

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	62
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 24x10/12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/sim3l157-c-gqr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		40
	4.7.2. UART (UARTO)	.48
	4.7.3. SPI (SPI0, SPI1)	.49
	4.7.4. I2C (I2C0)	.49
	4.8. Analog	.50
	4.8.1. 12-Bit Analog-to-Digital Converter (SARADC0)	.50
	4.8.2. 10-Bit Digital-to-Analog Converter (IDAC0)	.50
	4.8.3. Low Current Comparators (CMP0, CMP1)	.50
	4.9. Reset Sources	.51
	4.10.Security	.52
	4.11.On-Chip Debugging	.52
5.	Ordering Information	.53
6.	Pin Definitions	.55
	6.1. SiM3L1x7 Pin Definitions	.55
	6.2. SiM3L1x6 Pin Definitions	.62
	6.3. SiM3L1x4 Pin Definitions	.69
	6.4. TQFP-80 Package Specifications	.74
	6.4.1. TQFP-80 Solder Mask Design	.77
	6.4.2. TQFP-80 Stencil Design	.77
	6.4.3. TQFP-80 Card Assembly	.77
	6.5. QFN-64 Package Specifications	.78
	6.5.1. QFN-64 Solder Mask Design	.80
	6.5.2. QFN-64 Stencil Design	.80
	6.5.3. QFN-64 Card Assembly	.80
	6.6. TQFP-64 Package Specifications	.81
	6.6.1. TQFP-64 Solder Mask Design	.84
	6.6.2. TQFP-64 Stencil Design	.84
	6.6.3. TQFP-64 Card Assembly	.84
	6.7. QFN-40 Package Specifications	.85
	6.7.1. QFN-40 Solder Mask Design	.87
	6.7.2. QFN-40 Stencil Design	.87
	6.7.3. QFN-40 Card Assembly	.87
7.	Revision Specific Behavior	.88
	7.1. Revision Identification	.88
Do	cument Change List	.90
Co	ontact Information	.91

Table 3.2. Power Consumption

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Digital Core Supply Current	-		1	+	<u> </u>	
Normal Mode ^{1,2,3,4} —Full speed with code executing from flash,	I _{BAT}	F _{AHB} = 49 MHz, F _{APB} = 24.5 MHz	_	17.5	18.9	mA
peripheral clocks UN		F _{AHB} = 20 MHz, F _{APB} = 10 MHz	—	6.7	7.2	mA
		F _{AHB} = 2.5 MHz, F _{APB} = 1.25 MHz	—	1.15	1.4	mA
Normal Mode ^{1,2,3,4} —Full speed with code executing from flash,	I _{BAT}	F _{AHB} = 49 MHz, F _{APB} = 24.5 MHz	—	13.3	14.5	mA
peripheral clocks OFF		F _{AHB} = 20 MHz, F _{APB} = 10 MHz	_	5.4	5.9	mA
		F _{AHB} = 2.5 MHz, F _{APB} = 1.25 MHz	_	980	1.2	μA
Normal Mode ^{1,2,3,4} —Full speed with code executing from flash, LDOs powered by dc-dc at 1.9 V,	I _{BAT}	F _{AHB} = 49 MHz, F _{APB} = 24.5 MHz V _{BAT} = 3.3 V		9.7		mA
periprieral clocks OFF		F _{AHB} = 49 MHz, F _{APB} = 24.5 MHz V _{BAT} = 3.8 V		8.65		mA
		F _{AHB} = 20 MHz, F _{APB} = 10 MHz V _{BAT} = 3.3 V		4.15	_	mA
		F _{AHB} = 20 MHz, F _{APB} = 10 MHz V _{BAT} = 3.8 V		3.9		mA

Notes:

1. Currents are additive. For example, where I_{BAT} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.

2. Includes all peripherals that cannot have clocks gated in the Clock Control module.

- 3. Includes LDO and PLL0OSC (>20 MHz) or LPOSC0 (<20 MHz) supply current.
- **4.** Internal Digital and Memory LDOs scaled to optimal output voltage.
- 5. Flash AHB clock turned off.
- 6. Running from internal LFO, Includes LFO supply current.
- 7. LCD0 current does not include switching currents for external load.
- 8. IDAC output current not included.
- 9. Does not include LC tank circuit.
- Does not include digital drive current or pullup current for active port I/O. Unloaded I_{VIO} is included in all I_{BAT} PM8 production test measurements.

