.15 UART0_RX	CMP1N.2
PB1.4	Standard I/O	49	VIO	XBR 0	~	LCD0.27		ACCTR0_DBG0	ADC0.3
PB1.5	Standard I/O	48	VIO	XBR 0	\checkmark	LCD0.26		ACCTR0_DBG1	ADC0.4
PB1.6	Standard I/O	47	VIO	XBR 0	\checkmark	LCD0.25		RTC0TCLK_OUT	ADC0.5
PB1.7	Standard I/O	46	VIO	XBR 0	\checkmark	LCD0.24			CMP0P.3
PB1.8	Standard I/O	45	VIO	XBR 0	\checkmark	LCD0.23			CMP0N.3
PB1.9	Standard I/O	44	VIO	XBR 0	~	LCD0.22			CMP1P.3
PB1.10	Standard I/O	43	VIO	XBR 0	\checkmark	LCD0.21			CMP1N.3
PB2.0	Standard I/O	42	VIOR F	XBR 0				LPT0T8 INT1.0 WAKE.12 SPI1_CTS	ADC0.6 CMP0P.4
PB2.4	Standard I/O	40	VIOR F	XBR 0	~			LPT0T12 INT1.4 SPI1_SCLK	ADC0.7 CMP0P.5

Table 6.2. Pin Definitions and Alternate Functions for SiM3L1x6 (Continued)

Pin Name	Туре	Pin Numbers	I/O Voltage Domain	Crossbar Capability	Port Match	LCD Interface	Output Toggle Logic	External Trigger Inputs / Digital Functions	Analog Functions
PB4.0	Standard I/O	24	VIO		~	COM0.1			
PB4.1	Standard I/O	23	VIO		\checkmark	COM0.0			
PB4.2	Standard I/O	22	VIO		~	LCD0.10			ADC0.19
PB4.3	Standard I/O	21	VIO		~	LCD0.9			
PB4.4	Standard I/O	20	VIO		~	LCD0.8			
PB4.5	Standard I/O	19	VIO		~	LCD0.7			
PB4.6	Standard I/O	18	VIO		~	LCD0.6		PMU_Asleep	
PB4.7	Standard I/O	17	VIO		~	LCD0.5			
PB4.8/ETM3	Standard I/O / ETM	16	VIO		~	LCD0.4			
PB4.9/ETM2	Standard I/O / ETM	15	VIO		V	LCD0.3			
PB4.10/ ETM1	Standard I/O / ETM	14	VIO		~	LCD0.2			
PB4.11/ ETM0	Standard I/O / ETM	13	VIO		~	LCD0.1			
PB4.12/ TRACECLK	Standard I/O / ETM	12	VIO		~	LCD0.0			

Table 6.2. Pin Definitions and Alternate Functions for SiM3L1x6 (Continued)

Pin Name	Туре	Pin Numbers	I/O Voltage Domain	Crossbar Capability	Port Match	Output Toggle Logic	External Trigger Inputs / Digital Functions	Analog Functions
VSS	Ground	9 25						
VSSDC	Ground (DC-DC)	9						
VIO	Power (I/O)	5						
VIORF / VDRV	Power (RF I/O)	6						
VBAT / VBATDC		7						
VDC		10						
IND	DC-DC Inductor	8						
RESET	Active-low Reset	35						
SWCLK	Serial Wire	4						
SWDIO	Serial Wire	3						
RTC1	RTC Oscillator Input	34						
RTC2	RTC Oscillator Output	33						
PB0.0	Standard I/O	2	VIO	XBR0	~	~	INT0.0 WAKE.0	ADC0.20 VREF CMP0P.0
PB0.1	Standard I/O	1	VIO	XBR0	~	~	INT0.1 WAKE.2	ADC0.22 CMP0N.0 CMP1P.0 XTAL2

 Table 6.3. Pin Definitions and Alternate Functions for SiM3L1x4

Figure 6.5. TQFP-80 Package Drawing

6.7.1. QFN-40 Solder Mask Design

All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μ m minimum, all the way around the pad.

6.7.2. QFN-40 Stencil Design

- 1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 2. The stencil thickness should be 0.125 mm (5 mils).
- 3. The ratio of stencil aperture to land pad size should be 1:1 for all pads.
- 4. A 3x3 array of 1.1 mm square openings on a 1.6 mm pitch should be used for the center ground pad.

6.7.3. QFN-40 Card Assembly

- 1. A No-Clean, Type-3 solder paste is recommended.
- 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