Table 3.2. Power Consumption (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Power Mode 2 ^{1,2,3,4,5} —Core halted with only Port I/O clocks on (wake	I _{BAT}	F _{AHB} = 49 MHz, F _{APB} = 24.5 MHz	_	4	7.2	mA
from pin).		F _{AHB} = 20 MHz, F _{APB} = 10 MHz	_	1.47		mA
		F _{AHB} = 2.5 MHz, F _{APB} = 1.25 MHz	_	430		μA
Power Mode 3 ^{1,2,6} —Fast-Wake	I _{BAT}	V _{BAT} = 3.8 V	_	320	530	μA
Mode (PM3CLKEN = 1)		V _{BAT} = 1.8 V	_	225	_	μA
Power Mode 4 ^{1,2,4,6} —Slower clock speed with code executing from	I _{BAT}	$F_{AHB} = F_{APB} = 16 \text{ kHz},$ $V_{BAT} = 3.8 \text{ V}$	—	385	640	μA
flash, peripheral clocks ON		$F_{AHB} = F_{APB} = 16 \text{ kHz},$ $V_{BAT} = 1.8 \text{ V}$	_	330		μA
Power Mode 5 ^{1,2,4,6} —Slower clock speed with code executing from	I _{BAT}	$F_{AHB} = F_{APB} = 16 \text{ kHz},$ $V_{BAT} = 3.8 \text{ V}$	_	320	490	μA
RAM, peripheral clocks ON		F _{AHB} = F _{APB} = 16 kHz, V _{BAT} = 1.8 V	—	275	_	μA
Power Mode 6 ^{1,2,4,6} —Core halted with peripheral clocks ON	I _{BAT}	$F_{AHB} = F_{APB} = 16 \text{ kHz},$ $V_{BAT} = 3.8 \text{ V}$		315	490	μA
		$F_{AHB} = F_{APB} = 16 \text{ kHz},$ $V_{BAT} = 1.8 \text{ V}$	_	270	—	μA
Power Mode 8 ^{1,2} —Low Power Sleep, powered through VBAT,	I _{BAT}	RTC Disabled, T _A = 25 °C	—	75	400	nA
retention RAM		RTC w/ 16.4 kHz LFO, T _A = 25 °C	_	360	_	nA
		RTC w/ 32.768 kHz Crystal, T _A = 25 °C	—	670		nA

Notes:

1. Currents are additive. For example, where I_{BAT} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.

2. Includes all peripherals that cannot have clocks gated in the Clock Control module.

3. Includes LDO and PLL0OSC (>20 MHz) or LPOSC0 (<20 MHz) supply current.

4. Internal Digital and Memory LDOs scaled to optimal output voltage.

5. Flash AHB clock turned off.

- 6. Running from internal LFO, Includes LFO supply current.
- 7. LCD0 current does not include switching currents for external load.

8. IDAC output current not included.

9. Does not include LC tank circuit.

Does not include digital drive current or pullup current for active port I/O. Unloaded I_{VIO} is included in all I_{BAT} PM8 production test measurements.

Table 3.2. Power Consumption (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Advanced Capture Counter (ACCTR0), LC Dual or Quadrature	I _{ACCTR}	V _{BAT} = 2.4 V, T _A = 25 °C, CPMD = 01		1.39		nA/Hz
Mode, Relative to Sampling Fre- quency ⁹		V _{BAT} = 3.8 V, T _A = 25 °C, CPMD = 01		1.89	_	nA/Hz
		V _{BAT} = 2.4 V, T _A = 25 °C, CPMD = 10		2.08	_	nA/Hz
		V _{BAT} = 3.8 V, T _A = 25 °C, CPMD = 10		2.59	_	nA/Hz
		V _{BAT} = 2.4 V, T _A = 25 °C, CPMD = 11		3.47	_	nA/Hz
		V _{BAT} = 3.8 V, T _A = 25 °C, CPMD = 11		4.03	_	nA/Hz
Analog Peripheral Supply Current	S					
PLL0 Oscillator (PLL0OSC)	I _{PLLOSC}	Operating at 49 MHz		1.4	1.6	mA
Low-Power Oscillator (LPOSC0)	I _{LPOSC}	Operating at 20 MHz	_	25		μA
		Operating at 2.5 MHz	_	25		μA
Low-Frequency Oscillator (LFOSC0)	I _{LFOSC}	Operating at 16.4 kHz		190	310	nA
External Oscillator (EXTOSC0)	I _{EXTOSC}	FREQCN = 111	_	3.8	4.5	mA
		FREQCN = 110	_	840	960	μA
		FREQCN = 101		185	230	μA
		FREQCN = 100		65	80	μA
		FREQCN = 011	_	25	30	μA
		FREQCN = 010		10	13	μA
		FREQCN = 001		5	7	μA
		FREQCN = 000		3	5	μA

Notes:

1. Currents are additive. For example, where I_{BAT} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.

2. Includes all peripherals that cannot have clocks gated in the Clock Control module.

3. Includes LDO and PLL0OSC (>20 MHz) or LPOSC0 (≤20 MHz) supply current.

4. Internal Digital and Memory LDOs scaled to optimal output voltage.

5. Flash AHB clock turned off.

- 6. Running from internal LFO, Includes LFO supply current.
- 7. LCD0 current does not include switching currents for external load.
- 8. IDAC output current not included.
- 9. Does not include LC tank circuit.

Does not include digital drive current or pullup current for active port I/O. Unloaded I_{VIO} is included in all I_{BAT} PM8 production test measurements.

Table 3.2. Power Consumption (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
SARADC0	ISARADC	Sampling at 1 Msps, Internal VREF used	_	1.2	1.6	mA
		Sampling at 250 ksps, lowest power mode settings.		390	540	μA
Temperature Sensor	I _{TSENSE}		-	75	110	μA
Internal SAR Reference	I _{REFFS}	Normal Power Mode	_	680	—	μΑ
		Normal Power Mode	_	160	—	μA
VREF0	I _{REFP}			80	_	μA
Comparator 0 (CMP0),	I _{CMP}	CMPMD = 11	-	0.5	2	μA
Comparator 1 (CMP1)		CMPMD = 10	-	3	8	μA
		CMPMD = 01	-	10	16	μA
	1	CMPMD = 00		25	42	μA
IDAC0 ⁸	I _{IDAC}			70	100	μA
Voltage Supply Monitor (VMON0)	I _{VMON}		<u> </u>	10	22	μA
Flash Current on VBAT	<u> </u>					<u>.</u>
Write Operation	I _{FLASH-W}		-	_	8	mA
Erase Operation	I _{FLASH-E}		-	-	15	mA
Notes:	- -					

1. Currents are additive. For example, where I_{BAT} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.

- 2. Includes all peripherals that cannot have clocks gated in the Clock Control module.
- 3. Includes LDO and PLL0OSC (>20 MHz) or LPOSC0 (<20 MHz) supply current.
- 4. Internal Digital and Memory LDOs scaled to optimal output voltage.
- 5. Flash AHB clock turned off.
- 6. Running from internal LFO, Includes LFO supply current.
- 7. LCD0 current does not include switching currents for external load.
- 8. IDAC output current not included.
- 9. Does not include LC tank circuit.
- 10. Does not include digital drive current or pullup current for active port I/O. Unloaded IVIO is included in all IBAT PM8 production test measurements.

Table 3.7. Internal Oscillators

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Phase-Locked Loop (PLL0OSC)					L	
Calibrated Output Frequency (Free-running output mode, RANGE = 2)	f _{PLL0OSC}	Full Temperature and Supply Range	48.3	49	49.7	MHz
Power Supply Sensitivity (Free-running output mode, RANGE = 2)	PSS _{PLL0OSC}	T _A = 25 °C, Fout = 49 MHz		300		ppm/V
Temperature Sensitivity (Free-running output mode, RANGE = 2)	TS _{PLL0OSC}	V _{BAT} = 3.3 V, Fout = 49 MHz		50		ppm/°C
Adjustable Output Frequency Range	f _{PLL0OSC}		23	—	50	MHz
Lock Time	^t PLLOLOCK	f _{REF} = 20 MHz, f _{PLL0OSC} = 50 MHz M=39, N=99, LOCKTH = 0		2.75		μs
		f _{REF} = 2.5 MHz, f _{PLL0OSC} = 50 MHz M=19, N=399, LOCKTH = 0		9.45		μs
		f _{REF} = 32.768 kHz, f _{PLL0OSC} = 50 MHz M=0, N=1524, LOCKTH = 0		92		μs
Low Power Oscillator (LPOSC0)						<u>.</u>
Oscillator Frequency	f _{LPOSC}	Full Temperature and Supply Range	19	20	21	MHz
Divided Oscillator Frequency	f _{LPOSCD}	Full Temperature and Supply Range	2.375	2.5	2.625	MHz
Power Supply Sensitivity	PSS _{LPOSC}	T _A = 25 °C		0.5	_	%/V
Temperature Sensitivity	TS _{LPOSC}	V _{BAT} = 3.3 V	_	55		ppm/°C
Low Frequency Oscillator (LFOS	C0)					
Oscillator Frequency	f _{LFOSC}	Full Temperature and Supply Range	13.4	16.4	19.7	kHz
		T _A = 25 °C, V _{BAT} = 3.3 V	15.8	16.4	17.3	kHz
Power Supply Sensitivity	PSS _{LFOSC}	T _A = 25 °C	_	2.4		%/V
Temperature Sensitivity	TS _{LFOSC}	V _{BAT} = 3.3 V		0.2		%/°C

Table 3.7. Internal Oscillators (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
RTC0 Oscillator (RTC0OSC)						
Missing Clock Detector Trigger Frequency	f _{RTCMCD}		_	8	15	kHz
RTC External Input CMOS Clock Frequency	f _{RTCEXTCLK}		0		40	kHz
RTC Robust Duty Cycle Range	DC _{RTC}		25	—	55	%

Table 3.8. External Oscillator

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit				
External Input CMOS Clock Frequency	f _{CMOS}		0*		50	MHz				
External Crystal Frequency	f _{XTAL}		0.01	_	25	MHz				
External Input CMOS Clock High Time	t _{CMOSH}		9		_	ns				
External Input CMOS Clock Low Time	t _{CMOSL}		9	—	—	ns				
Low Power Mode Charge Pump Supply Range (input from V _{BAT})	V _{BAT}		2.4		3.8	V				
*Note: Minimum of 10 kHz when debugging	*Note: Minimum of 10 kHz when debugging.									

Table 3.11. ACCTR (Advanced Capture Counter) (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
LC Comparator Positive Hysteresis	HYS _{CP+}	CMPHYP = 00		1.37		mV
Mode 3 (CPMD = 00)		CMPHYP = 01	_	3.8		mV
		CMPHYP = 10	_	7.8		mV
		CMPHYP = 11	_	15.6		mV
LC Comparator Negative Hysteresis	HYS _{CP-}	CMPHYN = 00	_	1.37		mV
Mode 3 (CPMD = 00)		CMPHYN = 01	_	-3.9		mV
		CMPHYN = 10	—	-7.9		mV
		CMPHYN = 11	_	-16		mV
LC Comparator Input Range (ACCTR0_LCIN pin)	V _{IN}		-0.25	_	V _{BAT} + 0.25	V
LC Comparator Common-Mode Rejection Ratio	CMRR _{CP}		—	75	_	dB
LC Comparator Power Supply Rejec- tion Ratio	PSRR _{CP}		—	72	—	dB
LC Comparator Input Offset Voltage	V _{OFF}	T _A = 25 °C	-10	0	10	mV
LC Comparator Input Offset Tempco	TC _{OFF}		—	3.5	—	µV/°C
Reference DAC Offset Error	DAC_{EOFF}		-1		1	LSB
Reference DAC Full Scale Output	DAC_{FS}	Low Range	—	V _{IO} /8	—	V
		High Range	—	V _{IO}	_	V
Reference DAC Step Size	DAC _{LSB}	Low Range (48 steps)	—	V _{IO} /384		V
		High Range (64 steps)	—	V _{IO} /64		V
LC Oscillator Period	T _{LCOSC}		—	25		ns
LC Bias Output Impedance	R _{LCBIAS}	10 µA Load	—	1		kΩ
LC Bias Drive Strength	I _{LCBIAS}		—		2	mA
Pull-Up Resistor Tolerance	R _{TOL}	PUVAL[4:2] = 0 to 6	-15	_	15	%
		PUVAL[4:2] = 7	-10	_	10	%

peripherals and may individually shut down and gate the clocks of any or all peripherals for power savings.

The on-chip debugging interface (SWJ-DP) allows non-intrusive (uses no on-chip resources), full speed, in-circuit debugging using the production MCU installed in the final application. This debug logic supports inspection and modification of memory and registers, setting breakpoints, single stepping, and run and halt commands. All analog and digital peripherals are fully functional while debugging.

Each device is specified for 1.8 to 3.8 V operation over the industrial temperature range (-40 to +85 °C). The SiM3L1xx devices are available in 40-pin or 64-pin QFN and 64-pin or 80-pin TQFP packages. All package options are lead-free and RoHS compliant. See Table 5.1 for ordering information. A block diagram is included in Figure 4.1.

Figure 4.1. Precision32[™] SiM3L1xx Family Block Diagram

4.1.5.6. Power Mode Summary

The power modes described above are summarized in Table 4.1. Table 3.2 and Table 3.3 provide more information on the power consumption and wake up times for each mode.

Mode	Description	Notes
Normal	Core operating at full speedCode executing from flash	 Full device operation
Power Mode 1 (PM1)	Core operating at full speedCode executing from RAM	 Full device operation Higher CPU bandwidth than PM0 (RAM can operate with zero wait states at any frequency)
Power Mode 2 (PM2)	 Core halted AHB, APB and all peripherals operational at full speed 	 Fast wakeup from any interrupt source
Power Mode 3 (PM3)	 All clocks to core and peripherals stopped Faster wake enabled by keeping LFOSC0 or RTC0TCLK active 	 Wake on any wake source or reset source defined in the PMU
Power Mode 4 (PM4)	Core operating at low speedCode executing from flash	 Same capabilities as PM0, operating at lower speed Lower clock speed enables lower LDO output settings to save power
Power Mode 5 (PM5)	Core operating at low speedCode executing from RAM	 Same capabilities as PM1, operating at lower speed Lower clock speed enables lower LDO output settings to save power
Power Mode 6 (PM6)	 Core halted AHB, APB and all peripherals operational at low speed 	 Same capabilities as PM2, operating at lower speed Lower clock speed enables lower LDO output settings to save power When running from LFOSC0, power is similar to PM3, but the device wakes much faster
Power Mode 8 (PM8)	 Low power sleep LDO regulators are disabled and all active circuitry operates directly from VBAT The following functions are available: ACCTR0, RTC0, UART0 running from RTC0TCLK, LPTIMER0, port match, and the LCD controller Register and RAM state retention 	 Lowest power consumption Wake on any wake source or reset source defined in the PMU

Table 4.1. SiM3L1xx Power Modes

4.1.6. Process/Voltage/Temperature Monitor (TIMER2 and PVTOSC0)

The Process/Voltage/Temperature monitor consists of two modules (TIMER2 and PVTOSC0) designed to monitor the digital circuit performance of the SiM3L1xx device.

The PVT oscillator (PVTOSC0) consists of two oscillators, one operating from the memory LDO and one operating from the digital LDO. These oscillators have two independent speed options and provide the clocks for two 16-bit timers in the TIMER2 module using the EX input. By monitoring the resulting counts of the TIMER2 timers, firmware can monitor the current device performance and increase the scalable LDO regulator (LDO0) output voltages as needed or decrease the output voltages to save power.

The PVT monitor has the following features:

- Two separate oscillators and timers for the memory and digital logic voltage domains.
- Two oscillator output divider settings.
- Provides a method for monitoring digital performance to allow firmware to adjust the scalable LDO regulator output voltages to the lowest level possible, saving power.

4.4. Integrated LCD Controller (LCD0)

SiM3L1xx devices contain an LCD segment driver and on-chip bias generation that supports static, 2-mux, 3-mux and 4-mux LCDs with 1/2 or 1/3 bias. The on-chip charge pump with programmable output voltage allows software contrast control which is independent of the supply voltage. LCD timing is derived from the RTC timer clock (RTC0TCLK) to allow precise control over the refresh rate.

The SiM3L1xx devices use registers to store the enabled/disabled state of individual LCD segments. All LCD waveforms are generated on-chip based on the contents of these registers with flexible waveform control to reduce power consumption wherever possible. An LCD blinking function is also supported on a subset of LCD segments.

The LCD0 module has the following features:

- Up to 40 segment pins and 4 common pins.
- Supports LCDs with 1/2 or 1/3 bias.
- Includes an on-chip charge pump with programmable output that allows firmware to control the contrast independent of the supply voltage.
- The RTC timer clock (RTC0TCLK) determines the LCD timing and refresh rate.
- All LCD waveforms are generated on-chip based on the contents of the LCD0 registers with flexible waveform control.
- LCD segments can be placed in a discharge state for a configurable number of RTC clock cycles before switching to the next state to reduce power consumption due to display loading.
- Includes a VBAT monitor that can serve as a wakeup source for Power Mode 8.
- Supports four hardware auto-contrast modes: bypass, constant, minimum, and auto-bypass.
- Supports hardware blinking for up to 8 segments.

4.6.3. Real-Time Clock (RTC0)

The RTC module includes a 32-bit timer that allows up to 36 hours of independent time-keeping when used with a 32.768 kHz watch crystal. The RTC provides three alarm events in addition to a missing clock event, which can also function as interrupt, reset, or wakeup sources on SiM3L1xx devices.

The RTC module includes internal loading capacitors that are programmable to 16 discrete levels, allowing compatibility with a wide range of crystals.

The RTC timer clock can be buffered and routed to a port bank pin to provide an accurate, low frequency clock to other devices while the core is in its lowest power down mode. The module also includes a low power internal low frequency oscillator that reduces low power mode current and is available for other modules to use as a clock source.

The RTC module includes the following features:

- 32-bit timer (supports up to 36 hours) with three separate alarms.
- Option for one alarm to automatically reset the RTC timer.
- Missing clock detector.
- Can be used with the internal Low Frequency Oscillator or with an external 32.768 kHz crystal (no additional resistors or capacitors necessary).
- Programmable internal loading capacitors support a wide range of external 32.768 kHz crystals.
- The RTC timer clock (RTC0CLK) can be buffered and routed to an I/O pin to provide an accurate, low frequency clock to other devices while the core is in its lowest power down mode.
- The RTC module can be powered from the low power mode charge pump for lowest possible power consumption while in PM8.

4.6.4. Low Power Timer (LPTIMER0)

The Low Power Timer (LPTIMER) module runs from the RTC timer clock (RTC0CLK), allowing the LPTIMER to operate even if the AHB and APB clocks are disabled. The LPTIMER counter can increment using one of two clock sources: the clock selected by the RTC0 module, or rising or falling edges of an external signal.

The Low Power Timer includes the following features:

- Runs on low-frequency RTC timer clock (RTC0TCLK).
- The LPTIMER counter can increment using one of two clock sources: the RTC0TCLK or rising or falling edges of an external signal.
- Overflow and threshold-match detection.
- Timer reset on threshold-match allows square-wave generation at a variable output frequency.
- Supports PWM with configurable period and duty cycle.
- The LPTIMER module can be powered from the low power mode charge pump for lowest possible power consumption while in PM8.

4.6.5. Watchdog Timer (WDTIMER0)

The WDTIMER module includes a 16-bit timer, a programmable early warning interrupt, and a programmable reset period. The timer registers are protected from inadvertent access by an independent lock and key interface.

The watchdog timer runs from the low frequency oscillator (LFOSC0).

The Watchdog Timer has the following features:

- Programmable timeout interval.
- Optional interrupt to warn when the Watchdog Timer is nearing the reset trip value.
- Lock-out feature to prevent any modification until a system reset.

4.10. Security

The peripherals on the SiM3L1xx devices have a register lock and key mechanism that prevents undesired accesses of the peripherals from firmware. Each bit in the PERIPHLOCKx registers controls a set of peripherals. A key sequence must be written to the KEY register to modify bits in PERIPHLOCKx. Any subsequent write to KEY will then inhibit accesses of PERIPHLOCKx until it is unlocked again through KEY. Reading the KEY register indicates the current status of the PERIPHLOCKx lock state.

If a peripheral's registers are locked, all writes will be ignored. The registers can be read, regardless of the peripheral's lock state.

4.11. On-Chip Debugging

The SiM3L1xx devices include JTAG and Serial Wire programming and debugging interfaces and ETM for instruction trace. The JTAG interface is supported on SiM3L1x7 devices only, and does not include boundary scan capabilites. The ETM interface is supported on SiM3L1x7, and SiM3L1x6 devices only. The JTAG and ETM interfaces can be optionally enabled to provide more visibility while debugging at the cost of using several Port I/O pins. Additionally, if the core is configured for Serial Wire (SW) mode and not JTAG, then the Serial Wire Viewer (SWV) is available to provide a single pin to send out TPIU messages. Serial Wire Viewer is supported on all SiM3Lxxx devices.

Most peripherals on SiM3L1xx devices have the option to halt or continue functioning when the core halts in debug mode.

Pin Name	Туре	Pin Numbers (TQFP-80)	I/O Voltage Domain	Crossbar Capability	Port Match	LCD Interface	Output Toggle Logic	External Trigger Inputs / Digital Functions	Analog Functions
PB3.4	Standard I/O	43	VIO	\checkmark	\checkmark	LCD0.23		INT1.12	CMP0P.6
PB3.5	Standard I/O	42	VIO	V	\checkmark	LCD0.22		INT1.13	CMP0N.6
PB3.6	Standard I/O	41	VIO	~	\checkmark	LCD0.21		INT1.14	CMP1P.6
PB3.7	Standard I/O	40	VIO	V	~	LCD0.20		INT1.15	CMP1N.6
PB3.8	Standard I/O	39	VIO		\checkmark	LCD0.19			CMP0P.7
PB3.9	Standard I/O	38	VIO		\checkmark	LCD0.18			CMP0N.7
PB3.10	Standard I/O	37	VIO		\checkmark	LCD0.17			CMP1P.7
PB3.11	Standard I/O	36	VIO		\checkmark	LCD0.16			CMP1N.7
PB3.12	Standard I/O	35	VIO		\checkmark	LCD0.15			ADC0.18
PB3.13	Standard I/O	34	VIO		\checkmark	LCD0.14			ADC0.19
PB3.14	Standard I/O	33	VIO		V	COM0.3			
PB3.15	Standard I/O	32	VIO		V	COM0.2			
PB4.0	Standard I/O	29	VIO		V	COM0.1			
PB4.1	Standard I/O	28	VIO		\checkmark	COM0.0			
PB4.2	Standard I/O	27	VIO		\checkmark	LCD0.13			
PB4.3	Standard I/O	26	VIO		\checkmark	LCD0.12			
PB4.4	Standard I/O	25	VIO		\checkmark	LCD0.11			
PB4.5	Standard I/O	24	VIO		\checkmark	LCD0.10			
PB4.6	Standard I/O	23	VIO		\checkmark	LCD0.9		PMU_Asleep	
PB4.7	Standard I/O	22	VIO		\checkmark	LCD0.8			
PB4.8	Standard I/O	21	VIO		\checkmark	LCD0.7			

Table 6.1. Pin Definitions and Alternate Functions for SiM3L1x7 (Continued)

Pin Name	Туре	Pin Numbers	I/O Voltage Domain	Crossbar Capability	Port Match	LCD Interface	Output Toggle Logic	External Trigger Inputs / Digital Functions	Analog Functions
PB0.2	Standard I/O	1	VIO	XBR 0	\checkmark		~	INT0.2 WAKE.3	ADC0.23 CMP1N.0 XTAL1
PB0.3	Standard I/O	64	VIO	XBR 0	1		~	INT0.3 WAKE.4	ADC0.0 CMP0P.1 IDAC0
PB0.4	Standard I/O	63	VIO	XBR 0	>		~	INT0.4 WAKE.5 ACCTR0_STOP0	ACCTR0_IN0
PB0.5	Standard I/O	62	VIO	XBR 0	1		~	INT0.5 WAKE.6 ACCTR0_STOP1	ACCTR0_IN1
PB0.6	Standard I/O	61	VIO	XBR 0	~		~	INT0.6 WAKE.7	ACCTR0_LCIN0
PB0.7	Standard I/O	60	VIO	XBR 0	~		~	LPT0T0 LPT0OUT0 INT0.7 WAKE.8	ACCTR0_LCIN1
PB0.8	Standard I/O	59	VIO	XBR 0	~		~	LPT0T1 INT0.8 WAKE.9 ACCTR0_LCPUL0	ADC0.1 CMP0N.1
PB0.9/SWV	Standard I/O /Serial Wire Viewer	58	VIO	XBR 0	~		V	LPT0T2 INT0.9 WAKE.10 LPT0OUT1 ACCTR0_LCPUL1	ADC0.2 CMP1P.1
PB1.0	Standard I/O	53	VIO	XBR 0	~	LCD0.31		LPT0T4 INT0.12 ACCTR0_LCBIAS0	CMP0P.2

Table 6.2. Pin Definitions and Alternate Functions for SiM3L1x6 (Continued)

Pin Name	Туре	Pin Numbers	I/O Voltage Domain	Crossbar Capability	Port Match	Output Toggle Logic	External Trigger Inputs / Digital Functions	Analog Functions
PB0.2	Standard I/O	40	VIO	XBR0			INT0.2 WAKE.3	ADC0.23 CMP0N.1 CMP1N.0 XTAL1
PB0.3	Standard I/O	39	VIO	XBR0	~	~	INT0.3 WAKE.4	ADC0.0 CMP0P.1 IDAC0
PB0.4	Standard I/O	38	VIO	XBR0	~	~	INT0.4 WAKE.5	ACCTR0_IN0
PB0.5	Standard I/O	37	VIO	XBR0	\checkmark	\checkmark	INT0.5 WAKE.6	ACCTR0_IN1
PB0.6/SWV	Standard I/O /Serial Wire Viewer	36	VIO	XBR0	~	~	LPT0T0 LPT0OUT0 INT0.6 WAKE.8	
PB0.7	Standard I/O	32	VIO	XBR0	~	~	LPT0T6 INT0.7 UART0_TX	CMP1P.2
PB0.8	Standard I/O	31	VIO	XBR0	~	~	LPT0T7 INT0.8 UART0_RX	CMP1N.2
PB0.9	Standard I/O	30	VIO	XBR0	~	~	LPT0T1 INT0.9 RTC0TCLK_OUT	ADC0.1
PB2.0	Standard I/O	29	VIORF	XBR0	v		LPT0T8 INT1.0 WAKE.12 SPI1_CTS	ADC0.2 CMP0P.4

Table 6.3. Pin Definitions and Alternate Functions for SiM3L1x4 (Continued)

6.4.1. TQFP-80 Solder Mask Design

All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

6.4.2. TQFP-80 Stencil Design

- 1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 2. The stencil thickness should be 0.125 mm (5 mils).
- 3. The ratio of stencil aperture to land pad size should be 1:1 for all pads.

6.4.3. TQFP-80 Card Assembly

- 1. A No-Clean, Type-3 solder paste is recommended.
- 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Figure 7.3. SiM3L1x4-GM Revision Information

DOCUMENT CHANGE LIST

Revision 0.5 to Revision 1.0

- Updated Electrical Specifications Tables with latest characterization data and production test limits.
- Added missing signal ACCTR0_LCPUL1 to Table 6.2, "Pin Definitions and Alternate Functions for SiM3L1x6," on page 64.
- Removed ACCTR0_LCIN1 and ACCTR0_STOP0/1 signals from Table 6.3, "Pin Definitions and Alternate Functions for SiM3L1x4," on page 70.
- Updated Figure 6.8, "TFBGA-80 Package Drawing," on page 79.

Revision 1.0 to Revision 1.1

Removed all references to BGA-80 and the parts SiM3L167-C-GL and SiM3L157-C-GL.

